Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2015, Vol. 6 Issue (11) : 833-843    https://doi.org/10.1007/s13238-015-0200-2
RESEARCH ARTICLE
Apaf1 inhibition promotes cell recovery from apoptosis
Anna Gortat1,Mónica Sancho1,Laura Mondragón1,Àgel Messeguer2,Enrique Pérez-Payá1,3,Mar Orzáez1,*()
1. Laboratory of Peptide and Protein Chemistry, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
2. Department of Chemical and Biomolecular Nanotechnology, Instituto Química Avanzada de Cataluña (CSIC), 08034 Barcelona, Spain
3. Instituto de Biomedicina de Valencia, IBV-CSIC, 46010 Valencia, Spain
 Download: PDF(1791 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The protein apoptotic protease activating factor 1 (Apaf1) is the central component of the apoptosome, a multiprotein complex that activates procaspase-9 after cytochrome c release from the mitochondria in the intrinsic pathway of apoptosis. We have developed a vital method that allows fluorescence-activated cell sorting of cells at different stages of the apoptotic pathway and demonstrated that upon pharmacological inhibition of Apaf1, cells recover from doxorubicin- or hypoxia-induced early apoptosis to normal healthy cell. Inhibiting Apaf1 not only prevents procaspase-9 activation but delays massive mitochondrial damage allowing cell recovery.

Keywords Apaf1      Apaf1 inhibitors      apoptosis      apoptosome      autophagy      cell recovery     
Corresponding Author(s): Mar Orzáez   
Issue Date: 04 November 2015
 Cite this article:   
Anna Gortat,Mónica Sancho,Laura Mondragón, et al. Apaf1 inhibition promotes cell recovery from apoptosis[J]. Protein Cell, 2015, 6(11): 833-843.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-015-0200-2
https://academic.hep.com.cn/pac/EN/Y2015/V6/I11/833
1 Albeck JG, Burke JM, Aldridge BB, Zhang M, Lauffenburger DA, Sorger PK (2008) Quantitative analysis of pathways controlling extrinsic apoptosis in single cells. Mol Cell 30: 11−25
https://doi.org/10.1016/j.molcel.2008.02.012
2 Andreu-Fernandez V, Genoves A, Messeguer A, Orzaez M, Sancho M, Perez-Paya E (2013) BH3-mimetics- and cisplatin-induced cell death proceeds through different pathways depending on the availability of death-related cellular components. PLoS One 8: e56881
https://doi.org/10.1371/journal.pone.0056881
3 Boya P, Gonzalez-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N, Metivier D, Meley D, Souquere S, Yoshimori T (2005) Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 25: 1025−1040
https://doi.org/10.1128/MCB.25.3.1025-1040.2005
4 Brenner D, Mak TW (2009) Mitochondrial cell death effectors. Curr Opin Cell Biol 21: 871−877
https://doi.org/10.1016/j.ceb.2009.09.004
5 Cheng Y, Deshmukh M, D’Costa A, Demaro JA, Gidday JM, Shah A, Sun Y, Jacquin MF, Johnson EM, Holtzman DM (1998) Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury. J Clin Invest 101: 1992−1999
https://doi.org/10.1172/JCI2169
6 Colell A, Ricci JE, Tait S, Milasta S, Maurer U, Bouchier-Hayes L, Fitzgerald P, Guio-Carrion A, Waterhouse NJ, Li CW (2007) GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell 129: 983−997
https://doi.org/10.1016/j.cell.2007.03.045
7 D’Amelio M, Cavallucci V, Middei S, Marchetti C, Pacioni S, Ferri A, Diamantini A, De Zio D, Carrara P, Battistini L (2011) Caspase-3 triggers early synaptic dysfunction in a mouse model of Alzheimer’s disease. Nat Neurosci 14: 69−76
https://doi.org/10.1038/nn.2709
8 Debatin KMFS (2006) Apoptosis and cancer therapy. WILEY-VCH, Weinheim
https://doi.org/10.1002/9783527619665
9 Deshmukh M, Kuida K, Johnson EM Jr (2000) Caspase inhibition extends the commitment to neuronal death beyond cytochrome c release to the point of mitochondrial depolarization. J Cell Biol 150: 131−143
https://doi.org/10.1083/jcb.150.1.131
10 Dignam JD, Lebovitz RM, Roeder RG (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 11: 1475−1489
https://doi.org/10.1093/nar/11.5.1475
11 Fearnhead HO (2001) Cell-free systems to study apoptosis. Methods Cell Biol 66: 167−185
https://doi.org/10.1016/S0091-679X(01)66008-4
12 Ferraro E, Pulicati A, Cencioni MT, Cozzolino M, Navoni F, di Martino S, Nardacci R, Carri MT, Cecconi F (2008) Apoptosome-deficient cells lose cytochrome c through proteasomal degradation but survive by autophagy-dependent glycolysis. Mol Biol Cell 19: 3576−3588
https://doi.org/10.1091/mbc.E07-09-0858
13 Gao Y, Liang W, Hu X, Zhang W, Stetler RA, Vosler P, Cao G, Chen J (2009) Neuroprotection against hypoxic-ischemic brain injury by inhibiting the apoptotic protease activating factor-1 pathway. Stroke 41: 166−172
https://doi.org/10.1161/STROKEAHA.109.561852
14 Green DR, Kroemer G (2005) Pharmacological manipulation of cell death: clinical applications in sight? J Clin Invest 115: 2610−2617
https://doi.org/10.1172/JCI26321
15 Hoeppner DJ, Hengartner MO, Schnabel R (2001) Engulfment genes cooperate with ced-3 to promote cell death in Caenorhabditis elegans<?Pub Caret?>. Nature 412: 202−206
https://doi.org/10.1038/35084103
16 Hoglen NC, Chen LS, Fisher CD, Hirakawa BP, Groessl T, Contreras PC (2004) Characterization of IDN-6556 (3-[2-(2-tert-butyl-phenylaminooxalyl)-amino]-propionylamino]-4-oxo-5-(2,3,5,6-tetrafluoro-phenoxy)-pentanoic acid): a liver-targeted caspase inhibitor. J Pharmacol Exp Ther 309: 634−640
https://doi.org/10.1124/jpet.103.062034
17 Hotchkiss RS, Karl IE (2003) The pathophysiology and treatment of sepsis. N Engl J Med 348: 138−150
https://doi.org/10.1056/NEJMra021333
18 Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. Embo J 19: 5720−5728
https://doi.org/10.1093/emboj/19.21.5720
19 Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y, Yoshimori T (2004) LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci 117: 2805−2812
https://doi.org/10.1242/jcs.01131
20 Kunstle G, Leist M, Uhlig S, Revesz L, Feifel R, MacKenzie A, Wendel A (1997) ICE-protease inhibitors block murine liver injury and apoptosis caused by CD95 or by TNF-alpha. Immunol Lett 55: 5−10
https://doi.org/10.1016/S0165-2478(96)02642-9
21 Linton SD (2005) Caspase inhibitors: a pharmaceutical industry perspective. Curr Top Med Chem 5: 1697−1717
https://doi.org/10.2174/156802605775009720
22 MacFarlane M, Merrison W, Bratton SB, Cohen GM (2002) Proteasome-mediated degradation of Smac during apoptosis: XIAP promotes Smac ubiquitination in vitro. J Biol Chem 277: 36611−36616
https://doi.org/10.1074/jbc.M200317200
23 Madeo F, Tavernarakis N, Kroemer G (2010) Can autophagy promote longevity? Nat Cell Biol 12: 842−846
https://doi.org/10.1038/ncb0910-842
24 Malet G, Martin AG, Orzaez M, Vicent MJ, Masip I, Sanclimens G, Ferrer-Montiel A, Mingarro I, Messeguer A, Fearnhead HO (2006) Small molecule inhibitors of Apaf-1-related caspase- 3/-9 activation that control mitochondrial-dependent apoptosis. Cell Death Differ 13: 1523−1532
https://doi.org/10.1038/sj.cdd.4401828
25 Martinou I, Desagher S, Eskes R, Antonsson B, Andre E, Fakan S, Martinou JC (1999) The release of cytochrome c from mitochondria during apoptosis of NGF-deprived sympathetic neurons is a reversible event. J Cell Biol 144: 883−889
https://doi.org/10.1083/jcb.144.5.883
[1] PAC-0833-15057-OM_suppl_1 Download
[1] Kun Liu, Jiani Cao, Xingxing Shi, Liang Wang, Tongbiao Zhao. Cellular metabolism and homeostasis in pluripotency regulation[J]. Protein Cell, 2020, 11(9): 630-640.
[2] Qiang Hong, Cong Li, Ruhong Ying, Heming Lin, Jingqiu Li, Yu Zhao, Hanhua Cheng, Rongjia Zhou. Loss-of-function of sox3 causes follicle development retardation and reduces fecundity in zebrafish[J]. Protein Cell, 2019, 10(5): 347-364.
[3] Yuanlong Ge, Shu Wu, Zepeng Zhang, Xiaocui Li, Feng Li, Siyu Yan, Haiying Liu, Junjiu Huang, Yong Zhao. Inhibition of p53 and/or AKT as a new therapeutic approach specifically targeting ALT cancers[J]. Protein Cell, 2019, 10(11): 808-824.
[4] Na Qu, Zhao Ma, Mengrao Zhang, Muaz N. Rushdi, Christopher J. Krueger, Antony K. Chen. Inhibition of retroviral Gag assembly by non-silencing miRNAs promotes autophagic viral degradation[J]. Protein Cell, 2018, 9(7): 640-651.
[5] Ping Wang, Zunpeng Liu, Xiaoqian Zhang, Jingyi Li, Liang Sun, Zhenyu Ju, Jian Li, Piu Chan, Guang-Hui Liu, Weiqi Zhang, Moshi Song, Jing Qu. CRISPR/Cas9-mediated gene knockout reveals a guardian role of NF-κB/RelA in maintaining the homeostasis of human vascular cells[J]. Protein Cell, 2018, 9(11): 945-965.
[6] Zhi-Dong Liu,Su Zhang,Jian-Jin Hao,Tao-Rong Xie,Jian-Sheng Kang. Cellular model of neuronal atrophy induced by DYNC1I1 deficiency reveals protective roles of RAS-RAF-MEK signaling[J]. Protein Cell, 2016, 7(9): 638-650.
[7] Jiaxiang Shao,Xiao Yang,Tengyuan Liu,Tingting Zhang,Qian Reuben Xie,Weiliang Xia. Autophagy induction by SIRT6 is involved in oxidative stress-induced neuronal damage[J]. Protein Cell, 2016, 7(4): 281-290.
[8] Haiyang Zhang,Jingjing Duan,Yanjun Qu,Ting Deng,Rui Liu,Le Zhang,Ming Bai,Jialu Li,Tao Ning,Shaohua Ge,Xia Wang,Zhenzhen Wang,Qian Fan,Hongli Li,Guoguang Ying,Dingzhi Huang,Yi Ba. Onco-miR-24 regulates cell growth and apoptosis by targeting BCL2L11 in gastric cancer[J]. Protein Cell, 2016, 7(2): 141-151.
[9] Qian Fan,Xiangrui Meng,Hongwei Liang,Huilai Zhang,Xianming Liu,Lanfang Li,Wei Li,Wu Sun,Haiyang Zhang,Ke Zen,Chen-Yu Zhang,Zhen Zhou,Xi Chen,Yi Ba. miR-10a inhibits cell proliferation and promotes cell apoptosis by targeting BCL6 in diffuse large B-cell lymphoma[J]. Protein Cell, 2016, 7(12): 899-912.
[10] Chao Lu,Yang Yang,Ran Zhao,Bingxuan Hua,Chen Xu,Zuoqin Yan,Ning Sun,Ruizhe Qian. Role of circadian gene Clock during differentiation of mouse pluripotent stem cells[J]. Protein Cell, 2016, 7(11): 820-832.
[11] Yan-Cheng Tang,Hong-Xia Tian,Tao Yi,Hu-Biao Chen. The critical roles of mitophagy in cerebral ischemia[J]. Protein Cell, 2016, 7(10): 699-713.
[12] Fan Chen,Jiebo Chen,Jiacheng Lin,Anton V. Cheltsov,Lin Xu,Ya Chen,Zhiping Zeng,Liqun Chen,Mingfeng Huang,Mengjie Hu,Xiaohong Ye,Yuqi Zhou,Guanghui Wang,Ying Su,Long Zhang,Fangfang Zhou,Xiao-kun Zhang,Hu Zhou. NSC-640358 acts as RXR&alpha; ligand to promote TNF&alpha;-mediated apoptosis of cancer cell[J]. Protein Cell, 2015, 6(9): 654-666.
[13] Wenzhi Feng,Tong Wu,Xiaoyu Dan,Yuling Chen,Lin Li,She Chen,Di Miao,Haiteng Deng,Xinqi Gong,Li Yu. Phosphorylation of Atg31 is required for autophagy[J]. Protein Cell, 2015, 6(4): 288-296.
[14] Xiangxuan Zhao,Yong Liu,Lei Du,Leya He,Biyun Ni,Junbo Hu,Dahai Zhu,Quan Chen. Threonine 32 (Thr32) of FoxO3 is critical for TGF-β-induced apoptosis via Bim in hepatocarcinoma cells[J]. Protein Cell, 2015, 6(2): 127-138.
[15] Jianhua Xiong. Atg7 in development and disease: panacea or Pandora’s Box?[J]. Protein Cell, 2015, 6(10): 722-734.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed