|
|
|
Apaf1 inhibition promotes cell recovery from apoptosis |
Anna Gortat1,Mónica Sancho1,Laura Mondragón1,Àgel Messeguer2,Enrique Pérez-Payá1,3,Mar Orzáez1,*( ) |
1. Laboratory of Peptide and Protein Chemistry, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain 2. Department of Chemical and Biomolecular Nanotechnology, Instituto Química Avanzada de Cataluña (CSIC), 08034 Barcelona, Spain 3. Instituto de Biomedicina de Valencia, IBV-CSIC, 46010 Valencia, Spain |
|
|
|
|
Abstract The protein apoptotic protease activating factor 1 (Apaf1) is the central component of the apoptosome, a multiprotein complex that activates procaspase-9 after cytochrome c release from the mitochondria in the intrinsic pathway of apoptosis. We have developed a vital method that allows fluorescence-activated cell sorting of cells at different stages of the apoptotic pathway and demonstrated that upon pharmacological inhibition of Apaf1, cells recover from doxorubicin- or hypoxia-induced early apoptosis to normal healthy cell. Inhibiting Apaf1 not only prevents procaspase-9 activation but delays massive mitochondrial damage allowing cell recovery.
|
| Keywords
Apaf1
Apaf1 inhibitors
apoptosis
apoptosome
autophagy
cell recovery
|
|
Corresponding Author(s):
Mar Orzáez
|
|
Issue Date: 04 November 2015
|
|
| 1 |
Albeck JG, Burke JM, Aldridge BB, Zhang M, Lauffenburger DA, Sorger PK (2008) Quantitative analysis of pathways controlling extrinsic apoptosis in single cells. Mol Cell 30: 11−25
https://doi.org/10.1016/j.molcel.2008.02.012
|
| 2 |
Andreu-Fernandez V, Genoves A, Messeguer A, Orzaez M, Sancho M, Perez-Paya E (2013) BH3-mimetics- and cisplatin-induced cell death proceeds through different pathways depending on the availability of death-related cellular components. PLoS One 8: e56881
https://doi.org/10.1371/journal.pone.0056881
|
| 3 |
Boya P, Gonzalez-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N, Metivier D, Meley D, Souquere S, Yoshimori T (2005) Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 25: 1025−1040
https://doi.org/10.1128/MCB.25.3.1025-1040.2005
|
| 4 |
Brenner D, Mak TW (2009) Mitochondrial cell death effectors. Curr Opin Cell Biol 21: 871−877
https://doi.org/10.1016/j.ceb.2009.09.004
|
| 5 |
Cheng Y, Deshmukh M, D’Costa A, Demaro JA, Gidday JM, Shah A, Sun Y, Jacquin MF, Johnson EM, Holtzman DM (1998) Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury. J Clin Invest 101: 1992−1999
https://doi.org/10.1172/JCI2169
|
| 6 |
Colell A, Ricci JE, Tait S, Milasta S, Maurer U, Bouchier-Hayes L, Fitzgerald P, Guio-Carrion A, Waterhouse NJ, Li CW (2007) GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell 129: 983−997
https://doi.org/10.1016/j.cell.2007.03.045
|
| 7 |
D’Amelio M, Cavallucci V, Middei S, Marchetti C, Pacioni S, Ferri A, Diamantini A, De Zio D, Carrara P, Battistini L (2011) Caspase-3 triggers early synaptic dysfunction in a mouse model of Alzheimer’s disease. Nat Neurosci 14: 69−76
https://doi.org/10.1038/nn.2709
|
| 8 |
Debatin KMFS (2006) Apoptosis and cancer therapy. WILEY-VCH, Weinheim
https://doi.org/10.1002/9783527619665
|
| 9 |
Deshmukh M, Kuida K, Johnson EM Jr (2000) Caspase inhibition extends the commitment to neuronal death beyond cytochrome c release to the point of mitochondrial depolarization. J Cell Biol 150: 131−143
https://doi.org/10.1083/jcb.150.1.131
|
| 10 |
Dignam JD, Lebovitz RM, Roeder RG (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 11: 1475−1489
https://doi.org/10.1093/nar/11.5.1475
|
| 11 |
Fearnhead HO (2001) Cell-free systems to study apoptosis. Methods Cell Biol 66: 167−185
https://doi.org/10.1016/S0091-679X(01)66008-4
|
| 12 |
Ferraro E, Pulicati A, Cencioni MT, Cozzolino M, Navoni F, di Martino S, Nardacci R, Carri MT, Cecconi F (2008) Apoptosome-deficient cells lose cytochrome c through proteasomal degradation but survive by autophagy-dependent glycolysis. Mol Biol Cell 19: 3576−3588
https://doi.org/10.1091/mbc.E07-09-0858
|
| 13 |
Gao Y, Liang W, Hu X, Zhang W, Stetler RA, Vosler P, Cao G, Chen J (2009) Neuroprotection against hypoxic-ischemic brain injury by inhibiting the apoptotic protease activating factor-1 pathway. Stroke 41: 166−172
https://doi.org/10.1161/STROKEAHA.109.561852
|
| 14 |
Green DR, Kroemer G (2005) Pharmacological manipulation of cell death: clinical applications in sight? J Clin Invest 115: 2610−2617
https://doi.org/10.1172/JCI26321
|
| 15 |
Hoeppner DJ, Hengartner MO, Schnabel R (2001) Engulfment genes cooperate with ced-3 to promote cell death in Caenorhabditis elegans<?Pub Caret?>. Nature 412: 202−206
https://doi.org/10.1038/35084103
|
| 16 |
Hoglen NC, Chen LS, Fisher CD, Hirakawa BP, Groessl T, Contreras PC (2004) Characterization of IDN-6556 (3-[2-(2-tert-butyl-phenylaminooxalyl)-amino]-propionylamino]-4-oxo-5-(2,3,5,6-tetrafluoro-phenoxy)-pentanoic acid): a liver-targeted caspase inhibitor. J Pharmacol Exp Ther 309: 634−640
https://doi.org/10.1124/jpet.103.062034
|
| 17 |
Hotchkiss RS, Karl IE (2003) The pathophysiology and treatment of sepsis. N Engl J Med 348: 138−150
https://doi.org/10.1056/NEJMra021333
|
| 18 |
Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. Embo J 19: 5720−5728
https://doi.org/10.1093/emboj/19.21.5720
|
| 19 |
Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y, Yoshimori T (2004) LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci 117: 2805−2812
https://doi.org/10.1242/jcs.01131
|
| 20 |
Kunstle G, Leist M, Uhlig S, Revesz L, Feifel R, MacKenzie A, Wendel A (1997) ICE-protease inhibitors block murine liver injury and apoptosis caused by CD95 or by TNF-alpha. Immunol Lett 55: 5−10
https://doi.org/10.1016/S0165-2478(96)02642-9
|
| 21 |
Linton SD (2005) Caspase inhibitors: a pharmaceutical industry perspective. Curr Top Med Chem 5: 1697−1717
https://doi.org/10.2174/156802605775009720
|
| 22 |
MacFarlane M, Merrison W, Bratton SB, Cohen GM (2002) Proteasome-mediated degradation of Smac during apoptosis: XIAP promotes Smac ubiquitination in vitro. J Biol Chem 277: 36611−36616
https://doi.org/10.1074/jbc.M200317200
|
| 23 |
Madeo F, Tavernarakis N, Kroemer G (2010) Can autophagy promote longevity? Nat Cell Biol 12: 842−846
https://doi.org/10.1038/ncb0910-842
|
| 24 |
Malet G, Martin AG, Orzaez M, Vicent MJ, Masip I, Sanclimens G, Ferrer-Montiel A, Mingarro I, Messeguer A, Fearnhead HO (2006) Small molecule inhibitors of Apaf-1-related caspase- 3/-9 activation that control mitochondrial-dependent apoptosis. Cell Death Differ 13: 1523−1532
https://doi.org/10.1038/sj.cdd.4401828
|
| 25 |
Martinou I, Desagher S, Eskes R, Antonsson B, Andre E, Fakan S, Martinou JC (1999) The release of cytochrome c from mitochondria during apoptosis of NGF-deprived sympathetic neurons is a reversible event. J Cell Biol 144: 883−889
https://doi.org/10.1083/jcb.144.5.883
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|