Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2015, Vol. 6 Issue (3) : 160-169    https://doi.org/10.1007/s13238-014-0130-4
REVIEW
The role of Smad7 in oral mucositis
Li Bian1,2,Gangwen Han2,3,Carolyn W. Zhao2,Pamela J. Garl2,Xiao-Jing Wang2,*()
1. Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
2. Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80203, USA
3. Department of Dermatology, The Second Hospital of Shandong University, Jinan 250033, China
 Download: PDF(458 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Oral mucositis, a severe oral ulceration, is a common toxic effect of radio- or chemoradio-therapy and a limiting factor to using the maximum dose of radiation for effective cancer treatment. Among cancer patients, at least 40% and up to 70%, of individuals treated with standard chemotherapy regimens or upper-body radiation, develop oral mucositis. To date, there is no FDA approved drug to treat oral mucositis in cancer patients. The key challenges for oral mucositis treatment are to repair and protect ulcerated oral mucosa without promoting cancer cell growth. Oral mucositis is the result of complex, multifaceted pathobiology, involving a series of signaling pathways and a chain of interactions between the epithelium and submucosa. Among those pathways and interactions, the activation of nuclear factor-kappa B (NF-κB) is critical to the inflammation process of oral mucositis. We recently found that activation of TGFβ(transforming growth factor β) signaling is associated with the development of oral mucositis. Smad7, the negative regulator of TGFβ signaling, inhibits both NF-κB and TGFβ activation and thus plays a pivotal role in the prevention and treatment of oral mucositis by attenuating growth inhibition, apoptosis, and inflammation while promoting epithelial migration. The major objective of this review is to evaluate the known functions of Smad7, with a particular focus on its molecular mechanisms and its function in blocking multiple pathological processes in oral mucositis.

Keywords Smad7      oral mucositis      cancer      TGFβ      NF-κB     
Corresponding Author(s): Xiao-Jing Wang   
Issue Date: 01 April 2015
 Cite this article:   
Li Bian,Gangwen Han,Carolyn W. Zhao, et al. The role of Smad7 in oral mucositis[J]. Protein Cell, 2015, 6(3): 160-169.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-014-0130-4
https://academic.hep.com.cn/pac/EN/Y2015/V6/I3/160
1 Azuma H, Ehata S, Miyazaki H, Watabe T, Maruyama O, Imamura T, Sakamoto T, Kiyama S, Kiyama Y, Ubai T (2005) Effect of Smad7 expression on metastasis of mouse mammary carcinoma JygMC(A) cells. J Natl Cancer Inst 97: 1734-1746
https://doi.org/10.1093/jnci/dji399
2 Barasch A, Peterson DE (2003) Risk factors for ulcerative oral mucositis in cancer patients: unanswered questions. Oral Oncol: 91-100
https://doi.org/10.1016/S1368-8375(02)00033-7
3 Bellm LA, Epstein JB, Rose-Ped A, Martin P, Fuchs HJ (2000) Patient reports of complications of bone marrow transplantation. Support Care Cancer 8: 33-39
4 Boulay JL, Mild G, Reuter J, Lagrange M, Terracciano L, Lowy A, Laffer U, Orth B, Metzger U, Stamm B (2001) Combined copy status of 18q21 genes in colorectal cancer shows frequent retention of SMAD7. Genes Chromosomes Cancer 31: 240-247
https://doi.org/10.1002/gcc.1140
5 Castilho RM, Squarize CH, Leelahavanichkul K, Zheng Y, Bugge T, Gutkind JS (2010) Rac1 is required for epithelial stem cell function during dermal and oral mucosal wound healing but not for tissue homeostasis in mice. PLoS One 5: e10503
https://doi.org/10.1371/journal.pone.0010503
6 Chen HY, Huang XR, Wang W, Li JH, Heuchel RL, Chung AC, Lan HY (2011) The protective role of Smad7 in diabetic kidney disease: mechanism and therapeutic potential. Diabetes 60: 590-601
https://doi.org/10.2337/db10-0403
7 Chung AC, Huang XR, Zhou L, Heuchel R, Lai KN, Lan HY (2009) Disruption of the Smad7 gene promotes renal flbrosis and inflammation in unilateral ureteral obstruction (UUO) in mice. Nephrol Dial Transplant 24: 1443-1454
https://doi.org/10.1093/ndt/gfn699
8 Denham JW, Hauer-Jensen M (2002) The radiotherapeutic injury—a complex ‘wound’. Radiother Oncol 63: 129-145
https://doi.org/10.1016/S0167-8140(02)00060-9
9 Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425: 577-584
https://doi.org/10.1038/nature02006
10 DiVito KA, Trabosh VA, Chen YS, Chen Y, Albanese C, Javelaud D, Mauviel A, Simbulan-Rosenthal CM, Rosenthal DS (2010) Smad7 restricts melanoma invasion by restoring N-cadherin expression and establishing heterotypic cell-cell interactions in vivo. Pigment Cell Melanoma Res 23: 795-808
https://doi.org/10.1111/j.1755-148X.2010.00758.x
11 Ebisawa T, Fukuchi M, Murakami G, Chiba T, Tanaka K, Imamura T, Miyazono K (2001) Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation. J Biol Chem 276: 12477-12480
https://doi.org/10.1074/jbc.C100008200
12 Edlund S, Bu S, Schuster N, Aspenstrom P, Heuchel R, Heldin NE, ten Dijke P, Heldin CH, Landstrom M (2003) Transforming growth factor beta1-induced apoptosis of prostate cancer cells involves Smad7-dependent activation of p38 by TGF-beta-activated kinase 1 and mitogen-activated protein kinase kinase 3. Mol Biol Cell 14(2): 529-544
https://doi.org/10.1091/mbc.02-03-0037
13 Ekman M, Mu Y, Lee SY, Edlund S, Kozakai T, Thakur N, Tran H, Qian J, Groeden J, Heldin CH (2012) APC and Smad7 link TGFbeta type I receptors to the microtubule system to promote cell migration. Mol Biol Cell 23: 2109-2121
https://doi.org/10.1091/mbc.E10-12-1000
14 Epstein JB, Gorsky M, Guglietta A, Le N, Sonis ST (2000) The correlation between epidermal growth factor levels in saliva and the severity of oral mucositis during oropharyngeal radiation therapy. Cancer 89: 2258-2265
https://doi.org/10.1002/1097-0142(20001201)89:11<2258::AID-CNCR14>3.0.CO;2-Z
15 Epstein JB, Silverman S Jr, Paggiarino DA, Crockett S, Schubert MM, Senzer NN, Lockhart PB, Gallagher MJ, Peterson DE, Leveque FG (2001) Benzydamine HCl for prophylaxis of radiation-induced oral mucositis: results from a multicenter, randomized, double-blind, placebo-controlled clinical trial. Cancer 92: 875-885
https://doi.org/10.1002/1097-0142(20010815)92:4<875::AID-CNCR1396>3.0.CO;2-1
16 Feng XH, Derynck R (2005) Speciflcity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol 21: 659-693
https://doi.org/10.1146/annurev.cellbio.21.022404.142018
17 Groneberg DA, Witt H, Adcock IM, Hansen G, Springer J (2004) Smads as intracellular mediators of airway inflammation. Exp Lung Res 30: 223-250
https://doi.org/10.1080/01902140490276320
18 Halder SK, Beauchamp RD, Datta PK (2005) Smad7 induces tumorigenicity by blocking TGF-beta-induced growth inhibition and apoptosis. Exp Cell Res 307: 231-246
https://doi.org/10.1016/j.yexcr.2005.03.009
19 Han G, Li F, Ten Dijke P, Wang XJ (2011) Temporal smad7 transgene induction in mouse epidermis accelerates skin wound healing. Am J Pathol 179: 1768-1779
https://doi.org/10.1016/j.ajpath.2011.06.003
20 Han G, Bian L, Li F, Cotrim A, Wang D, Lu J, Deng Y, Bird G, Sowers A, Mitchell JB (2013) Preventive and therapeutic effects of Smad7 on radiation-induced oral mucositis. Nat Med 19: 421-428
https://doi.org/10.1038/nm.3118
21 Hayashi H, Abdollah S, Qiu Y, Cai J, Xu YY, Grinnell BW, Richardson MA, Topper JN, Gimbrone MA Jr, Wrana JL (1997) The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling. Cell 89: 1165-1173
https://doi.org/10.1016/S0092-8674(00)80303-7
22 He W, Cao T, Smith DA, Myers TE, Wang XJ (2001) Smads mediate signaling of the TGFá superfamily in normal keratinocytes but are lost during skin chemical carcinogenesis. Oncogene 20: 471-483
https://doi.org/10.1038/sj.onc.1204117
23 He W, Li AG, Wang D, Han S, Zheng B, Goumans MJ, Ten Dijke P, Wang XJ (2002) Overexpression of Smad7 results in severe pathological alterations in multiple epithelial tissues. EMBO J 21: 2580-2590
https://doi.org/10.1093/emboj/21.11.2580
24 Henke M, Alfonsi M, Foa P, Giralt J, Bardet E, Cerezo L, Salzwimmer M, Lizambri R, Emmerson L, Chen MG (2011) Palifermin decreases severe oral mucositis of patients undergoing postoperative radiochemotherapy for head and neck cancer: a randomized, placebo-controlled trial. J Clin Oncol 29: 2815-2820
https://doi.org/10.1200/JCO.2010.32.4103
25 Hong S, Lim S, Li AG, Lee C, Lee YS, Lee EK, Park SH, Wang XJ, Kim SJ (2007) Smad7 binds to the adaptors TAB2 and TAB3 to block recruitment of the kinase TAK1 to the adaptor TRAF2. Nat Immunol 8: 504-513
https://doi.org/10.1038/ni1451
26 Javelaud D, Delmas V, Moller M, Sextius P, Andre J, Menashi S, Larue L, Mauviel A (2005) Stable overexpression of Smad7 in human melanoma cells inhibits their tumorigenicity in vitro and in vivo. Oncogene 24: 7624-7629
https://doi.org/10.1038/sj.onc.1208900
27 Jyung RW, Wu L, Pierce GF, Mustoe TA (1994) Granulocyte-macrophage colony-stimulating factor and granulocyte colonystimulating factor: differential action on incisional wound healing. Surgery 115: 325-334
28 Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH, Wrana JL (2000) Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGFbeta receptor for degradation. Mol Cell 6: 1365-1375
https://doi.org/10.1016/S1097-2765(00)00134-9
29 Khuntia D, Harris J, Bentzen SM, Kies MS, Meyers JN, Foote RL, Machtay M, Straube WL (2008) Increased oral mucositis after IMRT versus non-IMRT when combined with cetuximab and cisplatin or docetaxel for Head and neck cancer: preliminary results of RTOG 0234. Int J Radiat Oncol 72: 839
https://doi.org/10.1016/j.ijrobp.2008.06.839
30 Kim YH, Lee HS, Lee HJ, Hur K, Kim WH, Bang YJ, Kim SJ, Lee KU, Choe KJ, Yang HK (2004) Prognostic signiflcance of the expression of Smad4 and Smad7 in human gastric carcinomas. Ann Oncol 15(4): 574-580
https://doi.org/10.1093/annonc/mdh131
31 Kleeff J, Ishiwata T, Maruyama H, Friess H, Truong P, Buchler MW, Falb D, Korc M(1999) The TGF-beta signaling inhibitor Smad7 enhances tumorigenicity in pancreatic cancer. Oncogene 18: 5363-5372
https://doi.org/10.1038/sj.onc.1202909
32 Kulkarni AB, Huh CG, Becker D, Geiser A, Lyght M, Flanders KC, Roberts AB, Sporn MB, Ward JM, Karlsson S (1993) Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci USA 90: 770-774
https://doi.org/10.1073/pnas.90.2.770
33 Lalla RV, Peterson DE (2006) Treatment of mucositis, including new medications. Cancer J 12: 348-354
https://doi.org/10.1097/00130404-200609000-00004
34 Lalla RV, Bowen J, Barasch A, Elting L, Epstein J, Keefe DM, McGuire DB, Migliorati C, Nicolatou-Galitis O, Peterson DE (2014) MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy. Cancer 120: 1453-1461
https://doi.org/10.1002/cncr.28592
35 Lawson CD, Burridge K (2014) The on-off relationship of Rho and Rac during integrin-mediated adhesion and cell migration. Small GTPases 5: e27958
https://doi.org/10.4161/sgtp.27958
36 Le QT, Kim HE, Schneider CJ, Murakozy G, Skladowski K, Reinisch S, Chen Y, Hickey M, Mo M, Chen MG (2011) Palifermin reduces severe mucositis in deflnitive chemoradiotherapy of locally advanced head and neck cancer: a randomized, placebo-controlled study. J Clin Oncol 29: 2808-2814
https://doi.org/10.1200/JCO.2010.32.4095
37 Leivonen SK, Ala-Aho R, Koli K, Grenman R, Peltonen J, Kahari VM (2006) Activation of Smad signaling enhances collagenase-3 (MMP-13) expression and invasion of head and neck squamous carcinoma cells. Oncogene 25: 2588-2600
https://doi.org/10.1038/sj.onc.1209291
38 Li AG, Lu SL, Zhang MX, Deng C, Wang XJ (2004a) Smad3 knockout mice exhibit a resistance to skin chemical carcinogenesis. Cancer Res 64: 7836-7845
https://doi.org/10.1158/0008-5472.CAN-04-1331
39 Li AG, Wang D, Feng XH, Wang XJ (2004b) Latent TGFbeta1 overexpression in keratinocytes results in a severe psoriasis-like skin disorder. EMBO J 23: 1770-1781
https://doi.org/10.1038/sj.emboj.7600183
40 Li Q, Zhang D, Wang Y, Sun P, Hou X, Larner J, Xiong W, Mi J (2013) MiR-21/Smad 7 signaling determines TGF-beta1-induced CAF formation. Sci Rep 3: 2038
https://doi.org/10.1038/srep02038
41 Lin X, Liang M, Feng XH (2000) Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in transforming growth factor-beta signaling. J Biol Chem 275: 36818-36822
https://doi.org/10.1074/jbc.C000580200
42 Liu X, Lee J, Cooley M, Bhogte E, Hartley S, Glick A (2003) Smad7 but not Smad6 cooperates with oncogenic ras to cause malignant conversion in a mouse model for squamous cell carcinoma. Cancer Res 63: 7760-7768
43 Liu IM, Schilling SH, Knouse KA, Choy L, Derynck R, Wang XF (2009) TGFbeta-stimulated Smad1/5 phosphorylation requires the ALK5 L45 loop and mediates the pro-migratory TGFbeta switch. EMBO J 28: 88-98
https://doi.org/10.1038/emboj.2008.266
44 Lu SL, Reh D, Li AG, Woods J, Corless CL, Kulesz-Martin M, Wang XJ (2004) Overexpression of transforming growth factor beta1 in head and neck epithelia results in inflammation, angiogenesis, and epithelial hyperproliferation. Cancer Res 64: 4405-4410
https://doi.org/10.1158/0008-5472.CAN-04-1032
45 Luo X, Ding Q, Wang M, Li Z, Mao K, Sun B, Pan Y, Wang Z, Zang YQ, Chen Y (2010) In vivo disruption of TGF-beta signaling by Smad7 in airway epithelium alleviates allergic asthma but aggravates lung carcinogenesis in mouse. PLoS One 5: e10149
https://doi.org/10.1371/journal.pone.0010149
46 Mallawaarachchi CM, Weissberg PL, Siow RC (2005) Smad7 gene transfer attenuates adventitial cell migration and vascular remodeling after balloon injury. Arterioscler ThrombVasc Biol 25: 1383-1387
https://doi.org/10.1161/01.ATV.0000168415.33812.51
47 Massague J, Gomis RR (2006) The logic of TGFbeta signaling. FEBS Lett 580: 2811-2820
https://doi.org/10.1016/j.febslet.2006.04.033
48 Migliorati C, Hewson I, Lalla RV, Antunes HS, Estilo CL, Hodgson B, Lopes NN, Schubert MM, Bowen J, Elad S (2013) Systematic review of laser and other light therapy for the management of oral mucositis in cancer patients. Support Care Cancer 21: 333-341
https://doi.org/10.1007/s00520-012-1605-6
49 Monteleone G, Pallone F, MacDonald TT (2004) Smad7 in TGFbeta-mediated negative regulation of gut inflammation. Trends Immunol 25: 513-517
https://doi.org/10.1016/j.it.2004.07.008
50 Nakao A, Afrakhte M, Moren A, Nakayama T, Christian JL, Heuchel R, Itoh S, Kawabata M, Heldin NE, Heldin CH (1997) Identiflcation of Smad7, a TGFbeta-inducible antagonist of TGFbeta signalling. Nature 389: 631-635
https://doi.org/10.1038/39369
51 Nicolatou-Galitis O, Sarri T, Bowen J, Di Palma M, Kouloulias VE, Niscola P, Riesenbeck D, Stokman M, Tissing W, Yeoh E (2013) Systematic review of anti-inflammatory agents for the management of oral mucositis in cancer patients. Support Care Cancer 21: 3179-3189
https://doi.org/10.1007/s00520-013-1847-y
52 Park S, Kang JM, Kim SJ, Kim H, Hong S, Lee YJ (2014) Smad7 enhances ATM activity by facilitating the interaction between ATM and Mre11-Rad50-Nbs1 complex in DNA double-strand break repair. Cell Mol Life Sci
https://doi.org/10.1007/s00018-014-1687-z
53 Peterson DE, Ohrn K, Bowen J, Fliedner M, Lees J, Loprinzi C, Mori T, Osaguona A, Weikel DS, Elad S (2013) Systematic review of oral cryotherapy for management of oral mucositis caused by cancer therapy. Support Care Cancer 21: 327-332
https://doi.org/10.1007/s00520-012-1562-0
54 Pittelkow MR, Coffey RJ Jr, Moses HJ (1988) Keratinocytes produce and are regulated by transforming growth factors. Ann NY Acad Sci 548: 211-224
https://doi.org/10.1111/j.1749-6632.1988.tb18809.x
55 Raber-Durlacher JE, von Bultzingslowen I, Logan RM, Bowen J, Al-Azri AR, Everaus H, Gerber E, Gomez JG, Pettersson BG, Soga Y (2013) Systematic review of cytokines and growth factors for the management of oral mucositis in cancer patients. Support Care Cancer 21: 343-355
https://doi.org/10.1007/s00520-012-1594-5
56 Rizzo A, Waldner MJ, Stolfl C, Sarra M, Fina D, Becker C, Neurath MF, Macdonald TT, Pallone F, Monteleone G (2011) Smad7 expression in T cells prevents colitis-associated cancer. Cancer Res 71: 7423-7432
https://doi.org/10.1158/0008-5472.CAN-11-1895
57 Rubenstein EB, Peterson DE, Schubert M, Keefe D, McGuire D, Epstein J, Elting LS, Fox PC, Cooksley C, Sonis ST (2004) Clinical practice guidelines for the prevention and treatment of cancer therapy-induced oral and gastrointestinal mucositis. Cancer 100: 2026-2046
https://doi.org/10.1002/cncr.20163
58 Saika S, Ikeda K, Yamanaka O, Miyamoto T, Ohnishi Y, Sato M, Muragaki Y, Ooshima A, Nakajima Y, Kao WW (2005) Expression of Smad7 in mouse eyes accelerates healing of corneal tissue after exposure to alkali. Am J Pathol 166: 1405-1418
https://doi.org/10.1016/S0002-9440(10)62358-9
59 Scully C, Epstein J, Sonis S (2003) Oral mucositis: a challenging complication of radiotherapy, chemotherapy, and radiochemotherapy: part 1, pathogenesis and prophylaxis of mucositis. Head Neck 25: 1057-1070
https://doi.org/10.1002/hed.10318
60 Scully C, Sonis S, Diz PD (2006) Oral mucositis. Oral Dis 12: 229-241
https://doi.org/10.1111/j.1601-0825.2006.01258.x
61 Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, Allen R, Sidman C, Proetzel G, Calvin D (1992) Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359: 693-699
https://doi.org/10.1038/359693a0
62 Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341: 738-746
https://doi.org/10.1056/NEJM199909023411006
63 Sonis ST (2002) The biologic role for nuclear factor-kappaB in disease and its potential involvement in mucosal injury associated with anti-neoplastic therapy. Crit Rev Oral Biol Med 13: 380-389
https://doi.org/10.1177/154411130201300502
64 Sonis ST (2004a) A biological approach to mucositis. J Support Oncol 2:21-32 discussion 35-26
65 Sonis ST (2004b) The pathobiology of mucositis. Nat Rev Cancer 4: 277-284
https://doi.org/10.1038/nrc1318
66 Sonis ST (2009) Efflcacy of palifermin (keratinocyte growth factor-1) in the amelioration of oral mucositis. Core Evid 4: 199-205
https://doi.org/10.2147/CE.S5995
67 Sonis ST (2010) Efflcacy of palifermin (keratinocyte growth factor-1) in the amelioration of oral mucositis. Core Evid 4: 199-205
68 Sonis ST (2013) Oral mucositis in head and neck cancer: risk, biology, and management. Am Soc Clin Oncol Educ Book
https://doi.org/10.1200/EdBook_AM.2013.33.e236
69 Sorensen JB, Skovsgaard T, Bork E, Damstrup L, Ingeberg S (2008) Double-blind, placebo-controlled, randomized study of chlorhexidine prophylaxis for 5-fluorouracil-based chemotherapy-induced oral mucositis with nonblinded randomized comparison to oral cooling (cryotherapy) in gastrointestinal malignancies. Cancer 112: 1600-1606
https://doi.org/10.1002/cncr.23328
70 Spielberger R, Stiff P, Bensinger W, Gentile T, Weisdorf D, Kewalramani T, Shea T, Yanovich S, Hansen K, Noga S (2004) Palifermin for oral mucositis after intensive therapy for hematologic cancers. N Engl J Med 351: 2590-2598
https://doi.org/10.1056/NEJMoa040125
71 Treister N, Sonis S (2008) Oral mucositis. In: Ettingeesr DS (ed) Cancer and drug discovery development: supportive care in cancer therapy. Humana Press, Totowa, pp 193-211
https://doi.org/10.1007/978-1-59745-291-5_11
72 Trotti A, Bellm LA, Epstein JB, Frame D, Fuchs HJ, Gwede CK, Komaroff E, Nalysnyk L, Zilberberg MD (2003) Mucositis incidence, severity and associated outcomes in patients with head and neck cancer receiving radiotherapy with or without chemotherapy: a systematic literature review. Radiother Oncol 66: 253-262
https://doi.org/10.1016/S0167-8140(02)00404-8
73 Vagliano L, Feraut C, Gobetto G, Trunflo A, Errico A, Campani V, Costazza G, Mega A, Matozzo V, Berni M (2011) Incidence and severity of oral mucositis in patients undergoing haematopoietic SCT—results of a multicentre study. Bone Marrow Transplant 46: 727-732
https://doi.org/10.1038/bmt.2010.184
74 Vera-Llonch M, Oster G, Hagiwara M, Sonis S (2006) Oral mucositis in patients undergoing radiation treatment for head and neck carcinoma. Cancer 106: 329-336
https://doi.org/10.1002/cncr.21622
75 Wang W, Huang XR, Li AG, Liu F, Li JH, Truong LD, Wang XJ, Lan HY (2005) Signaling mechanism of TGF-beta1 in prevention of renal inflammation: role of Smad7. J Am Soc Nephrol 16: 1371-1383
https://doi.org/10.1681/ASN.2004121070
76 Wang XJ, Han G, Owens P, Siddiqui Y, Li AG (2006) Role of TGF beta-mediated inflammation in cutaneous wound healing. J Investig Dermatol Symp Proc 11: 112-117
https://doi.org/10.1038/sj.jidsymp.5650004
77 Wang J, Zhao J, Chu ES, Mok MT, Go MY, Man K, Heuchel R, Lan HY, Chang Z, Sung JJ (2013) Inhibitory role of Smad7 in hepatocarcinogenesis in mice and in vitro. J Pathol 230: 441-452
https://doi.org/10.1002/path.4206
78 Weigelt C, Haas R, Kobbe G (2011) Pharmacokinetic evaluation of palifermin for mucosal protection from chemotherapy and radiation. Expert Opin Drug Metab Toxicol 7: 505-515
https://doi.org/10.1517/17425255.2011.566556
79 Wu HG, Song SY, Kim YS, Oh YT, Lee CG, Keum KC, Ahn YC, Lee SW (2009) Therapeutic effect of recombinant human epidermal growth factor (RhEGF) on mucositis in patients undergoing radiotherapy, with or without chemotherapy, for head and neck cancer: a double-blind placebo-controlled prospective phase 2 multi-institutional clinical trial. Cancer 115: 3699-3708
https://doi.org/10.1002/cncr.24414
80 Wu JC, Beale KK, Ma JD (2010) Evaluation of current and upcoming therapies in oral mucositis prevention. Future Oncol 6: 1751-1770
https://doi.org/10.2217/fon.10.133
81 Yan X, Chen YG (2011) Smad7: not only a regulator, but also a cross-talk mediator of TGF-beta signalling. Biochem J 434: 1-10
https://doi.org/10.1042/BJ20101827
82 Yarom N, Ariyawardana A, Hovan A, Barasch A, Jarvis V, Jensen SB, Zadik Y, Elad S, Bowen J, Lalla RV (2013) Systematic review of natural agents for the management of oral mucositis in cancer patients. Support Care Cancer 21: 3209-3221
https://doi.org/10.1007/s00520-013-1869-5
[1] Mona Teng, Stanley Zhou, Changmeng Cai, Mathieu Lupien, Housheng Hansen He. Pioneer of prostate cancer: past, present and the future of FOXA1[J]. Protein Cell, 2021, 12(1): 29-38.
[2] Henry Y. Jiang, Sara Najmeh, Guy Martel, Elyse MacFadden-Murphy, Raquel Farias, Paul Savage, Arielle Leone, Lucie Roussel, Jonathan Cools-Lartigue, Stephen Gowing, Julie Berube, Betty Giannias, France Bourdeau, Carlos H. F. Chan, Jonathan D. Spicer, Rebecca McClure, Morag Park, Simon Rousseau, Lorenzo E. Ferri. Activation of the pattern recognition receptor NOD1 augments colon cancer metastasis[J]. Protein Cell, 2020, 11(3): 187-201.
[3] Ruyi Xu, Yi Li, Yang Liu, Jianwei Qu, Wen Cao, Enfan Zhang, Jingsong He, Zhen Cai. How are MCPIP1 and cytokines mutually regulated in cancer-related immunity?[J]. Protein Cell, 2020, 11(12): 881-893.
[4] Weiwei Jiang, Fangfang Cai, Huangru Xu, Yanyan Lu, Jia Chen, Jia Liu, Nini Cao, Xiangyu Zhang, Xiao Chen, Qilai Huang, Hongqin Zhuang, Zi-Chun Hua. Extracellular signal regulated kinase 5 promotes cell migration, invasion and lung metastasis in a FAK-dependent manner[J]. Protein Cell, 2020, 11(11): 825-845.
[5] Fenjie Li, Junjun Ding. Sialylation is involved in cell fate decision during development, reprogramming and cancer progression[J]. Protein Cell, 2019, 10(8): 550-565.
[6] Wei Shao, Shasha Li, Lu Li, Kequan Lin, Xinhong Liu, Haiyan Wang, Huili Wang, Dong Wang. Chemical genomics reveals inhibition of breast cancer lung metastasis by Ponatinib via c-Jun[J]. Protein Cell, 2019, 10(3): 161-177.
[7] Boyi Zhang, Fei Chen, Qixia Xu, Liu Han, Jiaqian Xu, Libin Gao, Xiaochen Sun, Yiwen Li, Yan Li, Min Qian, Yu Sun. Revisiting ovarian cancer microenvironment: a friend or a foe?[J]. Protein Cell, 2018, 9(8): 674-692.
[8] Yelei Guo, Kaichao Feng, Yao Wang, Weidong Han. Targeting cancer stem cells by using chimeric antigen receptor-modified T cells: a potential and curable approach for cancer treatment[J]. Protein Cell, 2018, 9(6): 516-526.
[9] Jia Yang, Jun Yu. The association of diet, gut microbiota and colorectal cancer: what we eat may imply what we get[J]. Protein Cell, 2018, 9(5): 474-487.
[10] Xiao-xiao Xu, Han Wan, Li Nie, Tong Shao, Li-xin Xiang, Jian-zhong Shao. RIG-I: a multifunctional protein beyond a pattern recognition receptor[J]. Protein Cell, 2018, 9(3): 246-253.
[11] Nicole M. Anderson, Patrick Mucka, Joseph G. Kern, Hui Feng. The emerging role and targetability of the TCA cycle in cancer metabolism[J]. Protein Cell, 2018, 9(2): 216-237.
[12] John M. Dean, Irfan J. Lodhi. Structural and functional roles of ether lipids[J]. Protein Cell, 2018, 9(2): 196-206.
[13] Yanjing Song, Chuan Tong, Yao Wang, Yunhe Gao, Hanren Dai, Yelei Guo, Xudong Zhao, Yi Wang, Zizheng Wang, Weidong Han, Lin Chen. Effective and persistent antitumor activity of HER2-directed CAR-T cells against gastric cancer cells in vitro and xenotransplanted tumors in vivo[J]. Protein Cell, 2018, 9(10): 867-878.
[14] Xiaowei Chen, Zhen Fan, Warren McGee, Mengmeng Chen, Ruirui Kong, Pushuai Wen, Tengfei Xiao, Xiaomin Chen, Jianghong Liu, Li Zhu, Runsheng Chen, Jane Y. Wu. TDP-43 regulates cancer-associated microRNAs[J]. Protein Cell, 2018, 9(10): 848-866.
[15] Kaichao Feng, Yang Liu, Yelei Guo, Jingdan Qiu, Zhiqiang Wu, Hanren Dai, Qingming Yang, Yao Wang, Weidong Han. Phase I study of chimeric antigen receptor modified T cells in treating HER2-positive advanced biliary tract cancers and pancreatic cancers[J]. Protein Cell, 2018, 9(10): 838-847.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed