Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2020, Vol. 11 Issue (11) : 825-845    https://doi.org/10.1007/s13238-020-00701-1
RESEARCH ARTICLE
Extracellular signal regulated kinase 5 promotes cell migration, invasion and lung metastasis in a FAK-dependent manner
Weiwei Jiang1, Fangfang Cai1, Huangru Xu1, Yanyan Lu1, Jia Chen1, Jia Liu1, Nini Cao1, Xiangyu Zhang1, Xiao Chen1, Qilai Huang1, Hongqin Zhuang1(), Zi-Chun Hua1,2()
1. The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210023, China
2. Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou 213164, China
 Download: PDF(5379 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This study was designed to evaluate ERK5 expression in lung cancer and malignant melanoma progression and to ascertain the involvement of ERK5 signaling in lung cancer and melanoma. We show that ERK5 expression is abundant in human lung cancer samples, and elevated ERK5 expression in lung cancer was linked to the acquisition of increased metastatic and invasive potential. Importantly, we observed a significant correlation between ERK5 activity and FAK expression and its phosphorylation at the Ser910 site. Mechanistically, ERK5 increased the expression of the transcription factor USF1, which could transcriptionally upregulate FAK expression, resulting in FAK signaling activation to promote cell migration. We also provided evidence that the phosphorylation of FAK at Ser910 was due to ERK5 but not ERK1/2, and we then suggested a role for Ser910 in the control of cell motility. In addition, ERK5 had targets in addition to FAK that regulate epithelial-to-mesenchymal transition and cell motility in cancer cells. Taken together, our findings uncover a cancer metastasis-promoting role for ERK5 and provide the rationale for targeting ERK5 as a potential therapeutic approach.

Keywords ERK5      lung cancer      melanoma      metastasis      FAK      USF1      EMT     
Corresponding Author(s): Hongqin Zhuang,Zi-Chun Hua   
Online First Date: 14 September 2020    Issue Date: 07 December 2020
 Cite this article:   
Weiwei Jiang,Fangfang Cai,Huangru Xu, et al. Extracellular signal regulated kinase 5 promotes cell migration, invasion and lung metastasis in a FAK-dependent manner[J]. Protein Cell, 2020, 11(11): 825-845.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-020-00701-1
https://academic.hep.com.cn/pac/EN/Y2020/V11/I11/825
1 K Brami-Cherrier, N Gervasi, D Arsenieva, K Walkiewicz, MC Boutterin, A Ortega, PG Leonard, B Seantier, L Gasmi, T Boucebaet al. (2014) FAK dimerization controls its kinase-dependent functions at focal adhesions. EMBO J 33:356–370
https://doi.org/10.1002/embj.201386399
2 X Cai, D Lietha, DF Ceccarelli, AV Karginov, Z Rajfur, K Jacobson, KM Hahn, MJ Eck, MD Schaller (2008) Spatial and temporal regulation of focal adhesion kinase activity in living cells. Mol Cell Biol 28:201–214
https://doi.org/10.1128/MCB.01324-07
3 R Chen, Q Yang, JD Lee (2012) BMK1 kinase suppresses epithelialmesenchymal transition through the Akt/GSK3beta signaling pathway. Cancer Res 72:1579–1587
https://doi.org/10.1158/0008-5472.CAN-11-2055
4 X Chen, W Li, C Xu, J Wang, B Zhu, Q Huang, D Chen, J Sheng, Y Zou, YM Leeet al. (2018) Comparative profiling of analog targets: a case study on resveratrol for mouse melanoma metastasis suppression. Theranostics 8:3504–3516
https://doi.org/10.7150/thno.24336
5 H Choi, AI Nesvizhskii (2008) False discovery rates and related statistical concepts in mass spectrometry-based proteomics. J Proteome Res 7:47–50
https://doi.org/10.1021/pr700747q
6 J, Dai T Wang, W Wang, S Zhang, Y Liao, J Chen(2015) Role of MAPK7 in cell proliferation and metastasis in ovarian cancer. Int J Clin Exp Pathol 8:10444–10451
7 H Geng, L Zhao, Z Liang, Z, Zhang D, Xie L, Bi Y, Wang T Zhang, L, Cheng D Yuet al. (2015) ERK5 positively regulates cigarette smokeinduced urocystic epithelial-mesenchymal transition inSV40 immortalized human urothelial cells. Oncol Rep 34:1581–1588
https://doi.org/10.3892/or.2015.4130
8 VM Golubovskaya (2010) Focal adhesion kinase as a cancer therapy target. Anticancer Agents Med Chem 10:735–741
https://doi.org/10.2174/187152010794728648
9 PR Grigera, ED Jeffery, KH Martin, J Shabanowitz, DF Hunt, JT Parsons (2005) FAK phosphorylation sites mapped by mass spectrometry. J Cell Sci 118:4931–4935
https://doi.org/10.1242/jcs.02696
10 M Guarino, B Rubino, G Ballabio (2007) The role of epithelialmesenchymal transition in cancer pathology. Pathology 39:305–318
https://doi.org/10.1080/00313020701329914
11 SK Hanks, L Ryzhova, NY Shin, J Brabek (2003) Focal adhesion kinase signaling activities and their implications in the control of cell survival and motility. Front Biosci 8:d982–996
https://doi.org/10.2741/1114
12 H Hao, Y Naomoto, X Bao, N Watanabe, K Sakurama, K Noma, T Motoki, Y Tomono, T Fukazawa, Y Shirakawaet al. (2009) Focal adhesion kinase as potential target for cancer therapy (Review). Oncol Rep 22:973–979
https://doi.org/10.3892/or_00000524
13 M Hayashi, C Fearns, B Eliceiri, Y Yang, JD Lee (2005) Big mitogenactivated protein kinase 1/extracellular signal-regulated kinase 5 signaling pathway is essential for tumor-associated angiogenesis. Cancer Res 65:7699–7706
https://doi.org/10.1158/0008-5472.CAN-04-4540
14 VT Hoang, TJ Yan, JE Cavanaugh, PT Flaherty, BS Beckman, ME Burow (2017) Oncogenic signaling of MEK5-ERK5. Cancer Lett 392:51–59
https://doi.org/10.1016/j.canlet.2017.01.034
15 I Hunger-Glaser, RS Fan, E Perez-Salazar, E Rozengurt (2004) PDGF and FGF induce focal adhesion kinase (FAK) phosphorylation at Ser-910: dissociation from Tyr-397 phosphorylation and requirement for ERK activation. J Cell Physiol 200:213–222
https://doi.org/10.1002/jcp.20018
16 I Hunger-Glaser, EP Salazar, J, Sinnett-Smith E Rozengurt (2003) Bombesin, lysophosphatidic acid, and epidermal growth factor rapidly stimulate focal adhesion kinase phosphorylation at Ser-910: requirement for ERK activation. J Biol Chem 278:22631–22643
https://doi.org/10.1074/jbc.M210876200
17 JY Im, SH Yoon, BK Kim, HS Ban, KJ Won, KS Chung, KE Jung, M Won (2016) DNA damage induced apoptosis suppressor (DDIAS) is upregulated via ERK5/MEF2B signaling and promotes beta-catenin-mediated invasion. Biochim Biophys Acta 1859:1449–1458
https://doi.org/10.1016/j.bbagrm.2016.07.003
18 S Javaid, J Zhang, GA Smolen, M Yu, BS Wittner, A Singh, KS Arora, MW Madden, R, Desai MJ Zubrowskiet al. (2015) MAPK7 Regulates EMT Features and Modulates the Generation of CTCs. Mol Cancer Res 13:934–943
https://doi.org/10.1158/1541-7786.MCR-14-0604
19 W Jiang, G Jin, F Cai, X Chen, N Cao, X Zhang, J Liu, F Chen, F, Wang W Donget al. (2019) Extracellular signal-regulated kinase 5 increases radioresistance of lung cancer cells by enhancing the DNA damage response. Exp Mol Med 51:19
https://doi.org/10.1038/s12276-019-0209-3
20 EG Kleinschmidt, DD Schlaepfer (2017) Focal adhesion kinase signaling in unexpected places. Curr Opin Cell Biol 45:24–30
https://doi.org/10.1016/j.ceb.2017.01.003
21 DA Lauffenburger, AF Horwitz (1996) Cell migration: a physically integrated molecular process. Cell 84:359–369
https://doi.org/10.1016/S0092-8674(00)81280-5
22 T Lechertier, K Hodivala-Dilke (2012) Focal adhesion kinase and tumour angiogenesis. J Pathol 226:404–412
https://doi.org/10.1002/path.3018
23 BY Lee, P Timpson, LG Horvath, RJ Daly (2015) FAK signaling in human cancer as a target for therapeutics. Pharmacol Ther 146:132–149
https://doi.org/10.1016/j.pharmthera.2014.10.001
24 S Li, W Dong, Y Zong, W Yin, G, Jin Q, Hu X Huang, W, Jiang ZC Hua (2007) Polyethylenimine-complexed plasmid particles targeting focal adhesion kinase function as melanoma tumor therapeutics. Mol Ther 15:515–523
https://doi.org/10.1038/sj.mt.6300072
25 Z Liang, R Wu, W Xie, C Xie, J Wu, S Geng, X Li, M Zhu, W Zhu, J Zhuet al. (2017) Effects of Curcumin on Tobacco Smoke-induced Hepatic MAPK Pathway Activation and Epithelial-Mesenchymal Transition In Vivo. Phytother Res 31:1230–1239
https://doi.org/10.1002/ptr.5844
26 Z Liang, W Xie, R Wu, H Geng, L Zhao, C Xie, X Li, C Huang, J Zhu, M Zhuet al. (2015a) ERK5 negatively regulates tobacco smokeinduced pulmonary epithelial-mesenchymal transition. Oncotarget 6:19605–19618
https://doi.org/10.18632/oncotarget.3747
27 Z Liang, W Xie, R Wu, H Geng, L Zhao, C Xie, X Li, M Zhu, W Zhu, J Zhuet al.(2015b) Inhibition of tobacco smoke-induced bladder MAPK activation and epithelial-mesenchymal transition in mice by curcumin. Int J Clin Exp Pathol 8:4503–4513
28 Y Lin, N Peng, J Li, H Zhuang, ZC Hua (2013) Herbal compound triptolide synergistically enhanced antitumor activity of aminoterminal fragment of urokinase. Mol Cancer 12:54
https://doi.org/10.1186/1476-4598-12-54
29 F, Liu H Zhang, H Song (2017) Upregulation of MEK5 by Stat3 promotes breast cancer cell invasion and metastasis. Oncol Rep 37:83–90
https://doi.org/10.3892/or.2016.5256
30 A Ma, A Richardson, EM Schaefer, JT Parsons (2001) Serine phosphorylation of focal adhesion kinase in interphase and mitosis: a possible role in modulating binding to p130(Cas). Mol Biol Cell 12:1–12
https://doi.org/10.1091/mbc.12.1.1
31 PB Mehta, BL Jenkins, L McCarthy, L Thilak, CN Robson, DE Neal, HY Leung (2003) MEK5 overexpression is associated with metastatic prostate cancer, and stimulates proliferation, MMP-9 expression and invasion. Oncogene 22:1381–1389
https://doi.org/10.1038/sj.onc.1206154
32 J Min, H Geng, Z Liu, Z Liang, Z, Zhang D Xie, Y Wang, T Zhang, D Yu, C Zhong (2017) ERK5 regulates tobacco smokeinduced urocystic epithelialmesenchymal transition in BALB/c mice. Mol Med Rep 15:3893–3897
https://doi.org/10.3892/mmr.2017.6457
33 N Mody, DG Campbell, N Morrice, M Peggie, P Cohen(2003) An analysis of the phosphorylation and activation of extracellular-signalregulated protein kinase 5 (ERK5) by mitogen-activated protein kinase kinase 5 (MKK5) in vitro. Biochemical Journal 372:567–575
https://doi.org/10.1042/bj20030193
34 SJ Park, YS Choi, S Lee, YJ Lee, S Hong, S Han, BC Kim (2016) BIX02189 inhibits TGF-beta1-induced lung cancer cell metastasis by directly targeting TGF-beta type I receptor. Cancer Lett 381:314–322
https://doi.org/10.1016/j.canlet.2016.08.010
35 JT Parsons (2003) Focal adhesion kinase: the first ten years. J Cell Sci 116:1409–1416
https://doi.org/10.1242/jcs.00373
36 PP Provenzano, PJ Keely (2009) The role of focal adhesion kinase in tumor initiation and progression. Cell Adh Migr 3:347–350
https://doi.org/10.4161/cam.3.4.9458
37 AK Ramsay, SR McCracken, M Soofi, J, Fleming AX Yu, I, Ahmad R Morland, L Machesky, C Nixon, DR Edwardset al. (2011) ERK5 signalling in prostate cancer promotes an invasive phenotype. Br J Cancer 104:664–672
https://doi.org/10.1038/sj.bjc.6606062
38 E Rovida, G Di Maira, I Tusa, S Cannito, C Paternostro, N Navari, E Vivoli, X Deng, NS Gray, A Esparis-Ogandoet al. (2015) The mitogen-activated protein kinase ERK5 regulates the development and growth of hepatocellular carcinoma. Gut 64:1454–1465
https://doi.org/10.1136/gutjnl-2014-306761
39 AS Salinas-Sanchez, L Serrano-Oviedo, SY Nam-Cha, O Roche-Losada, R Sanchez-Prieto, JM Gimenez-Bachs (2017) Prognostic Value of the VHL, HIF-1alpha, and VEGF Signaling Pathway and Associated MAPK (ERK1/2 and ERK5) Pathways in Clear-Cell Renal Cell Carcinoma. A Long-Term Study. Clin Genitourin Cancer 15:e923–e933
https://doi.org/10.1016/j.clgc.2017.05.016
40 RS Sawhney, W Liu, MG Brattain (2009) A novel role of ERK5 in integrin-mediated cell adhesion and motility in cancer cells via Fak signaling. J Cell Physiol 219:152–161
https://doi.org/10.1002/jcp.21662
41 MD Schaller (2010) Cellular functions of FAK kinases: insight into molecular mechanisms and novel functions. J Cell Sci 123:1007–1013
https://doi.org/10.1242/jcs.045112
42 IV Shilov, SL Seymour, AA Patel, A Loboda, WH Tang, SP Keating, CL Hunter, LM Nuwaysir , DA Schaeffer (2007) The Paragon Algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. Mol Cell Proteomics 6:1638–1655
https://doi.org/10.1074/mcp.T600050-MCP200
43 RL Siegel, KD Miller, A Jemal(2018) Cancer statistics, 2018. CA Cancer J Clin 68:7–30
https://doi.org/10.3322/caac.21442
44 C Sticht, K Freier, K Knopfle, C Flechtenmacher, S Pungs, C Hofele, M Hahn, S Joos, P Lichter (2008) Activation of MAP kinase signaling through ERK5 but not ERK1 expression is associated with lymph node metastases in oral squamous cell carcinoma (OSCC). Neoplasia 10:462–470
https://doi.org/10.1593/neo.08164
45 WH Tang, IV Shilov, SL Seymour (2008) Nonlinear fitting method for determining local false discovery rates from decoy database searches. J Proteome Res 7:3661–3667
https://doi.org/10.1021/pr070492f
46 G Umapathy, A El Wakil , B Witek, L Chesler, L Danielson, X Deng, NS Gray, M Johansson, S Kvarnbrink, K Ruuthet al. (2014) The kinase ALK stimulates the kinase ERK5 to promote the expression of the oncogene MYCN in neuroblastoma. Sci Signal 7 (349):102
https://doi.org/10.1126/scisignal.2005470
47 E Villa-Moruzzi (2007) Targeting of FAK Ser910 by ERK5 and PP1delta in non-stimulated and phorbol ester-stimulated cells. Biochem J 408:7–18
https://doi.org/10.1042/BJ20070058
48 E Villa-Moruzzi (2011) Tyrosine phosphatases in the HER2-directed motility of ovarian cancer cells: Involvement of PTPN12, ERK5 and FAK. Anal Cell Pathol (Amst) 34:101–112
https://doi.org/10.1155/2011/870459
49 ZY Wang, WJ Wang, S Xu, SS Wang, Y Tu, YF Xiong, JH Mei, CL Wang (2016) The role of MAPK signaling pathway in the Her-2-positive meningiomas. Oncology Reports 36:685–695
https://doi.org/10.3892/or.2016.4849
50 KJ Won, JY Im, BK Kim, HS Ban, YJ Jung, KE Jung, M Won (2017) Stability of the cancer target DDIAS is regulated by the CHIP/HSP70 pathway in lung cancer cells. Cell Death Dis 8:e2554
https://doi.org/10.1038/cddis.2016.488
51 TD Wright, C Raybuck, A Bhatt, D Monlish, S Chakrabarty, K Wendekier, N Gartland, M Gupta, ME Burow, PT Flahertyet al. (2020) Pharmacological inhibition of the MEK5/ERK5 and PI3K/Akt signaling pathways synergistically reduces viability in triple-negative breast cancer. J Cell Biochem 121:1156–1168
https://doi.org/10.1002/jcb.29350
52 J Wu, H Cui, Z Zhu, L Wang (2016) MicroRNA-200b-3p suppresses epithelial-mesenchymal transition and inhibits tumor growth of glioma through down-regulation of ERK5. Biochem Biophys Res Commun 478:1158–1164
https://doi.org/10.1016/j.bbrc.2016.08.085
53 H Yoon, JP Dehart, JM Murphy, ST Lim (2015) Understanding the roles of FAK in cancer: inhibitors, genetic models, and new insights. J Histochem Cytochem 63:114–128
https://doi.org/10.1369/0022155414561498
54 X Zhao, JL Guan (2011) Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis. Adv Drug Deliv Rev 63:610–615
https://doi.org/10.1016/j.addr.2010.11.001
55 Y Zhu, M Casado, S Vaulont, K Sharma (2005) Role of upstream stimulatory factors in regulation of renal transforming growth factor-beta1. Diabetes 54:1976–1984
https://doi.org/10.2337/diabetes.54.7.1976
56 K Zhuang, J Zhang, M Xiong, X Wang, X Luo, L Han, Y Meng, Y Zhang, W Liao, S Liu (2016) CDK5 functions as a tumor promoter in human colorectal cancer via modulating the ERK5-AP-1 axis. Cell Death Dis 7:e2415
https://doi.org/10.1038/cddis.2016.333
[1] PAC-0825-19540-HZC_suppl_1 Download
[2] PAC-0825-19540-HZC_suppl_2 Download
[3] PAC-0825-19540-HZC_suppl_3 Download
[1] Henry Y. Jiang, Sara Najmeh, Guy Martel, Elyse MacFadden-Murphy, Raquel Farias, Paul Savage, Arielle Leone, Lucie Roussel, Jonathan Cools-Lartigue, Stephen Gowing, Julie Berube, Betty Giannias, France Bourdeau, Carlos H. F. Chan, Jonathan D. Spicer, Rebecca McClure, Morag Park, Simon Rousseau, Lorenzo E. Ferri. Activation of the pattern recognition receptor NOD1 augments colon cancer metastasis[J]. Protein Cell, 2020, 11(3): 187-201.
[2] Yali Jiang, Yuanyuan Wang, Pengfei Ma, Dongjie An, Junlong Zhao, Shiqian Liang, Yuchen Ye, Yingying Lu, Peng Zhang, Xiaowei Liu, Hua Han, Hongyan Qin. Myeloid-specific targeting of Notch ameliorates murine renal fibrosis via reduced infiltration and activation of bone marrowderived macrophage[J]. Protein Cell, 2019, 10(3): 196-210.
[3] Wei Shao, Shasha Li, Lu Li, Kequan Lin, Xinhong Liu, Haiyan Wang, Huili Wang, Dong Wang. Chemical genomics reveals inhibition of breast cancer lung metastasis by Ponatinib via c-Jun[J]. Protein Cell, 2019, 10(3): 161-177.
[4] Boyi Zhang, Fei Chen, Qixia Xu, Liu Han, Jiaqian Xu, Libin Gao, Xiaochen Sun, Yiwen Li, Yan Li, Min Qian, Yu Sun. Revisiting ovarian cancer microenvironment: a friend or a foe?[J]. Protein Cell, 2018, 9(8): 674-692.
[5] Yuanyuan Gu, Shuoxin Liu, Xiaodan Zhang, Guimin Chen, Hongwei Liang, Mengchao Yu, Zhicong Liao, Yong Zhou, Chen-Yu Zhang, Tao Wang, Chen Wang, Junfeng Zhang, Xi Chen. Oncogenic miR-19a and miR-19b co-regulate tumor suppressor MTUS1 to promote cell proliferation and migration in lung cancer[J]. Protein Cell, 2017, 8(6): 455-466.
[6] Zhujun Jiang,Jingtao Chen,Xuemei Du,Hang Cheng,Xiaohu Wang,Chen Dong. IL-25 blockade inhibits metastasis in breast cancer[J]. Protein Cell, 2017, 8(3): 191-201.
[7] Yingjiao Xue,Shenda Hou,Hongbin Ji,Xiangkun Han. Evolution from genetics to phenotype: reinterpretation of NSCLC plasticity, heterogeneity, and drug resistance[J]. Protein Cell, 2017, 8(3): 178-190.
[8] Qingzhao Feng,Xionglin Wu,Fuchao Li,Beibei Ning,Xiaofeng Lu,Yin Zhang,Ying Pan,Wenxian Guan. miR-27b inhibits gastric cancer metastasis by targeting NR2F2[J]. Protein Cell, 2017, 8(2): 114-122.
[9] Chuankai Zhang,Yunda Zhang,Weiji Ding,Yancheng Lin,Zhengjie Huang,Qi Luo. MiR-33a suppresses breast cancer cell proliferation and metastasis by targeting ADAM9 and ROS1[J]. Protein Cell, 2015, 06(12): 881-889.
[10] He Cheng,Aodi Wang,Jiao Meng,Yong Zhang,Dahai Zhu. Enhanced metastasis in RNF13 knockout mice is mediated by a reduction in GM-CSF levels[J]. Protein Cell, 2015, 6(10): 746-756.
[11] Pushuai Wen,Ruirui Kong,Jianghong Liu,Li Zhu,Xiaoping Chen,Xiaofei Li,Yongzhan Nie,Kaichun Wu,Jane Y. Wu. USP33, a new player in lung cancer, mediates Slit-Robo signaling[J]. Protein Cell, 2014, 5(9): 704-713.
[12] Xiang Li,Duanqing Pei,Hui Zheng. Transitions between epithelial and mesenchymal states during cell fate conversions[J]. Protein Cell, 2014, 5(8): 580-591.
[13] Mingxu Song,Yuan Yin,Jiwei Zhang,Binbin Zhang,Zehua Bian,Chao Quan,Leyuan Zhou,Yaling Hu,Qifeng Wang,Shujuan Ni,Bojian Fei,Weili Wang,Xiang Du,Dong Hua,Zhaohui Huang. MiR-139-5p inhibits migration and invasion of colorectal cancer by downregulating AMFR and NOTCH1[J]. Protein Cell, 2014, 5(11): 851-861.
[14] Grace L. Peloquin, Yi-Bin Chen, Amir T. Fathi. The evolving landscape in the therapy of acute myeloid leukemia[J]. Prot Cell, 2013, 4(10): 735-746.
[15] Yide Mei, Mian Wu. Multifaceted functions of Siva-1: more than an Indian God of Destruction[J]. Prot Cell, 2012, 3(2): 117-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed