Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2016, Vol. 7 Issue (6) : 417-433    https://doi.org/10.1007/s13238-016-0269-2
RESEARCH ARTICLE
Deacetylation of TFEB promotes fibrillar Aβ degradation by upregulating lysosomal biogenesis in microglia
Jintao Bao1,Liangjun Zheng1,Qi Zhang1,Xinya Li1,Xuefei Zhang1,Zeyang Li1,Xue Bai1,Zhong Zhang1,Wei Huo1,Xuyang Zhao2,Shujiang Shang3,Qingsong Wang1,*(),Chen Zhang3,*(),Jianguo Ji1,*()
1. State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
2. Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Center for Age-Related Diseases, Peking University Health Science Center, Beijing 100191, China
3. State Key Laboratory of Biomembrane and Membrane Biotechnology, Peking University, Beijing 100871, China
 Download: PDF(4175 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Microglia play a pivotal role in clearance of Aβ by degrading them in lysosomes, countering amyloid plaque pathogenesis in Alzheimer’s disease (AD). Recent evidence suggests that lysosomal dysfunction leads to insufficient elimination of toxic protein aggregates. We tested whether enhancing lysosomal function with transcription factor EB (TFEB), an essential regulator modulating lysosomal pathways, would promote Aβ clearance in microglia. Here we show that microglial expression of TFEB facilitates fibrillar Aβ (fAβ) degradation and reduces deposited amyloid plaques, which are further enhanced by deacetylation of TFEB. Using mass spectrometry analysis, we firstly confirmed acetylation as a previously unreported modification of TFEB and found that SIRT1 directly interacted with and deacetylated TFEB at lysine residue 116. Subsequently, SIRT1 overexpression enhanced lysosomal function and fAβ degradation by upregulating transcriptional levels of TFEB downstream targets, which could be inhibited when TFEB was knocked down. Furthermore, overexpression of deacetylated TFEB at K116R mutant in microglia accelerated intracellular fAβ degradation by stimulating lysosomal biogenesis and greatly reduced the deposited amyloid plaques in the brain slices of APP/PS1 transgenic mice. Our findings reveal that deacetylation of TFEB could regulate lysosomal biogenesis and fAβ degradation, making microglial activation of TFEB a possible strategy for attenuating amyloid plaque deposition in AD.

Keywords Alzheimer’s disease      microglia      lysosomes      TFEB      SIRT1      deacetylation     
Corresponding Author(s): Qingsong Wang,Chen Zhang,Jianguo Ji   
Issue Date: 20 June 2016
 Cite this article:   
Jintao Bao,Liangjun Zheng,Qi Zhang, et al. Deacetylation of TFEB promotes fibrillar Aβ degradation by upregulating lysosomal biogenesis in microglia[J]. Protein Cell, 2016, 7(6): 417-433.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-016-0269-2
https://academic.hep.com.cn/pac/EN/Y2016/V7/I6/417
1 Banreti A, Sass M, Graba Y (2013) The emerging role of acetylation in the regulation of autophagy. Autophagy 9:819–829
https://doi.org/10.4161/auto.23908
2 Bard F, Cannon C, Barbour R, Burke RL, Games D, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K (2000) Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 6:916–919
https://doi.org/10.1038/78682
3 Bolmont T, Haiss F, Eicke D, Radde R, Mathis CA, Klunk WE, Kohsaka S, Jucker M, Calhoun ME (2008) Dynamics of the microglial/amyloid interaction indicate a role in plaque maintenance. J Neurosci 28:4283–4292
https://doi.org/10.1523/JNEUROSCI.4814-07.2008
4 Chakrabarti P, English T, Karki S, Qiang L, Tao R, Kim J, Luo Z, Farmer SR, Kandror KV (2011) SIRT1 controls lipolysis in adipocytes via FOXO1-mediated expression of ATGL. J Lipid Res 52:1693–1701
https://doi.org/10.1194/jlr.M014647
5 Chen J, Zhou Y, Mueller-Steiner S, Chen LF, Kwon H, Yi S, Mucke L, Gan L (2005) SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. J Biol Chem 280:40364–40374
https://doi.org/10.1074/jbc.M509329200
6 Cho SH, Chen JA, Sayed F, Ward ME, Gao F, Nguyen TA, Krabbe G, Sohn PD, Lo I, Minami S (2015) SIRT1 deficiency in microglia contributes to cognitive decline in aging and neurodegeneration via epigenetic regulation of IL-1beta. J Neurosci 35:807–818
https://doi.org/10.1523/JNEUROSCI.2939-14.2015
7 Condello C, Yuan P, Schain A, Grutzendler J (2015) Microglia constitute a barrier that prevents neurotoxic protofibrillar Abeta42 hotspots around plaques. Nat Commun 6:6176
https://doi.org/10.1038/ncomms7176
8 Decressac M, Mattsson B, Weikop P, Lundblad M, Jakobsson J, Bjorklund A (2013) TFEB-mediated autophagy rescues midbrain dopamine neurons from alpha-synuclein toxicity. Proc Natl Acad Sci USA 110:E1817–E1826
9 Doens D, Fernandez PL (2014) Microglia receptors and their implications in the response to amyloid beta for Alzheimer’s disease pathogenesis. J Neuroinflammation 11:48
https://doi.org/10.1186/1742-2094-11-48
10 Donmez G, Wang D, Cohen DE, Guarente L (2010) SIRT1 suppresses beta-amyloid production by activating the alphasecretase gene ADAM10. Cell 142:320–332
https://doi.org/10.1016/j.cell.2010.06.020
11 El Khoury J, Toft M, Hickman SE, Means TK, Terada K, Geula C, Luster AD (2007) Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med 13:432–438
https://doi.org/10.1038/nm1555
12 Guarente L (2011) Sirtuins, aging, and metabolism. Cold Spring Harbor Symp Quan Biol 76:81–90
https://doi.org/10.1101/sqb.2011.76.010629
13 Herskovits AZ, Guarente L (2014) SIRT1 in neurodevelopment and brain senescence. Neuron 81:471–483
https://doi.org/10.1016/j.neuron.2014.01.028
14 Hickman SE, Allison EK, El Khoury J (2008) Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci 28:8354–8360
https://doi.org/10.1523/JNEUROSCI.0616-08.2008
15 Hug BA, Ahmed N, Robbins JA, Lazar MA (2004) A chromatin immunoprecipitation screen reveals protein kinase Cbeta as a direct RUNX1 target gene. J Biol Chem 279:825–830
https://doi.org/10.1074/jbc.M309524200
16 Jiang Q, Lee CY, Mandrekar S, Wilkinson B, Cramer P, Zelcer N, Mann K, Lamb B, Willson TM, Collins JL (2008) ApoE promotes the proteolytic degradation of Abeta. Neuron 58:681–693
https://doi.org/10.1016/j.neuron.2008.04.010
17 Karuppagounder SS, Pinto JT, Xu H, Chen HL, Beal MF, Gibson GE (2009) Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer’s disease. Neurochem Int 54:111–118
https://doi.org/10.1016/j.neuint.2008.10.008
18 Lee IH, Finkel T (2009) Regulation of autophagy by the p300 acetyltransferase. J Biol Chem 284:6322–6328
https://doi.org/10.1074/jbc.M807135200
19 Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE, Tsokos M, Alt FW, Finkel T (2008) A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci USA 105:3374–3379
https://doi.org/10.1073/pnas.0712145105
20 Lucin KM, Wyss-Coray T (2009) Immune activation in brain aging and neurodegeneration: too much or too little? Neuron 64:110–122
21 Ma Y, Bao J, Zhao X, Shen H, Lv J, Ma S, Zhang X, Li Z, Wang S, Wang Q (2013) Activated cyclin-dependent kinase 5 promotes microglial phagocytosis of fibrillar beta-amyloid by upregulating lipoprotein lipase expression. Mol Cellular Proteomics: MCP 12:2833–2844
https://doi.org/10.1074/mcp.M112.026864
22 Majumdar A, Cruz D, Asamoah N, Buxbaum A, Sohar I, Lobel P, Maxfield FR (2007) Activation of microglia acidifies lysosomes and leads to degradation of Alzheimer amyloid fibrils. Mol Biol Cell 18:1490–1496
https://doi.org/10.1091/mbc.E06-10-0975
23 Majumdar A, Chung H, Dolios G, Wang R, Asamoah N, Lobel P, Maxfield FR (2008) Degradation of fibrillar forms of Alzheimer’s amyloid betapeptide by macrophages. Neurobiol Aging 29:707–715
https://doi.org/10.1016/j.neurobiolaging.2006.12.001
24 Majumdar A, Capetillo-Zarate E, Cruz D, Gouras GK, Maxfield FR (2011) Degradation of Alzheimer’s amyloid fibrils by microglia requires delivery ofClC-7 to lysosomes. Mol BiolCell 22:1664–1676
25 Mandrekar-Colucci S, Karlo JC, Landreth GE (2012) Mechanisms underlying the rapid peroxisome proliferator-activated receptorgamma-mediated amyloid clearance and reversal of cognitive deficits in a murine model of Alzheimer’s disease. J Neurosci 32:10117–10128
https://doi.org/10.1523/JNEUROSCI.5268-11.2012
26 Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, Yarasheski KE, Bateman RJ (2010) Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330:1774
https://doi.org/10.1126/science.1197623
27 Meyer-Luehmann M, Spires-Jones TL, Prada C, Garcia-Alloza M, de Calignon A, Rozkalne A, Koenigsknecht-Talboo J, Holtzman DM, Bacskai BJ, Hyman BT (2008) Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer’s disease. Nature 451:720–724
https://doi.org/10.1038/nature06616
28 Mulder SD, Nielsen HM, Blankenstein MA, Eikelenboom P, Veerhuis R (2014) Apolipoproteins E and J interfere with amyloid-beta uptake by primary human astrocytes and microglia in vitro. Glia 62:493–503
https://doi.org/10.1002/glia.22619
29 Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318
https://doi.org/10.1126/science.1110647
30 Palop JJ, Mucke L (2010) Amyloid-beta-induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat Neurosci 13:812–818
https://doi.org/10.1038/nn.2583
31 Qin W, Yang T, Ho L, Zhao Z, Wang J, Chen L, Zhao W, Thiyagarajan M, MacGrogan D, Rodgers JT (2006) Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem 281:21745–21754
https://doi.org/10.1074/jbc.M602909200
32 Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. New Engl J Med 362:329–344
https://doi.org/10.1056/NEJMra0909142
33 Rogers J, Strohmeyer R, Kovelowski CJ, Li R (2002) Microglia and inflammatory mechanisms in the clearance of amyloid beta peptide. Glia 40:260–269
https://doi.org/10.1002/glia.10153
34 Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M, Gennarino VA, Di Malta C, Donaudy F, Embrione V, Polishchuk RS (2009) A gene network regulating lysosomal biogenesis and function. Science 325:473–477
35 Schultz ML, Tecedor L, Chang M, Davidson BL (2011) Clarifying lysosomal storage diseases. Trends Neurosci 34:401–410
https://doi.org/10.1016/j.tins.2011.05.006
36 Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D, Colella P (2011) TFEB links autophagy to lysosomal biogenesis. Science 332:1429–1433
https://doi.org/10.1126/science.1204592
37 Settembre C, De Cegli R, Mansueto G, Saha PK, Vetrini F, Visvikis O, Huynh T, Carissimo A, Palmer D, Klisch TJ (2013a) TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat Cell Biol 15:647–658
38 Settembre C, Fraldi A, Medina DL, Ballabio A (2013b) Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol 14:283–296
39 Tsunemi T, Ashe TD, Morrison BE, Soriano KR, Au J, Roque RA, Lazarowski ER, Damian VA, Masliah E, La Spada AR (2012) PGC-1alpha rescues Huntington’s disease proteotoxicity by preventing oxidative stress and promoting TFEB function. Science translational medicine 4:142ra197.
40 Wegiel J, Wang KC, Imaki H, Rubenstein R, Wronska A, Osuchowski M, Lipinski WJ, Walker LC, LeVine H (2001) The role of microglial cells and astrocytes in fibrillar plaque evolution in transgenic APP(SW) mice. Neurobiol Aging 22:49–61
https://doi.org/10.1016/S0197-4580(00)00181-0
41 Weldon DT, Rogers SD, Ghilardi JR, Finke MP, Cleary JP, O’Hare E, Esler WP, Maggio JE, Mantyh PW (1998) Fibrillar beta-amyloid induces microglial phagocytosis, expression of inducible nitric oxide synthase, and loss of a select population of neurons in the rat CNS in vivo. J Neurosci 18:2161–2173
42 Xiao Q, Yan P, Ma X, Liu H, Perez R, Zhu A, Gonzales E, Burchett JM, Schuler DR, Cirrito JR (2014) Enhancing astrocytic lysosome biogenesis facilitates Abeta clearance and attenuates amyloid plaque pathogenesis. J Neurosci 34:9607–9620
https://doi.org/10.1523/JNEUROSCI.3788-13.2014
43 Xiao Q, Yan P, Ma X, Liu H, Perez R, Zhu A, Gonzales E, Tripoli DL, Czerniewski L, Ballabio A (2015) Neuronal-targeted TFEB accelerates lysosomal degradation of APP, reducing abeta generation and amyloid plaque pathogenesis. J Neurosci 35:12137–12151
https://doi.org/10.1523/JNEUROSCI.0705-15.2015
44 Zhang YD, Zhao JJ (2015) TFEB participates in the abeta-induced pathogenesis of Alzheimer’s disease by regulating the autophagy-lysosome pathway. DNA Cell Biol 34:661–668
https://doi.org/10.1089/dna.2014.2738
45 Zhang J, Shi XQ, Echeverry S, Mogil JS, De Koninck Y, Rivest S (2007) Expression of CCR2 in both resident and bone marrowderived microglia plays a critical role in neuropathic pain. J Neurosci 27:12396–12406
https://doi.org/10.1523/JNEUROSCI.3016-07.2007
46 Zhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S, Lecker SH, Goldberg AL (2007) FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 6:472–483
https://doi.org/10.1016/j.cmet.2007.11.004
47 Zhou J, Tan SH, Nicolas V, Bauvy C, Yang ND, Zhang J, Xue Y, Codogno P, Shen HM (2013) Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion. Cell Res 23:508–523
https://doi.org/10.1038/cr.2013.11
[1] PAC-0417-16012-JJG_suppl_1 Download
[1] Nan Zhou, Kaili Liu, Yue Sun, Ying Cao, Jing Yang. Transcriptional mechanism of IRF8 and PU.1 governs microglial activation in neurodegenerative condition[J]. Protein Cell, 2019, 10(2): 87-103.
[2] Junsheng Yang, Zhuangzhuang Zhao, Mingxue Gu, Xinghua Feng, Haoxing Xu. Release and uptake mechanisms of vesicular Ca2+ stores[J]. Protein Cell, 2019, 10(1): 8-19.
[3] Rashad Alkasir,Jing Li,Xudong Li,Miao Jin,Baoli Zhu. Human gut microbiota: the links with dementia development[J]. Protein Cell, 2017, 8(2): 90-102.
[4] Limin Han, Pan Wang, Ganye Zhao, Hui Wang, Meng Wang, Jun Chen, Tanjun Tong. Upregulation of SIRT1 by 17β-estradiol depends on ubiquitin-proteasome degradation of PPAR-γ mediated by NEDD4-1[J]. Prot Cell, 2013, 4(4): 310-321.
[5] Christopher L. Brooks, Wei Gu. The impact of acetylation and deacetylation on the p53 pathway[J]. Prot Cell, 2011, 2(6): 456-462.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed