Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2017, Vol. 8 Issue (2) : 90-102    https://doi.org/10.1007/s13238-016-0338-6
REVIEW
Human gut microbiota: the links with dementia development
Rashad Alkasir1,Jing Li1,Xudong Li2,Miao Jin2,Baoli Zhu1,3()
1. Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
2. China-Japan Friendship Hospital, Beijing 100029, China
3. Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Attainted Hospital College of Medicine, Zhejiang University, Hangzhou 310058, China
 Download: PDF(939 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Dementia is a comprehensive category of brain diseases that is great enough to affect a person’s daily functioning. The most common type of dementia is Alzheimer’s disease, which makes most of cases. New researches indicate that gastrointestinal tract microbiota are directly linked to dementia pathogenesis through triggering metabolic diseases and low-grade inflammation progress. A novel strategy is proposed for the management of these disorders and as an adjuvant for psychiatric treatment of dementia and other related diseases through modulation of the microbiota (e.g. with the use of probiotics).

Keywords dementia      alzheimer’s disease      gut microbiota      inflammation      probiotics     
Corresponding Author(s): Baoli Zhu   
Issue Date: 17 March 2017
 Cite this article:   
Rashad Alkasir,Jing Li,Xudong Li, et al. Human gut microbiota: the links with dementia development[J]. Protein Cell, 2017, 8(2): 90-102.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-016-0338-6
https://academic.hep.com.cn/pac/EN/Y2017/V8/I2/90
1 Agostoni C, Axelsson I, Braegger C, Goulet O, Koletzko B, Michaelsen KF, Rigo J, Shamir R, Szajewska H, Turck D (2004) Probiotic bacteria in dietetic products for infants: a commentary by the ESPGHAN Committee on Nutrition. J Pediatr Gastroenterol Nutr 38:365–374
https://doi.org/10.1097/00005176-200404000-00001
2 Aisen PS, Davis KL (1994) Inflammatory mechanisms in Alzheimer’s disease: implications for therapy. Am J Psychiatry 151:1105–1113
https://doi.org/10.1176/ajp.151.8.1105
3 Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21:383–421
https://doi.org/10.1016/S0197-4580(00)00124-X
4 Arosio B, Trabattoni D, Galimberti L, Bucciarelli P, Fasano F, Calabresi C, Cazzullo CL, Vergani C, Annoni G, Clerici M (2004) Interleukin-10 and interleukin-6 gene polymorphisms as risk factors for Alzheimer’s disease. Neurobiol Aging 25:1009–1015
https://doi.org/10.1016/j.neurobiolaging.2003.10.009
5 Aura AM, O’Leary KA, Williamson G, Ojala M, Bailey M, Puupponen-Pimia R, Nuutila AM, Oksman-Caldentey KM, Poutanen K (2002) Quercetin derivatives are deconjugated and converted to hydroxyphenylacetic acids but not methylated by human fecal flora in vitro. J Agric Food Chem 50:1725–1730
https://doi.org/10.1021/jf0108056
6 Bachstetter AD, Van Eldik LJ, Schmitt FA, Neltner JH, Ighodaro ET, Webster SJ, Patel E, Abner EL, Kryscio RJ, Nelson PT (2015) Disease-related microglia heterogeneity in the hippocampus of Alzheimer’s disease, dementia with Lewy bodies, and hippocampal sclerosis of aging. Acta Neuropathol Commun 3:015–0209
https://doi.org/10.1186/s40478-015-0209-z
7 Balin BJ, Hudson AP (2014) Etiology and pathogenesis of late-onset alzheimer’s disease. Curr Allergy Asthma Rep 14:013–0417
8 Barrett E, Ross RP, O’Toole PW, Fitzgerald GF, Stanton C (2012) Gamma-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol 113:411–417
https://doi.org/10.1111/j.1365-2672.2012.05344.x
9 Bendheim PE, Poeggeler B, Neria E, Ziv V, Pappolla MA, Chain DG (2002) Development of indole-3-propionic acid (OXIGON) for Alzheimer’s disease. J Mol Neurosci 19:213–217
https://doi.org/10.1007/s12031-002-0036-0
10 Berg RD (1998) Probiotics, prebiotics or ‘conbiotics’? Trends Microbiol 6:89–92
https://doi.org/10.1016/S0966-842X(98)01224-4
11 Biagi E, Nylund L, Candela M, Ostan R, Bucci L, Pini E, Nikkila J, Monti D, Satokari R, Franceschi C (2010) Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One 5:0010667
https://doi.org/10.1371/journal.pone.0010667
12 Bilsborough J, Viney JL (2004) Gastrointestinal dendritic cells play a role in immunity, tolerance, and disease. Gastroenterology 127:300–309
https://doi.org/10.1053/j.gastro.2004.01.028
13 Bonaz BL, Bernstein CN (2013) Brain-gut interactions in inflammatory bowel disease. Gastroenterology 144:36–49
https://doi.org/10.1053/j.gastro.2012.10.003
14 Borenstein AR, Copenhaver CI, Mortimer JA (2006) Early-life risk factors for Alzheimerdisease. Alzheimer Dis Assoc Disord 20:63–72
https://doi.org/10.1097/01.wad.0000201854.62116.d7
15 Borre YE, Moloney RD, Clarke G, Dinan TG, Cryan JF (2014a) The impact of microbiota on brain and behavior: mechanisms & therapeutic potential. Adv Exp Med Biol 817:373–403
https://doi.org/10.1007/978-1-4939-0897-4_17
16 Borre YE, O’Keeffe GW, Clarke G, Stanton C, Dinan TG, Cryan JF (2014b) Microbiota and neurodevelopmental windows: implications for brain disorders. Trends Mol Med 20:509–518
https://doi.org/10.1016/j.molmed.2014.05.002
17 Bouhnik Y, Achour L, Paineau D, Riottot M, Attar A, Bornet F (2007) Four-week short chain fructo-oligosaccharides ingestion leads to increasing fecal bifidobacteria and cholesterol excretion in healthy elderly volunteers. Nutr J 6:42–43
https://doi.org/10.1186/1475-2891-6-42
18 Bradley WG, Mash DC (2009) Beyond Guam: the cyanobacteria/BMAA hypothesis of the cause of ALS and other neurodegenerative diseases. Amyotroph Lateral Scler 10(Suppl 2):7–20
https://doi.org/10.3109/17482960903286009
19 Brenner SR (2013) Blue-green algae or cyanobacteria in the intestinal micro-flora may produce neurotoxins such as Beta-NMethylamino-l-Alanine (BMAA) which may be related to development of amyotrophic lateral sclerosis, Alzheimer’s disease and Parkinson-Dementia-Complex in humans and Equine Motor Neuron Disease in Horses. Med Hypotheses 80:103
https://doi.org/10.1016/j.mehy.2012.10.010
20 Cacquevel M, Lebeurrier N, Cheenne S, Vivien D (2004) Cytokines in neuroinflammation and Alzheimer’s disease. Curr Drug Targets 5:529–534
https://doi.org/10.2174/1389450043345308
21 Cash HL, Whitham CV, Behrendt CL, Hooper LV (2006) Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313:1126–1130
https://doi.org/10.1126/science.1127119
22 Casper D, Yaparpalvi U, Rempel N, Werner P (2000) Ibuprofen protects dopaminergic neurons against glutamate toxicity in vitro. Neurosci Lett 289:201–204
https://doi.org/10.1016/S0304-3940(00)01294-5
23 Chen H, Liu S, Ji L, Wu T, Ma F, Ji Y, Zhou Y, Zheng M, Zhang M, Huang G (2015) Associations between Alzheimer’s disease and blood homocysteine, vitamin B12, and folate: a case-control study. Curr Alzheimer Res 12:88–94
https://doi.org/10.2174/1567205012666141218144035
24 Chermesh I, Eliakim R (2006) Probiotics and the gastrointestinal tract: where are we in 2005? World J Gastroenterol 12:853–857
https://doi.org/10.3748/wjg.v12.i6.853
25 Clemente JC, Ursell LK, Parfrey LW, Knight R (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148:1258–1270
https://doi.org/10.1016/j.cell.2012.01.035
26 Collins SM, Surette M, Bercik P (2012) The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 10:735–742
https://doi.org/10.1038/nrmicro2876
27 Cueva C, Sanchez-Patan F, Monagas M, Walton GE, Gibson GR, Martin-Alvarez PJ, Bartolome B, Moreno-Arribas MV (2013) In vitro fermentation of grape seed flavan-3-ol fractions by human faecal microbiota: changes in microbial groups and phenolic metabolites. FEMS Microbiol Ecol 83:792–805
https://doi.org/10.1111/1574-6941.12037
28 de Bruijn RFAG, Ikram MA (2014) Cardiovascular risk factors and future risk of Alzheimer’s disease. BMC Medicine 12:130
https://doi.org/10.1186/s12916-014-0130-5
29 de la Monte SM (2014) Type 3 diabetes is sporadic Alzheimers disease: mini-review. Eur Neuropsychopharmacol 24:1954–1960
https://doi.org/10.1016/j.euroneuro.2014.06.008
30 de La Serre CB, Ellis CL, Lee J, Hartman AL, Rutledge JC, Raybould HE (2010) Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am J Physiol Gastrointest Liver Physiol 299:G440–G448
https://doi.org/10.1152/ajpgi.00098.2010
31 de la Torre JC (2004) Is Alzheimer’s disease a neurodegenerative or a vascular disorder? Data, dogma, and dialectics. Lancet Neurol 3:184–190
https://doi.org/10.1016/S1474-4422(04)00683-0
32 DiBaise JK, Zhang H, Crowell MD, Krajmalnik-Brown R, Decker GA, Rittmann BE (2008) Gut microbiota and its possible relationship with obesity. Mayo Clin Proc 83:460–469
https://doi.org/10.4065/83.4.460
33 Dinan TG, Cryan JF (2013) Melancholic microbes: a link between gut microbiota and depression? Neurogastroenterol Motil 25:713–719
https://doi.org/10.1111/nmo.12198
34 Dumas ME, Barton RH, Toye A, Cloarec O, Blancher C, Rothwell A, Fearnside J, Tatoud R, Blanc V, Lindon JC (2006) Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci USA 103:12511–12516
https://doi.org/10.1073/pnas.0601056103
35 Engelborghs S, De Brabander M, De Cree J, D’Hooge R, Geerts H, Verhaegen H, De Deyn PP (1999) Unchanged levels of interleukins, neopterin, interferon-gamma and tumor necrosis factor-alpha in cerebrospinal fluid of patients with dementia of the Alzheimer type. Neurochem Int 34:523–530
https://doi.org/10.1016/S0197-0186(99)00031-5
36 Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, Guiot Y, Derrien M, Muccioli GG, Delzenne NM (2013) Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA 110:9066–9071
https://doi.org/10.1073/pnas.1219451110
37 Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, Hall K, Hasegawa K, Hendrie H, Huang Y (2005) Global prevalence of dementia: a Delphi consensus study. The Lancet 366:2112–2117
https://doi.org/10.1016/S0140-6736(05)67889-0
38 Flex A, Pola R, Serricchio M, Gaetani E, Proia AS, Di Giorgio A, Papaleo P, Bernabei R, Pola P (2004) Polymorphisms of the macrophage inhibitory factor and C-reactive protein genes in subjects with Alzheimer’s dementia. Dement Geriatr Cogn Disord 18:261–264
https://doi.org/10.1159/000080026
39 Floch MH (2005) Use of diet and probiotic therapy in the irritable bowel syndrome: analysis of the literature. J Clin Gastroenterol 39:243–246
https://doi.org/10.1097/01.mcg.0000156104.67505.5b
40 Forsythe P, Bienenstock J, Kunze WA (2014) Vagal pathways for microbiome-brain-gut axis communication. Adv Exp Med Biol 817:115–133
https://doi.org/10.1007/978-1-4939-0897-4_5
41 Franceschi C (2007) Inflammaging as a major characteristic of old people: can it be prevented or cured? Nutr Rev 65:173–176
https://doi.org/10.1301/nr.2007.dec.S173-S176
42 Fratiglioni, L.R. (2001). Epidemiology of dementia. In: Handbook of Neuropsychology (Elsevier Science B.V.) 2nd 6.
43 Galland L (2014) The gut microbiome and the brain. J Med Food 17:1261–1272
https://doi.org/10.1089/jmf.2014.7000
44 Gatz M, Mortimer JA, Fratiglioni L, Johansson B, Berg S, Reynolds CA, Pedersen NL (2006) Potentially modifiable risk factors for dementia in identical twins. Alzheimers Dement 2:110–117
https://doi.org/10.1016/j.jalz.2006.01.002
45 Gibson GR, Probert HM, Loo JV, Rastall RA, Roberfroid MB (2004) Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 17:259–275
https://doi.org/10.1079/NRR200479
46 Gonzalez-Navajas JM, Bellot P, Frances R, Zapater P, Munoz C, Garcia-Pagan JC, Pascual S, Perez-Mateo M, Bosch J, Such J (2008) Presence of bacterial-DNA in cirrhosis identifies a subgroup of patients with marked inflammatory response not related to endotoxin. J Hepatol 48:61–67
https://doi.org/10.1016/j.jhep.2007.08.012
47 Gordin B, Gorbach S (1992) Probiotics for humans. In: Fuller R(ed) The scientific basis. Chapman and Hall, London, pp 223–245
48 Grenham S, Clarke G, Cryan JF, Dinan TG (2011) Brain-gut-microbe communication in health and disease. Front Physiol 2:345–348
https://doi.org/10.3389/fphys.2011.00094
49 Guigoz Y, Rochat F, Perruisseau-Carrier G, Rochat I, Schiffrin EJ (2002) Effects of oligosaccharide on the faecal flora and nonspecific immune system in elderly people. Nutr Res 22:13–25
https://doi.org/10.1016/S0271-5317(01)00354-2
50 Haass C, Schlossmacher MG, Hung AY, Vigo-Pelfrey C, Mellon A, Ostaszewski BL, Lieberburg I, Koo EH, Schenk D, Teplow DB (1992) Amyloid beta-peptide is produced by cultured cells during normal metabolism. Nature 359:322–325
https://doi.org/10.1038/359322a0
51 Hamilton-Miller JMT (2004) Probiotics and prebiotics in the elderly. Postgrad Med J 80:447–451
https://doi.org/10.1136/pgmj.2003.015339
52 Harach T, Marungruang N, Dutilleul N, Cheatham V, Mc Coy K.D, Neher JJ, Jucker M, Fåk F, Lasser T, and Bolmont T (2015) Reduction of Alzheimer’s disease beta-amyloid pathology in the absence of gut microbiota. Cornell University Library, arXiv:1509.02273.
53 Hawkes CH, Del Tredici K, Braak H (2007) Parkinson’s disease: a dual-hit hypothesis. Neuropathol Appl Neurobiol 33:599–614
https://doi.org/10.1111/j.1365-2990.2007.00874.x
54 Hazen SL, Smith JD (2012) An antiatherosclerotic signaling cascade involving intestinal microbiota, microRNA-10b, and ABCA1/ABCG1-mediated reverse cholesterol transport. Circ Res 111:948–950
https://doi.org/10.1161/CIRCRESAHA.112.277277
55 Hill JM, Lukiw W (2015) Microbial-generated amyloids and Alzheimer’s disease (AD). Front Aging Neurosci 7:32–36
https://doi.org/10.3389/fnagi.2015.00009
56 Hill JM, Clement C, Pogue AI, Bhattacharjee S, Zhao Y, Lukiw WJ (2014) Pathogenic microbes, the microbiome, and Alzheimer’s disease (AD). Front Aging Neurosci 6:127–128
57 Hoban AE, Stilling RM, Ryan FJ, Shanahan F, Dinan TG, Claesson MJ, Clarke G, Cryan JF (2016) Regulation of prefrontal cortex myelination by the microbiota. Transl Psychiatry 5:42
https://doi.org/10.1038/tp.2016.42
58 Holmes C, Cunningham C, Zotova E, Woolford J, Dean C, Kerr S, Culliford D, Perry VH (2009) Systemic inflammation and disease progression in Alzheimer disease. Neurology 73:768–774
https://doi.org/10.1212/WNL.0b013e3181b6bb95
59 Holmqvist S, Chutna O, Bousset L, Aldrin-Kirk P, Li W, Bjorklund T, Wang ZY, Roybon L, Melki R, Li JY (2014) Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol 128:805–820
https://doi.org/10.1007/s00401-014-1343-6
60 Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI (2001) Molecular analysis of commensal host-microbial relationships in the intestine. Science 291:881–884
https://doi.org/10.1126/science.291.5505.881
61 Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T,Codelli JA, Chow J, Reisman SE, Petrosino JF (2013) Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155:1451–1463
https://doi.org/10.1016/j.cell.2013.11.024
62 Hugenholtz P, Tyson GW (2008) Microbiology: metagenomics. Nature 455:481–483
https://doi.org/10.1038/455481a
63 Imbimbo BP, Solfrizzi V, Panza F (2010) Are NSAIDs useful to treat Alzheimer’s disease or mild cognitive impairment? Front Aging Neurosci 21:567–574
https://doi.org/10.3389/fnagi.2010.00019
64 in t’ Veld BA, Ruitenberg A, Hofman A, Launer LJ, Van Duijn CM, Stijnen T, Breteler MM, Stricker BH (2001) Nonsteroidal anti-inflammatory drugs and the risk of Alzheimer’s disease. New Engl J Med 345:515–521
https://doi.org/10.1056/NEJMoa010178
65 Iqbal K, Alonso Adel C, Chen S, Chohan MO, El-Akkad E, Gong CX, Khatoon S, Li B, Liu F, Rahman A (2005) Tau pathology in Alzheimer disease and other tauopathies. BiochimBiophysActa 3:2–3
https://doi.org/10.1016/j.bbadis.2004.09.008
66 Irizarry MC, Hyman BT (2001) Alzheimer’s disease. In: Batchelor T, Cudkowicz ME (eds) Principles of neuroepidemiology, vol 46. Butterworth-Heinemann, Boston, pp 69–98
67 Itzhaki RF (2014) Herpes simplex virus type 1 and Alzheimer’s disease: increasing evidence for a major role of the virus. Front Aging Neurosci 6:56–59
https://doi.org/10.3389/fnagi.2014.00202
68 Jagust W (2001) Untangling vascular dementia. Lancet 358:2097–2098
https://doi.org/10.1016/S0140-6736(01)07230-0
69 Jellet JJ, Forrest TP, Macdonald IA, Marrie TJ, Holdeman LV (1980) Production of indole-3-propanoic acid and 3-(p-hydroxyphenyl) propanoic acid by Clostridium sporogenes: a convenient thinlayer chromatography detection system. Can J Microbiol 26:448–453
https://doi.org/10.1139/m80-074
70 Kawashima K, Misawa H, Moriwaki Y, Fujii YX, Fujii T, Horiuchi Y, Yamada T, Imanaka T, Kamekura M (2007) Ubiquitous expression of acetylcholine and its biological functions in life forms without nervous systems. Life Sci 80:2206–2209
https://doi.org/10.1016/j.lfs.2007.01.059
71 Kleessen B, Sykura B, Zunft HJ, Blaut M (1997) Effects of inulin and lactose on fecal microflora, microbial activity, and bowel habit in elderly constipated persons. Am J Clin Nutr 65:1397–1402
72 Kumar DK, Choi SH, Washicosky KJ, Eimer WA, Tucker S, Ghofrani J, Lefkowitz A, McColl G, Goldstein LE, Tanzi RE, (2016) Amyloid-beta peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease. Sci Transl Med 8: 340ra372.
https://doi.org/10.1126/scitranslmed.aaf1059
73 Lakhan SE, Caro M, and Hadzimichalis N (2013) NMDA receptor activity in neuropsychiatric disorders. Frontiers in Psychiatry 4.
https://doi.org/10.3389/fpsyt.2013.00052
74 Landete JM, De las Rivas B, Marcobal A, Munoz R (2008) Updated molecular knowledge about histamine biosynthesis by bacteria. Crit Rev Food Sci Nutr 48:697–714
https://doi.org/10.1080/10408390701639041
75 LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M (2013) Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol 24:160–168
https://doi.org/10.1016/j.copbio.2012.08.005
76 Lee YK, Menezes JS, Umesaki Y, Mazmanian SK (2011) Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 1:4615–4622
https://doi.org/10.1073/pnas.1000082107
77 Levi M, Keller TT, van Gorp E, ten Cate H (2003) Infection and inflammation and the coagulation system. Cardiovasc Res 60:26–39
https://doi.org/10.1016/S0008-6363(02)00857-X
78 Lim C, Hammond CJ, Hingley ST, Balin BJ (2014) Chlamydia pneumoniae infection of monocytes in vitro stimulates innate and adaptive immune responses relevant to those in Alzheimer’s disease. J Neuroinflammation 11:014–0217
https://doi.org/10.1186/s12974-014-0217-0
79 Little CS, Joyce TA, Hammond CJ, Matta H, Cahn D, Appelt DM, Balin BJ (2014) Detection of bacterial antigens and Alzheimer’s disease-like pathology in the central nervous system of BALB/c mice following intranasal infection with a laboratory isolate of Chlamydia pneumoniae. Front Aging Neurosci 6:304
https://doi.org/10.3389/fnagi.2014.00304
80 Lopez MA, Saada EA, Hill KL (2015) Insect stage-specific adenylate cyclases regulate social motility in African trypanosomes. Eukaryot Cell 14:104–112
https://doi.org/10.1128/EC.00217-14
81 Macpherson AJ, Harris NL (2004) Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol 4:478–485
https://doi.org/10.1038/nri1373
82 Macpherson AJ, Uhr T (2004) Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303:1662–1665
https://doi.org/10.1126/science.1091334
83 Marquardt P, Spitznagel G (1959) Bakterielle acetylcholine bildung in kunstlichen Nahrboden. Arzneimittelforschung 9:456–465
84 Martins IJ, Hone E, Foster JK, Sunram-Lea SI, Gnjec A, Fuller SJ, Nolan D, Gandy SE, Martins RN (2006) Apolipoprotein E, cholesterol metabolism, diabetes, and the convergence of risk factors for Alzheimer’s disease and cardiovascular disease. Mol Psychiatry 11:721–736
https://doi.org/10.1038/sj.mp.4001854
85 Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82:4245–4249
https://doi.org/10.1073/pnas.82.12.4245
86 Mulak A, Bonaz B (2015) Brain-gut-microbiota axis in Parkinson’s disease. World J Gastroenterol 21:10609–10620
https://doi.org/10.3748/wjg.v21.i37.10609
87 Nursing-Standard (2016) Evidence suggests rosacea may be linked to Parkinson’s and Alzheimer’s disease. Nursing Standard 30 (39):14
88 O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7:688–693
https://doi.org/10.1038/sj.embor.7400731
89 Otte JM, Rosenberg IM, Podolsky DK (2003) Intestinal myofibroblasts in innate immune responses of the intestine. Gastroenterology 124:1866–1878
https://doi.org/10.1016/S0016-5085(03)00403-7
90 Özogul F (2011) Effects of specific lactic acid bacteria species on biogenic amine production by foodborne pathogen. Int J Food Sci Technol 46:478–484
https://doi.org/10.1111/j.1365-2621.2010.02511.x
91 Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO (2007) Development of the human infant intestinal microbiota. PLoS Biol 5:26
https://doi.org/10.1371/journal.pbio.0050177
92 Park SA (2011) A common pathogenic mechanism linking type-2 diabetes and Alzheimer’s disease: evidence from animal models. J Clin Neurol 7:10–18
https://doi.org/10.3988/jcn.2011.7.1.10
93 Parodi A, Paolino S, Greco A, Drago F, Mansi C, Rebora A, Parodi A, Savarino V (2008) Small intestinal bacterial overgrowth in rosacea: clinical effectiveness of its eradication. Clin Gastroenter Hepatol 6:759–764
https://doi.org/10.1016/j.cgh.2008.02.054
94 Pasinetti GM, Wang J, Marambaud P, Ferruzzi M, Gregor P, Knable LA, Ho L (2011) Neuroprotective and metabolic effects of resveratrol: therapeutic implications for Huntington’s disease and other neurodegenerative disorders. Exp Neurol 232:1–6
https://doi.org/10.1016/j.expneurol.2011.08.014
95 Philpott DJ, Girardin SE, Sansonetti PJ (2001) Innate immune responses of epithelial cells following infection with bacterial pathogens. Curr Opin Immunol 13:410–416
https://doi.org/10.1016/S0952-7915(00)00235-1
96 Pignatelli M, Aparicio G, Blanquer I, Hernandez V, Moya A, Tamames J (2008) Metagenomics reveals our incomplete knowledge of global diversity. Bioinformatics 24:2124–2125
https://doi.org/10.1093/bioinformatics/btn355
97 Potgieter M, Bester J, Kell DB, Pretorius E (2015) The dormant blood microbiome in chronic, inflammatory diseases. FEMS Microbiol Rev 39:567–591
https://doi.org/10.1093/femsre/fuv013
98 Rabot S, Membrez M, Bruneau A, Gerard P, Harach T, Moser M, Raymond F, Mansourian R, Chou CJ (2010) Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism. Faseb J 24:4948–4959
https://doi.org/10.1096/fj.10-164921
99 Rajilic-Stojanovic M, Biagi E, Heilig HG, Kajander K, Kekkonen RA, Tims S, de Vos WM (2011) Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology 141:1792–1801
https://doi.org/10.1053/j.gastro.2011.07.043
100 Rani V, Deshmukh R, Jaswal P, Bariwal J (2016) Alzheimer’s disease: Is this a brain specific diabetic condition? Physiol Behav 1:876–879
https://doi.org/10.1016/j.physbeh.2016.05.041
101 Russell WR, Hoyles L, Flint HJ, Dumas ME (2013) Colonic bacterial metabolites and human health. Curr Opin Microbiol 16:246–254
https://doi.org/10.1016/j.mib.2013.07.002
102 Santa-Maria I, Diaz-Ruiz C, Ksiezak-Reding H, Chen A, Ho L, Wang J, Pasinetti GM (2012) GSPE interferes with tau aggregation in vivo: implication for treating tauopathy. Neurobiol Aging 33:2072–2081
https://doi.org/10.1016/j.neurobiolaging.2011.09.027
103 Scheperjans F, Aho V, Pereira PA, Koskinen K, Paulin L, Pekkonen E, Haapaniemi E, Kaakkola S, Eerola-Rautio J, Pohja M (2015) Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 30:350–358
https://doi.org/10.1002/mds.26069
104 Schwartz K, Boles BR (2013) Microbial amyloids–functions and interactions within the host. Curr Opin Microbiol 16:93–99
https://doi.org/10.1016/j.mib.2012.12.001
105 Shishov VA, Kirovskaia TA, Kudrin VS, Oleskin AV (2009) Amine neuromediators, their precursors, and oxidation products in the culture of Escherichia coli K-12. Prikl Biokhim Mikrobiol 45:550–554
https://doi.org/10.1134/s0003683809050068
106 Silva M, Jacobus NV, Deneke C, Gorbach SL (1987) Antimicrobial substance from a human Lactobacillus strain. Antimicrob Agents Chemother 31:1231–1233
https://doi.org/10.1128/AAC.31.8.1231
107 Swann JR, Want EJ, Geier FM, Spagou K, Wilson ID, Sidaway JE, Nicholson JK, Holmes E (2011) Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc Natl Acad Sci USA 1:4523–4530
https://doi.org/10.1073/pnas.1006734107
108 Tan ZS, Beiser AS, Vasan RS, Roubenoff R, Dinarello CA, Harris TB, Benjamin EJ, Au R, Kiel DP, Wolf PA (2007) Inflammatory markers and the risk of Alzheimer disease: the Framingham Study. Neurology 68:1902–1908
https://doi.org/10.1212/01.wnl.0000263217.36439.da
109 Thibault H, Aubert-Jacquin C, Goulet O (2004) Effects of long-term consumption of a fermented infant formula (with Bifidobacterium breve c50 and Streptococcus thermophilus 065) on acute diarrhea in healthy infants. J Pediatr Gastroenterol Nutr 39:147–152
https://doi.org/10.1097/00005176-200408000-00004
110 Thomas CM, Hong T, van Pijkeren JP, Hemarajata P, Trinh DV, Hu W, Britton RA, Kalkum M, Versalovic J (2012) Histamine derived from probiotic Lactobacillus reuteri suppresses TNF via modulation of PKA and ERK signaling. PLoS One 7:e31951
https://doi.org/10.1371/journal.pone.0031951
111 Tran L, Greenwood-Van Meerveld B (2013) Age-associated remodeling of the intestinal epithelial barrier. J Gerontol A Biol Sci Med Sci 68:1045–1056
https://doi.org/10.1093/gerona/glt106
112 Tremaroli V, Backhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489:242–249
https://doi.org/10.1038/nature11552
113 Tsavkelova EA, Botvinko IV, Kudrin VS, Oleskin AV (2000) Detection of neurotransmitter amines in microorganisms with the use of high-performance liquid chromatography. Dokl Biochem 372:115–117
114 von Bernhardi R, Eugenin-von Bernhardi L, Eugenin J (2015) Microglial cell dysregulation in brain aging and neurodegeneration. Front Aging Neurosci 7:231–238
https://doi.org/10.3389/fnagi.2015.00124
115 Vulevic J, Drakoularakou A, Yaqoob P, Tzortzis G, Gibson GR (2008) Modulation of the fecal microflora profile and immune function by a novel trans-galactooligosaccharide mixture (BGOS) in healthy elderly volunteers. Am J Clin Nutr 88:1438–1446
116 Wall R, Cryan JF, Ross RP, Fitzgerald GF, Dinan TG, Stanton C (2014) Bacterial neuroactive compounds produced by psychobiotics. Adv Exp Med Biol 817:221–239
https://doi.org/10.1007/978-1-4939-0897-4_10
117 Wang X, Quinn PJ (2010) Endotoxins: lipopolysaccharides of gramnegative bacteria. Subcell Biochem 53:3–25
https://doi.org/10.1007/978-90-481-9078-2_1
118 Wang J, Ho L, Zhao W, Ono K, Rosensweig C, Chen L, Humala N, Teplow DB, Pasinetti GM (2008) Grape-derived polyphenolics prevent Abeta oligomerization and attenuate cognitive deterioration in a mouse model of Alzheimer’s disease. J Neurosci 28:6388–6392
https://doi.org/10.1523/JNEUROSCI.0364-08.2008
119 Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472:57–63
https://doi.org/10.1038/nature09922
120 Wang D, Ho L, Faith J, Ono K, Janle EM, Lachcik PJ, Cooper BR, Jannasch AH, D’Arcy BR, Williams BA (2015) Role of intestinal microbiota in the generation of polyphenol-derived phenolic acid mediated attenuation of Alzheimer’s disease betaamyloid oligomerization. Mol Nutr Food Res 59:1025–1040
https://doi.org/10.1002/mnfr.201400544
121 Yaffe K, Lindquist K, Penninx BW, Simonsick EM, Pahor M, Kritchevsky S, Launer L, Kuller L, Rubin S, Harris T (2003) Inflammatory markers and cognition in well-functioning African-American and white elders. Neurology 61:76–80
https://doi.org/10.1212/01.WNL.0000073620.42047.D7
122 Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, Nagler CR, Ismagilov RF, Mazmanian SK, Hsiao EY (2015) Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161:264–276
https://doi.org/10.1016/j.cell.2015.02.047
123 Zuliani G, Ranzini M, Guerra G, Rossi L, Munari MR, Zurlo A, Volpato S, Atti AR, Ble A, Fellin R (2007) Plasma cytokines profile in older subjects with late onset alzheimer’s disease or vascular dementia. J Psychiatr Res 41:686–693
https://doi.org/10.1016/j.jpsychires.2006.02.008
[1] Matthieu Talagas, Nicolas Lebonvallet, François Berthod, Laurent Misery. Lifting the veil on the keratinocyte contribution to cutaneous nociception[J]. Protein Cell, 2020, 11(4): 239-250.
[2] Daisuke Aki, Qian Li, Hui Li, Yun-Cai Liu, Jee Ho Lee. Immune regulation by protein ubiquitination: roles of the E3 ligases VHL and Itch[J]. Protein Cell, 2019, 10(6): 395-404.
[3] Jia Yang, Jun Yu. The association of diet, gut microbiota and colorectal cancer: what we eat may imply what we get[J]. Protein Cell, 2018, 9(5): 474-487.
[4] Jun Wang, Liang Chen, Na Zhao, Xizhan Xu, Yakun Xu, Baoli Zhu. Of genes and microbes: solving the intricacies in host genomes[J]. Protein Cell, 2018, 9(5): 446-461.
[5] Zeneng Wang, Yongzhong Zhao. Gut microbiota derived metabolites in cardiovascular health and disease[J]. Protein Cell, 2018, 9(5): 416-431.
[6] Ping Wang, Zunpeng Liu, Xiaoqian Zhang, Jingyi Li, Liang Sun, Zhenyu Ju, Jian Li, Piu Chan, Guang-Hui Liu, Weiqi Zhang, Moshi Song, Jing Qu. CRISPR/Cas9-mediated gene knockout reveals a guardian role of NF-κB/RelA in maintaining the homeostasis of human vascular cells[J]. Protein Cell, 2018, 9(11): 945-965.
[7] Olivier Gouin, Killian L’Herondelle, Nicolas Lebonvallet, Christelle Le Gall-Ianotto, Mehdi Sakka, Virginie Buhé, Emmanuelle Plée-Gautier, Jean-Luc Carré, Luc Lefeuvre, Laurent Misery, Raphaele Le Garrec. TRPV1 and TRPA1 in cutaneous neurogenic and chronic inflammation: pro-inflammatory response induced by their activation and their sensitization[J]. Protein Cell, 2017, 8(9): 644-661.
[8] Jie Yang, Luming Zhao, Ming Xu, Na Xiong. Establishment and function of tissue-resident innate lymphoid cells in the skin[J]. Protein Cell, 2017, 8(7): 489-500.
[9] Zilong Zhao, Yuan Zhou, Ye Tian, Min Li, Jing-fei Dong, Jianning Zhang. Cellular microparticles and pathophysiology of traumatic brain injury[J]. Protein Cell, 2017, 8(11): 801-810.
[10] Ruiqing Yan,Zhihua Liu. LRRK2 enhances Nod1/2-mediated inflammatory cytokine production by promoting Rip2 phosphorylation[J]. Protein Cell, 2017, 8(1): 55-66.
[11] Jintao Bao,Liangjun Zheng,Qi Zhang,Xinya Li,Xuefei Zhang,Zeyang Li,Xue Bai,Zhong Zhang,Wei Huo,Xuyang Zhao,Shujiang Shang,Qingsong Wang,Chen Zhang,Jianguo Ji. Deacetylation of TFEB promotes fibrillar Aβ degradation by upregulating lysosomal biogenesis in microglia[J]. Protein Cell, 2016, 7(6): 417-433.
[12] Zhan-Qi Cao,Xiu-Li Guo. The role of galectin-4 in physiology and diseases[J]. Protein Cell, 2016, 7(5): 314-324.
[13] Wenbin Li,Xinghua Zhang,Yongkang Chen,Yibin Xie,Jiancheng Liu,Qiang Feng,Yi Wang,Wei Yuan,Jie Ma. G-CSF is a key modulator of MDSC and could be a potential therapeutic target in colitisassociated colorectal cancers[J]. Protein Cell, 2016, 7(2): 130-140.
[14] Yingli Shang,Sinead Smith,Xiaoyu Hu. Role of Notch signaling in regulating innate immunity and inflammation in health and disease[J]. Protein Cell, 2016, 07(03): 159-174.
[15] Ryan Kolb,Guang-Hui Liu,Ann M. Janowski,Fayyaz S. Sutterwala,Weizhou Zhang. Inflammasomes in cancer: a double-edged sword[J]. Protein Cell, 2014, 5(1): 12-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed