Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Prot Cell    2011, Vol. 2 Issue (9) : 699-703    https://doi.org/10.1007/s13238-011-1089-z      PMID: 21976060
MINI-REVIEW
CUEDC2: an emerging key player in inflammation and tumorigenesis
Jianghong Man, Xuemin Zhang()
Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China
 Download: PDF(117 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

CUE domain-containing 2 (CUEDC2) is a protein involved in the regulation of the cell cycle, inflammation, and tumorigenesis and is highly expressed in many types of tumors. CUEDC2 is phosphorylated by Cdk1 during mitosis and promotes the release of anaphase-promoting complex or cyclosome (APC/C) from checkpoint inhibition. CUEDC2 is also known to interact with IkB kinase α (IKKα) and IKKβ and has an inhibitory role in the activation of transcription factor nuclear factor-κB. Moreover, CUEDC2 plays an important role in downregulating the expression of hormone receptors estrogen receptor-α and progesterone receptor, thereby impairing the responsiveness of breast cancer to endocrine therapies. In this review, current knowledge on the multi-functions of CUEDC2 in normal processes and tumorigenesis are discussed and summarized.

Keywords CUEDC2      inflammation      cell cycle      nuclear factor-κB      tumorigenesis     
Corresponding Author(s): Zhang Xuemin,Email:xmzhang@nic.bmi.ac.cn   
Issue Date: 01 September 2011
 Cite this article:   
Jianghong Man,Xuemin Zhang. CUEDC2: an emerging key player in inflammation and tumorigenesis[J]. Prot Cell, 2011, 2(9): 699-703.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-011-1089-z
https://academic.hep.com.cn/pac/EN/Y2011/V2/I9/699
Fig.1  Overview of CUEDC2-mediated signaling pathways and their corresponding biological responses.
CUEDC2, CUE domain-containing 2; NF-κB, nuclear factor κB; APC/C, anaphase-promoting complex or cyclosome; ERα/PR, estrogen receptor α/progesterone receptor.
Fig.1  Overview of CUEDC2-mediated signaling pathways and their corresponding biological responses.
CUEDC2, CUE domain-containing 2; NF-κB, nuclear factor κB; APC/C, anaphase-promoting complex or cyclosome; ERα/PR, estrogen receptor α/progesterone receptor.
1 Aggarwal, B.B., Vijayalekshmi, R.V., and Sung, B. (2009). Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clin Cancer Res 15, 425–430 .
pmid:19147746
2 Arpino, G., Wiechmann, L., Osborne, C.K., and Schiff, R. (2008). Crosstalk between the estrogen receptor and the HER tyrosine kinase receptor family: molecular mechanism and clinical implications for endocrine therapy resistance. Endocr Rev 29, 217–233 .
pmid:18216219
3 Baselga, J., and Norton, L. (2002). Focus on breast cancer. Cancer Cell 1, 319–322 .
pmid:12086846
4 Bollen, M., Peti, W., Ragusa, M.J., and Beullens, M. (2010). The extended PP1 toolkit: designed to create specificity. Trends Biochem Sci 35, 450–458 .
pmid:20399103
5 Chen, G., and Goeddel, D.V. (2002). TNF-R1 signaling: a beautiful pathway. Science 296, 1634–1635 .
pmid:12040173
6 Cui, J., Zhu, L., Xia, X., Wang, H.Y., Legras, X., Hong, J., Ji, J., Shen, P., Zheng, S., Chen, Z.J., (2010). NLRC5 negatively regulates the NF-kappaB and type I interferon signaling pathways. Cell 141, 483–496 .
pmid:20434986
7 Donaldson, K.M., Yin, H., Gekakis, N., Supek, F., and Joazeiro, C.A. (2003). Ubiquitin signals protein trafficking via interaction with a novel ubiquitin binding domain in the membrane fusion regulator, Vps9p. Curr Biol 13, 258–262 .
pmid:12573224
8 Gao, Y.F., Li, T., Chang, Y., Wang, Y.B., Zhang, W.N., Li, W.H., He, K., Mu, R., Zhen, C., Man, J.H., . (2011). Cdk1-phosphorylated CUEDC2 promotes spindle checkpoint inactivation and chromosomal instability. Nat Cell Biol 13, 924–933 .
9 Gown, A.M. (2008). Current issues in ER and HER2 testing by IHC in breast cancer. Mod Pathol 21, S8–S15 .
pmid:18437174
10 Greten, F.R., Eckmann, L., Greten, T.F., Park, J.M., Li, Z.W., Egan, L.J., Kagnoff, M.F., and Karin, M. (2004). IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118, 285–296 .
pmid:15294155
11 Grivennikov, S.I., Greten, F.R., and Karin, M. (2010). Immunity, inflammation, and cancer. Cell 140, 883–899 .
pmid:20303878
12 H?cker, H., and Karin, M. (2006). Regulation and function of IKK and IKK-related kinases. Sci STKE 2006, re13.
pmid:17047224
13 Hanahan, D., and Weinberg, R.A. (2000). The hallmarks of cancer. Cell 100, 57–70 .
pmid:10647931
14 Hsu, H., Huang, J., Shu, H.B., Baichwal, V., and Goeddel, D.V. (1996). TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 4, 387–396 .
pmid:8612133
15 Huang, Q., Yang, J., Lin, Y., Walker, C., Cheng, J., Liu, Z.G., and Su, B. (2004). Differential regulation of interleukin 1 receptor and Toll-like receptor signaling by MEKK3. Nat Immunol 5, 98–103 .
pmid:14661019
16 Karin, M. (2006). Nuclear factor-kappaB in cancer development and progression. Nature 441, 431–436 .
pmid:16724054
17 Karin, M., and Ben-Neriah, Y. (2000). Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 18, 621–663 .
pmid:10837071
18 Karin, M., and Greten, F.R. (2005). NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5, 749–759 .
pmid:16175180
19 Li, H.Y., Liu, H., Wang, C.H., Zhang, J.Y., Man, J.H., Gao, Y.F., Zhang, P.J., Li, W.H., Zhao, J., Pan, X., (2008). Deactivation of the kinase IKK by CUEDC2 through recruitment of the phosphatase PP1. Nat Immunol 9, 533–541 .
pmid:18362886
20 Maeda, S., Kamata, H., Luo, J.L., Leffert, H., and Karin, M. (2005). IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121, 977–990 .
pmid:15989949
21 Maniatis, T. (1999). A ubiquitin ligase complex essential for the NF-kappaB, Wnt/Wingless, and Hedgehog signaling pathways. Genes Dev 13, 505–510 .
pmid:10072378
22 Mantovani, A., Allavena, P., Sica, A., and Balkwill, F. (2008). Cancer-related inflammation. Nature 454, 436–444 .
pmid:18650914
23 Minton, K. (2008). Stopping before the damage is done. Nat Rev Immunol 8, 372–379 .
24 Morgan, D.O. (1999). Regulation of the APC and the exit from mitosis. Nat Cell Biol 1, E47–E53 .
pmid:10559897
25 Musgrove, E.A., and Sutherland, R.L. (2009). Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer 9, 631–643 .
pmid:19701242
26 Nakano, H., Shindo, M., Sakon, S., Nishinaka, S., Mihara, M., Yagita, H., and Okumura, K. (1998). Differential regulation of IkappaB kinase alpha and beta by two upstream kinases, NF-kappaB-inducing kinase and mitogen-activated protein kinase/ERK kinase kinase-1. Proc Natl Acad Sci U S A 95, 3537–3542 .
pmid:9520401
27 Nigg, E.A. (2001). Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol 2, 21–32 .
pmid:11413462
28 Normanno, N., Di Maio, M., De Maio, E., De Luca, A., de Matteis, A., Giordano, A., and Perrone, F., and the NCI-Naple Breast Cancer Group. (2005). Mechanisms of endocrine resistance and novel therapeutic strategies in breast cancer. Endocr Relat Cancer 12, 721–747 .
pmid:16322319
29 Page, A.M., and Hieter, P. (1999). The anaphase-promoting complex: new subunits and regulators. Annu Rev Biochem 68, 583–609 .
pmid:10872461
30 Pan, X., Zhou, T., Tai, Y.H., Wang, C., Zhao, J., Cao, Y., Chen, Y., Zhang, P.J., Yu, M., Zhen, C., (2011). Elevated expression of CUEDC2 protein confers endocrine resistance in breast cancer. Nat Med 17, 708–714 .
pmid:21572428
31 Peters, J.M. (2006). The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol 7, 644–656 .
pmid:16896351
32 Pines, J., and Rieder, C.L. (2001). Re-staging mitosis: a contemporary view of mitotic progression. Nat Cell Biol 3, E3–E6 .
pmid:11146636
33 Renner, F., and Schmitz, M.L. (2009). Autoregulatory feedback loops terminating the NF-kappaB response. Trends Biochem Sci 34, 128–135 .
pmid:19233657
34 Schvartzman, J.M., Sotillo, R., and Benezra, R. (2010). Mitotic chromosomal instability and cancer: mouse modelling of the human disease. Nat Rev Cancer 10, 102–115 .
pmid:20094045
35 Shih, S.C., Prag, G., Francis, S.A., Sutanto, M.A., Hurley, J.H., and Hicke, L. (2003). A ubiquitin-binding motif required for intramolecular monoubiquitylation, the CUE domain. EMBO J 22, 1273–1281 .
pmid:12628920
36 Sullivan, M., and Morgan, D.O. (2007). Finishing mitosis, one step at a time. Nat Rev Mol Cell Biol 8, 894–903 .
pmid:17912263
37 Visintin, R., Prinz, S., and Amon, A. (1997). CDC20 and CDH1: a family of substrate-specific activators of APC-dependent proteolysis. Science 278, 460–463 .
pmid:9334304
38 Wajant, H., Pfizenmaier, K., and Scheurich, P. (2003). Tumor necrosis factor signaling. Cell Death Differ 10, 45–65 .
pmid:12655295
39 Weaver, B.A., and Cleveland, D.W. (2008). The aneuploidy paradox in cell growth and tumorigenesis. Cancer Cell 14, 431–433 .
pmid:19061834
40 Wu, S., Rhee, K.J., Albesiano, E., Rabizadeh, S., Wu, X., Yen, H.R., Huso, D.L., Brancati, F.L., Wick, E., McAllister, F., (2009). A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med 15, 1016–1022 .
pmid:19701202
41 Yamashita, H. (2008). Current research topics in endocrine therapy for breast cancer. Int J Clin Oncol 13, 380–383 .
pmid:18946747
42 Yang, J., Lin, Y., Guo, Z., Cheng, J., Huang, J., Deng, L., Liao, W., Chen, Z., Liu, Z., and Su, B. (2001). The essential role of MEKK3 in TNF-induced NF-kappaB activation. Nat Immunol 2, 620–624 .
pmid:11429546
43 Zhang, P.J., Zhao, J., Li, H.Y., Man, J.H., He, K., Zhou, T., Pan, X., Li, A.L., Gong, W.L., Jin, B.F., (2007). CUE domain containing 2 regulates degradation of progesterone receptor by ubiquitin-proteasome. EMBO J 26, 1831–1842 .
pmid:17347654
[1] Matthieu Talagas, Nicolas Lebonvallet, François Berthod, Laurent Misery. Lifting the veil on the keratinocyte contribution to cutaneous nociception[J]. Protein Cell, 2020, 11(4): 239-250.
[2] Youqin Xu, Kaiyuan Ji, Meng Wu, Bingtao Hao, Kai-tai Yao, Yang Xu. A miRNA-HERC4 pathway promotes breast tumorigenesis by inactivating tumor suppressor LATS1[J]. Protein Cell, 2019, 10(8): 595-605.
[3] Daisuke Aki, Qian Li, Hui Li, Yun-Cai Liu, Jee Ho Lee. Immune regulation by protein ubiquitination: roles of the E3 ligases VHL and Itch[J]. Protein Cell, 2019, 10(6): 395-404.
[4] Zhanping Shi, Yanan Geng, Jiping Liu, Huina Zhang, Liqiang Zhou, Quan Lin, Juehua Yu, Kunshan Zhang, Jie Liu, Xinpei Gao, Chunxue Zhang, Yinan Yao, Chong Zhang, Yi E. Sun. Single-cell transcriptomics reveals gene signatures and alterations associated with aging in distinct neural stem/progenitor cell subpopulations[J]. Protein Cell, 2018, 9(4): 351-364.
[5] Ping Wang, Zunpeng Liu, Xiaoqian Zhang, Jingyi Li, Liang Sun, Zhenyu Ju, Jian Li, Piu Chan, Guang-Hui Liu, Weiqi Zhang, Moshi Song, Jing Qu. CRISPR/Cas9-mediated gene knockout reveals a guardian role of NF-κB/RelA in maintaining the homeostasis of human vascular cells[J]. Protein Cell, 2018, 9(11): 945-965.
[6] Olivier Gouin, Killian L’Herondelle, Nicolas Lebonvallet, Christelle Le Gall-Ianotto, Mehdi Sakka, Virginie Buhé, Emmanuelle Plée-Gautier, Jean-Luc Carré, Luc Lefeuvre, Laurent Misery, Raphaele Le Garrec. TRPV1 and TRPA1 in cutaneous neurogenic and chronic inflammation: pro-inflammatory response induced by their activation and their sensitization[J]. Protein Cell, 2017, 8(9): 644-661.
[7] Jie Yang, Luming Zhao, Ming Xu, Na Xiong. Establishment and function of tissue-resident innate lymphoid cells in the skin[J]. Protein Cell, 2017, 8(7): 489-500.
[8] Rashad Alkasir,Jing Li,Xudong Li,Miao Jin,Baoli Zhu. Human gut microbiota: the links with dementia development[J]. Protein Cell, 2017, 8(2): 90-102.
[9] Zilong Zhao, Yuan Zhou, Ye Tian, Min Li, Jing-fei Dong, Jianning Zhang. Cellular microparticles and pathophysiology of traumatic brain injury[J]. Protein Cell, 2017, 8(11): 801-810.
[10] Ruiqing Yan,Zhihua Liu. LRRK2 enhances Nod1/2-mediated inflammatory cytokine production by promoting Rip2 phosphorylation[J]. Protein Cell, 2017, 8(1): 55-66.
[11] Kegan Zhu,Lei Liu,Junliang Zhang,Yanbo Wang,Hongwei Liang,Gentao Fan,Zhenhuan Jiang,Chen-Yu Zhang,Xi Chen,Guangxin Zhou. MiR-29b suppresses the proliferation and migration of osteosarcoma cells by targeting CDK6[J]. Protein Cell, 2016, 7(6): 434-444.
[12] Zhan-Qi Cao,Xiu-Li Guo. The role of galectin-4 in physiology and diseases[J]. Protein Cell, 2016, 7(5): 314-324.
[13] Haiyang Zhang,Jingjing Duan,Yanjun Qu,Ting Deng,Rui Liu,Le Zhang,Ming Bai,Jialu Li,Tao Ning,Shaohua Ge,Xia Wang,Zhenzhen Wang,Qian Fan,Hongli Li,Guoguang Ying,Dingzhi Huang,Yi Ba. Onco-miR-24 regulates cell growth and apoptosis by targeting BCL2L11 in gastric cancer[J]. Protein Cell, 2016, 7(2): 141-151.
[14] Wenbin Li,Xinghua Zhang,Yongkang Chen,Yibin Xie,Jiancheng Liu,Qiang Feng,Yi Wang,Wei Yuan,Jie Ma. G-CSF is a key modulator of MDSC and could be a potential therapeutic target in colitisassociated colorectal cancers[J]. Protein Cell, 2016, 7(2): 130-140.
[15] Yingli Shang,Sinead Smith,Xiaoyu Hu. Role of Notch signaling in regulating innate immunity and inflammation in health and disease[J]. Protein Cell, 2016, 07(03): 159-174.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed