Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2015, Vol. 6 Issue (2) : 127-138    https://doi.org/10.1007/s13238-014-0121-5
RESEARCH ARTICLE
Threonine 32 (Thr32) of FoxO3 is critical for TGF-β-induced apoptosis via Bim in hepatocarcinoma cells
Xiangxuan Zhao1,2,3,*(),Yong Liu1,2,Lei Du1,2,Leya He4,Biyun Ni1,2,Junbo Hu4,Dahai Zhu5,Quan Chen1,2,6,*()
1. The Joint Laboratory of Apoptosis and Cancer Biology, The State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
4. Cancer Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430032, China
5. Institute of Basic Medical Sciences of Chinese Academy of Medical Sciences and School of Basic Medicine of Peking Union Medical College, Beijing 100005, China
6. College of Life Science, Nankai University, Tianjin 300071, China
 Download: PDF(2651 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Transforming growth factor- β (TGF- β) exerts apoptotic effects on various types of malignant cells, including liver cancer cells. However, the precise mechanisms by which TGF- β induces apoptosis remain poorly known. In the present study, we have showed that threonine 32 (Thr32) residue of FoxO3 is critical for TGF- β to induce apoptosis via Bim in hepatocarcinoma Hep3B cells. Our data demonstrated that TGF- β induced FoxO3 activation through specific de-phosphorylation at Thr32. TGF- β-activated FoxO3 cooperated with Smad2/3 to mediate Bim up-regulation and apoptosis. FoxO3 (de)phosphorylation at Thr32 was regulated by casein kinase I- ? (CKI- ?). CKI inhibition by small molecule D4476 could abrogate TGF- β-induced FoxO/Smad activation, reverse Bim up-regulation, and block the sequential apoptosis. More importantly, the deregulated levels of CKI- ? and p32FoxO3 were found in human malignant liver tissues. Taken together, our findings suggest that there might be a CKI-FoxO/Smad-Bim engine in which Thr32 of FoxO3 is pivotal for TGF- β-induced apoptosis, making it a potential therapeutic target for liver cancer treatment.

Keywords apoptosis      TGF-β      FoxO3      casein kinase I-?      hepatocarcinoma     
Corresponding Author(s): Xiangxuan Zhao,Quan Chen   
Issue Date: 05 February 2015
 Cite this article:   
Xiangxuan Zhao,Yong Liu,Lei Du, et al. Threonine 32 (Thr32) of FoxO3 is critical for TGF-β-induced apoptosis via Bim in hepatocarcinoma cells[J]. Protein Cell, 2015, 6(2): 127-138.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-014-0121-5
https://academic.hep.com.cn/pac/EN/Y2015/V6/I2/127
1 Akagi M, Yasui W, Akama Y, Yokozaki H, Tahara H, Haruma K, Kajiyama G, Tahara E (1996) Inhibition of cell growth by transforming growth factor β1 is associated with p53-independent induction of p21 in gastric carcinoma cells. Jpn J Cancer Res 87: 377-384
https://doi.org/10.1111/j.1349-7006.1996.tb00233.x
2 Biggs WH III, Cavenee WK, Arden KC (2001) Identification and characterization of members of the FKHR (FOX O) subclass of winged-helix transcription factors in the mouse. Mamm Genome 12: 416-425
https://doi.org/10.1007/s003350020002
3 <?Pub Caret1?> Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96: 857-868
https://doi.org/10.1016/S0092-8674(00)80595-4
4 Chen Q, Gong B, Mahmoud-Ahmed AS, Zhou A, Hsi ED, Hussein M, Almasan A (2001) Apo2L/TRAIL and Bcl-2-related proteins regulate type I interferon-induced apoptosis in multiple myeloma. Blood 98: 2183-2192
https://doi.org/10.1182/blood.V98.7.2183
5 Conery AR, Cao Y, Thompson EA, Townsend CM Jr, Ko TC, Luo K (2004) Akt interacts directly with Smad3 to regulate the sensitivity to TGF-β induced apoptosis. Nat Cell Biol 6: 366-372
https://doi.org/10.1038/ncb1117
6 Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 425: 577-584
https://doi.org/10.1038/nature02006
7 Engel ME, Datta PK, Moses HL (1998) RhoB is stabilized by transforming growth factor β and antagonizes transcriptional activation. J Biol Chem 273: 9921-9926
https://doi.org/10.1074/jbc.273.16.9921
8 Enroth S, Andersson R, Bysani M, Wallerman O, Termen S, Tuch BB, De La Vega FM, Heldin CH, Moustakas A, Komorowski J, Wadelius C (2014) Nucleosome regulatory dynamics in response to TGF-β. Nucleic Acids Res 42: 6921-6934
https://doi.org/10.1093/nar/gku326
9 Fish KJ, Cegielska A, Getman ME, Landes GM, Virshup DM (1995) Isolation and characterization of human casein kinase I epsilon (CKI), a novel member of the CKI gene family. J Biol Chem 270: 14875-14883
https://doi.org/10.1074/jbc.270.25.14875
10 Graves PR, Haas DW, Hagedorn CH, Paoli-Roach AA, Roach PJ (1993) Molecular cloning, expression, and characterization of a 49-kilodalton casein kinase I isoform from rat testis. J Biol Chem 268: 6394-6401
11 Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281: 1309-1312
https://doi.org/10.1126/science.281.5381.1309
12 Hagenbuchner J, Kuznetsov A, Hermann M, Hausott B, Obexer P, Ausserlechner MJ (2012) FOXO3-induced reactive oxygen species are regulated by BCL2L11 (Bim) and SESN3. J Cell Sci 125: 1191-1203
https://doi.org/10.1242/jcs.092098
13 Higaki M, Shimokado K (1999) Phosphatidylinositol 3-kinase is required for growth factor-induced amino acid uptake by vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 19: 2127-2132
https://doi.org/10.1161/01.ATV.19.9.2127
14 Hua X, Liu X, Ansari DO, Lodish HF (1998) Synergistic cooperation of TFE3 and smad proteins in TGF-β -induced transcription of the plasminogen activator inhibitor-1 gene. Genes Dev 12: 3084-3095
https://doi.org/10.1101/gad.12.19.3084
15 Huynh H, Nguyen TT, Chan E, Tran E (2003) Inhibition of ErbB-2 and ErbB-3 expression by quercetin prevents transforming growth factor alpha (TGF-alpha)- and epidermal growth factor (EGF)-induced human PC-3 prostate cancer cell proliferation. Int J Oncol 23: 821-829
16 Karube K, Nakagawa M, Tsuzuki S, Takeuchi I, Honma K, Nakashima Y, Shimizu N, Ko YH, Morishima Y, Ohshima K, Nakamura S, Seto M (2011) Identification of FOXO3 and PRDM1 as tumorsuppressor gene candidates in NK-cell neoplasms by genomic and functional analyses. Blood 118: 3195-3204
https://doi.org/10.1182/blood-2011-04-346890
17 Kato M, Yuan H, Xu ZG, Lanting L, Li SL, Wang M, Hu MC, Reddy MA, Natarajan R (2006) Role of the Akt/FoxO3a pathway in TGF- β 1-mediated mesangial cell dysfunction: a novel mechanism related to diabetic kidney disease. J Am Soc Nephrol 17: 3325-3335
https://doi.org/10.1681/ASN.2006070754
18 Knippschild U, Gocht A, Wolff S, Huber N, Lohler J, Stoter M (2005) The casein kinase 1 family: participation in multiple cellular processes in eukaryotes. Cell Signal 17: 675-689
https://doi.org/10.1016/j.cellsig.2004.12.011
19 Kops GJ, Burgering BM (1999) Forkhead transcription factors: new insights into protein kinase B (c-akt) signaling. J Mol Med (Berl)77: 656-665
https://doi.org/10.1007/s001099900050
20 Liao XD, Tang AH, Chen Q, Jin HJ, Wu CH, Chen LY, Wang SQ (2003) Role of Ca2+ signaling in initiation of stretch-induced apoptosis in neonatal heart cells. Biochem Biophys Res Commun 310: 405-411
https://doi.org/10.1016/j.bbrc.2003.09.023
21 Massague J, Weis-Garcia F(1996) Serine/threonine kinase receptors: mediators of transforming growth factor β family signals. Cancer Surv 27: 41-64
22 Massague J, Seoane J, Wotton D (2005) Smad transcription factors. Genes Dev 19: 2783-2810
https://doi.org/10.1101/gad.1350705
23 Miyazono K (2000) TGF-beta/SMAD signaling and its involvement in tumor progression. Biol Pharm Bull 23: 1125-1130
https://doi.org/10.1248/bpb.23.1125
24 Naka K, Hoshii T, Muraguchi T, Tadokoro Y, Ooshio T, Kondo Y, Nakao S, Motoyama N, Hirao A (2010) TGF-β-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature 463: 676-680
https://doi.org/10.1038/nature08734
25 Nass SJ, Li M, Amundadottir LT, Furth PA, Dickson RB (1996) Role for Bcl-xL in the regulation of apoptosis by EGF and TGF-β in c-myc overexpressing mammary epithelial cells. Biochem Biophys Res Commun 227: 248-256
https://doi.org/10.1006/bbrc.1996.1497
26 Ni YG, Wang N, Cao DJ, Sachan N, Morris DJ, Gerard RD, Kuro O, Rothermel BA, Hill JA (2007) FoxO transcription factors activate Akt and attenuate insulin signaling in heart by inhibiting protein phosphatases. Proc Natl Acad Sci U S A 104: 20517-20522
https://doi.org/10.1073/pnas.0610290104
27 Park JT, Kato M, Yuan H, Castro N, Lanting L, Wang M, Natarajan R (2013) FOG2 protein down-regulation by transforming growth factor-β1-induced microRNA-200b/c leads to Akt kinase activation and glomerular mesangial hypertrophy related to diabetic nephropathy. J Biol Chem 288: 22469-22480
https://doi.org/10.1074/jbc.M113.453043
28 Philips N, McFadden K (2004) Inhibition of transforming growth factor-β and matrix metalloproteinases by estrogen and prolactin in breast cancer cells. Cancer Lett 206: 63-68
https://doi.org/10.1016/j.canlet.2003.10.019
29 Qi W, Weber CR, Wasland K, Roy H, Wali R, Joshi S, Savkovic SD (2011a) Tumor suppressor FOXO3 mediates signals from the EGF receptor to regulate proliferation of colonic cells. Am J Physiol Gastrointest Liver Physiol 300: G264-G272
https://doi.org/10.1152/ajpgi.00416.2010
30 Qi W, Weber CR, Wasland K, Savkovic SD (2011b) Genistein inhibits proliferation of colon cancer cells by attenuating a negative effect of epidermal growth factor on tumor suppressor FOXO3 activity. BMC Cancer 11: 219
https://doi.org/10.1186/1471-2407-11-219
31 Ramjaun AR, Tomlinson S, Eddaoudi A, Downward J (2007) Upregulation of two BH3-only proteins, Bmf and Bim, during TGF beta-induced apoptosis. Oncogene 26: 970-981
https://doi.org/10.1038/sj.onc.1209852
32 Remy I, Montmarquette A, Michnick SW (2004) PKB/Akt modulates TGF-β signalling through a direct interaction with Smad3. Nat Cell Biol 6: 358-365
https://doi.org/10.1038/ncb1113
33 Renard E, Chadjichristos C, Kypriotou M, Beauchef G, Bordat P, Dompmartin A, Widom RL, Boumediene K, Pujol JP, Galera P (2008) Chondroitin sulphate decreases collagen synthesis in normal and scleroderma fibroblasts through a Smad-independent TGF-β pathway—implication of C-Krox and Sp1. J Cell Mol Med 12: 2836-2847
https://doi.org/10.1111/j.1582-4934.2008.00287.x
34 Renault VM, Thekkat PU, Hoang KL, White JL, Brady CA, Kenzelmann BD, Venturelli OS, Johnson TM, Oskoui PR, Xuan Z, Santo EE, Zhang MQ, Vogel H, Attardi LD, Brunet A (2011) The pro-longevity gene FoxO3 is a direct target of the p53 tumor suppressor. Oncogene 30: 3207-3221
https://doi.org/10.1038/onc.2011.35
35 Runyan CE, Liu Z, Schnaper HW (2012) Phosphatidylinositol 3-kinase and Rab5 GTPase inversely regulate the Smad anchor for receptor activation (SARA) protein independently of transforming growth factor-β 1. J Biol Chem 287: 35815-35824
https://doi.org/10.1074/jbc.M112.380493
36 Seoane J, Le HV, Massague J (2002) Myc suppression of the p21 (Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 419: 729-734
https://doi.org/10.1038/nature01119
37 Torregroza I, Evans T (2006) Tid1 is a Smad-binding protein that can modulate Smad7 activity in developing embryos. Biochem J 393: 311-320
https://doi.org/10.1042/BJ20050785
38 Tremblay ML, Giguere V (2008) Phosphatases at the heart of FoxO metabolic control. Cell Metab 7: 101 -103
https://doi.org/10.1016/j.cmet.2008.01.004
39 Tuazon PT, Traugh JA (1991) Casein kinase I and II–multipotential serine protein kinases: structure, function, and regulation. Adv Second Messenger Phosphoprotein Res 23: 123-164
40 Valderrama-Carvajal H, Cocolakis E, Lacerte A, Lee EH, Krystal G, Ali S, Lebrun JJ (2002) Activin/TGF-β induce apoptosis through Smad-dependent expression of the lipid phosphatase SHIP. Nat Cell Biol 4: 963-969
https://doi.org/10.1038/ncb885
41 Vignais ML (2000) Ski and SnoN: antagonistic proteins of TGF-β signaling. Bull Cancer 87: 135-137
42 Vogt PK, Jiang H, Aoki M (2005) Triple layer control: phosphorylation, acetylation and ubiquitination of FOXO proteins. Cell Cycle 4: 908-913
https://doi.org/10.4161/cc.4.7.1796
43 Waddell DS, Liberati NT, Guo X, Frederick JP, Wang XF (2004) Casein kinase Iepsilon plays a functional role in the transforming growth factor-β signaling pathway. J Biol Chem 279: 29236-29246
https://doi.org/10.1074/jbc.M400880200
44 Wildey GM, Howe PH (2009) Runx1 is a co-activator with FOXO3 to mediate transforming growth factor β (TGF-β )-induced Bim transcription in hepatic cells. J Biol Chem 284: 20227-20239
https://doi.org/10.1074/jbc.M109.027201
45 Yamamura Y, Hua X, Bergelson S, Lodish HF (2000) Critical role of Smads and AP-1 complex in transforming growth factor-β -dependent apoptosis. J Biol Chem 275: 36295-36302
https://doi.org/10.1074/jbc.M006023200
46 Yan L, Lavin VA, Moser LR, Cui Q, Kanies C, Yang E (2008) PP2A regulates the pro-apoptotic activity of FOXO1. J Biol Chem 283: 7411-7420
https://doi.org/10.1074/jbc.M708083200
[1] Qiang Hong, Cong Li, Ruhong Ying, Heming Lin, Jingqiu Li, Yu Zhao, Hanhua Cheng, Rongjia Zhou. Loss-of-function of sox3 causes follicle development retardation and reduces fecundity in zebrafish[J]. Protein Cell, 2019, 10(5): 347-364.
[2] Yuanlong Ge, Shu Wu, Zepeng Zhang, Xiaocui Li, Feng Li, Siyu Yan, Haiying Liu, Junjiu Huang, Yong Zhao. Inhibition of p53 and/or AKT as a new therapeutic approach specifically targeting ALT cancers[J]. Protein Cell, 2019, 10(11): 808-824.
[3] Ping Wang, Zunpeng Liu, Xiaoqian Zhang, Jingyi Li, Liang Sun, Zhenyu Ju, Jian Li, Piu Chan, Guang-Hui Liu, Weiqi Zhang, Moshi Song, Jing Qu. CRISPR/Cas9-mediated gene knockout reveals a guardian role of NF-κB/RelA in maintaining the homeostasis of human vascular cells[J]. Protein Cell, 2018, 9(11): 945-965.
[4] Haiyang Zhang,Jingjing Duan,Yanjun Qu,Ting Deng,Rui Liu,Le Zhang,Ming Bai,Jialu Li,Tao Ning,Shaohua Ge,Xia Wang,Zhenzhen Wang,Qian Fan,Hongli Li,Guoguang Ying,Dingzhi Huang,Yi Ba. Onco-miR-24 regulates cell growth and apoptosis by targeting BCL2L11 in gastric cancer[J]. Protein Cell, 2016, 7(2): 141-151.
[5] Qian Fan,Xiangrui Meng,Hongwei Liang,Huilai Zhang,Xianming Liu,Lanfang Li,Wei Li,Wu Sun,Haiyang Zhang,Ke Zen,Chen-Yu Zhang,Zhen Zhou,Xi Chen,Yi Ba. miR-10a inhibits cell proliferation and promotes cell apoptosis by targeting BCL6 in diffuse large B-cell lymphoma[J]. Protein Cell, 2016, 7(12): 899-912.
[6] Chao Lu,Yang Yang,Ran Zhao,Bingxuan Hua,Chen Xu,Zuoqin Yan,Ning Sun,Ruizhe Qian. Role of circadian gene Clock during differentiation of mouse pluripotent stem cells[J]. Protein Cell, 2016, 7(11): 820-832.
[7] Fan Chen,Jiebo Chen,Jiacheng Lin,Anton V. Cheltsov,Lin Xu,Ya Chen,Zhiping Zeng,Liqun Chen,Mingfeng Huang,Mengjie Hu,Xiaohong Ye,Yuqi Zhou,Guanghui Wang,Ying Su,Long Zhang,Fangfang Zhou,Xiao-kun Zhang,Hu Zhou. NSC-640358 acts as RXR&alpha; ligand to promote TNF&alpha;-mediated apoptosis of cancer cell[J]. Protein Cell, 2015, 6(9): 654-666.
[8] Anna Gortat,Mónica Sancho,Laura Mondragón,Àgel Messeguer,Enrique Pérez-Payá,Mar Orzáez. Apaf1 inhibition promotes cell recovery from apoptosis[J]. Protein Cell, 2015, 6(11): 833-843.
[9] Juan Zhang,Xiaofei Zhang,Feng Xie,Zhengkui Zhang,Hans van Dam,Long Zhang,Fangfang Zhou. The regulation of TGF-β/SMAD signaling by protein deubiquitination[J]. Protein Cell, 2014, 5(7): 503-517.
[10] Youguang Luo,Dengwen Li,Jie Ran,Bing Yan,Jie Chen,Xin Dong,Zhu Liu,Ruming Liu,Jun Zhou,Min Liu. End-binding protein 1 stimulates paclitaxel sensitivity in breast cancer by promoting its actions toward microtubule assembly and stability[J]. Protein Cell, 2014, 5(6): 469-479.
[11] Xiao-Xi Guo,Yang Li,Chao Sun,Dan Jiang,Ying-Jia Lin,Feng-Xie Jin,Seung-Ki Lee,Ying-Hua Jin. p53-dependent Fas expression is critical for Ginsenoside Rh2 triggered caspase-8 activation in HeLa cells[J]. Protein Cell, 2014, 5(3): 224-234.
[12] Guanghua Xu,Jing Wang,George Fu Gao,Cui Hua Liu. Insights into battles between Mycobacterium tuberculosis and macrophages[J]. Protein Cell, 2014, 5(10): 728-736.
[13] Yi Sun, Hua Li. Functional characterization of SAG/RBX2/ROC2/RNF7, an antioxidant protein and an E3 ubiquitin ligase[J]. Prot Cell, 2013, 4(2): 103-116.
[14] Shuang Sha, Honglin Jin, Xiao Li, Jie Yang, Ruiting Ai, Jinling Lu. Comparison of caspase-3 activation in tumor cells upon treatment of chemotherapeutic drugs using capillary electrophoresis[J]. Prot Cell, 2012, 3(5): 392-399.
[15] Yide Mei, Mian Wu. Multifaceted functions of Siva-1: more than an Indian God of Destruction[J]. Prot Cell, 2012, 3(2): 117-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed