Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2020, Vol. 11 Issue (4) : 239-250    https://doi.org/10.1007/s13238-019-00683-9
REVIEW
Lifting the veil on the keratinocyte contribution to cutaneous nociception
Matthieu Talagas1,2,3,4(), Nicolas Lebonvallet1,4, François Berthod2, Laurent Misery1,3,4
1. Univ Brest, LIEN, 29200 Brest, France
2. Laboratoire d’Organogenèse Expérimentale (LOEX), University of Laval, Quebec, Canada
3. Department of Dermatology, Brest University Hospital, Brest, France
4. Univ Brest, IBSAM (Institut Brestois de Santé Agro matière), 29200 Brest, France
 Download: PDF(1115 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Cutaneous nociception is essential to prevent individuals from sustaining injuries. According to the conventional point of view, the responses to noxious stimuli are thought to be exclusively initiated by sensory neurons, whose activity would be at most modulated by keratinocytes. However recent studies have demonstrated that epidermal keratinocytes can also act as primary nociceptive transducers as a supplement to sensory neurons. To enlighten our understanding of cutaneous nociception, this review highlights recent and relevant findings on the cellular and molecular elements that underlie the contribution of epidermal keratinocytes as nociceptive modulators and noxious sensors, both under healthy and pathological conditions.

Keywords keratinocyte      nociception      skin      TRP      pain      inflammation     
Corresponding Author(s): Matthieu Talagas   
Issue Date: 06 May 2020
 Cite this article:   
Matthieu Talagas,Nicolas Lebonvallet,François Berthod, et al. Lifting the veil on the keratinocyte contribution to cutaneous nociception[J]. Protein Cell, 2020, 11(4): 239-250.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-019-00683-9
https://academic.hep.com.cn/pac/EN/Y2020/V11/I4/239
1 VE Abraira, DD Ginty (2013) The sensory neurons of touch. Neuron 79:618–639
https://doi.org/10.1016/j.neuron.2013.07.051
2 N Alessandri-Haber, OA Dina, JJ Yeh, CA Parada, DB Reichling, JD Levine (2004) Transient receptor potential vanilloid 4 is essential in chemotherapy-induced neuropathic pain in the rat. J Neurosci 24:4444–4452
https://doi.org/10.1523/JNEUROSCI.0242-04.2004
3 DA Andersson, C Gentry, S Moss, S Bevan (2008) Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J Neurosci 28:2485–2494
https://doi.org/10.1523/JNEUROSCI.5369-07.2008
4 R Atoyan, D Shander, NV Botchkareva (2009) Non-neuronal expression of transient receptor potential type A1 (TRPA1) in human skin. J Investig Dermatol 129:2312–2315
https://doi.org/10.1038/jid.2009.58
5 S Bae, Y Matsunaga, Y Tanaka, I Katayama (1999) Autocrine induction of substance P mRNA and peptide in cultured normal human keratinocytes. Biochem Biophys Res Commun 263:327–333
https://doi.org/10.1006/bbrc.1999.1285
6 M Bandell, GM Story, SW Hwang, V Viswanath, SR Eid, MJ Petrus, TJ Earley, A Patapoutian (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41:849–857
https://doi.org/10.1016/S0896-6273(04)00150-3
7 S Bang, S Yoo, T-J Yang, H Cho, SW Hwang (2010) Farnesyl pyrophosphate is a novel pain-producing molecule via specific activation of TRPV3. J Biol Chem 285:19362–19371
https://doi.org/10.1074/jbc.M109.087742
8 TP Barr, PJ Albrecht, Q Hou, AA Mongin, GR Strichartz, FL Rice (2013) Air-stimulated ATP release from keratinocytes occurs through connexin hemichannels. PLoS ONE 8:e56744
https://doi.org/10.1371/journal.pone.0056744
9 AI Basbaum, DM Bautista, G Scherrer, D Julius (2009) Cellular and molecular mechanisms of pain. Cell 139:267–284
https://doi.org/10.1016/j.cell.2009.09.028
10 KM Baumbauer, JJ DeBerry, PC Adelman, RH Miller, J Hachisuka, KH Lee, SE Ross, HR Koerber, BM Davis, KM Albers (2015) Keratinocytes can modulate and directly initiate nociceptive responses. ELife. https://doi.org/10.7554/eLife.09674.001
https://doi.org/10.7554/eLife.09674.001
11 DM Bautista, S-E Jordt, T Nikai, PR Tsuruda, AJ Read, J Poblete, EN Yamoah, AI Basbaum, D Julius (2006) TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124:1269–1282
https://doi.org/10.1016/j.cell.2006.02.023
12 DM Bautista, J Siemens, JM Glazer, PR Tsuruda, AI Basbaum, CL Stucky, S-E Jordt, D Julius (2007) The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448:204–208
https://doi.org/10.1038/nature05910
13 G Bidaux, A Borowiec, D Gordienko, B Beck, GG Shapovalov, L Lemonnier, M Flourakis, M Vandenberghe, C Slomianny, E Dewaillyet al. (2015) Epidermal TRPM8 channel isoform controls the balance between keratinocyte proliferation and differentiation in a cold-dependent manner. Proc Natl Acad Sci USA 112:E3345–3354
https://doi.org/10.1073/pnas.1423357112
14 N Boulais, L Misery (2008) The epidermis: a sensory tissue. Eur J Dermatol EJD 18:119–127
15 V Bouvier, Y Roudaut, N Osorio, J-M Aimonetti, E Ribot-Ciscar, V Penalba, T, Merrot N Lebonvallet, C Le Gall-Ianotto, L Miseryet al. (2018) Merkel cells sense cooling with TRPM8 channels. J Investig Dermatol 138:946–956
https://doi.org/10.1016/j.jid.2017.11.004
16 D del Camino, S Murphy, M Heiry, LB Barrett, TJ Earley, CA Cook, MJ Petrus, M Zhao, M D’Amours, N Deeringet al. (2010) TRPA1 contributes to cold hypersensitivity. J Neurosci 30:15165–15174
https://doi.org/10.1523/JNEUROSCI.2580-10.2010
17 MJ Caterina, D Julius (2001) The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci 24:487–517
https://doi.org/10.1146/annurev.neuro.24.1.487
18 MJ Caterina, Z Pang (2016) TRP channels in skin biology and pathophysiology. Pharmaceuticals (Basel Switz) 9:77
https://doi.org/10.3390/ph9040077
19 MJ Caterina, MA Schumacher, M Tominaga, TA Rosen, JD Levine, D Julius (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824
https://doi.org/10.1038/39807
20 MJ Caterina, TA Rosen, M Tominaga, AJ Brake, D Julius (1999) A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398:436–441
https://doi.org/10.1038/18906
21 MJ Caterina, A Leffler, AB Malmberg, WJ Martin, J Trafton, KR Petersen-Zeitz, M Koltzenburg, AI Basbaum, D Julius (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288:306–313
https://doi.org/10.1126/science.288.5464.306
22 N Cauna (1973) The free penicillate nerve endings of the human hairy skin. J Anat 115:277–288
23 HH Chuang, ED Prescott, H Kong, S Shields, SE Jordt, AI Basbaum, MV Chao, D Julius (2001) Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411:957–962
https://doi.org/10.1038/35082088
24 M-K Chung, H Lee, A Mizuno, M Suzuki, MJ Caterina (2004) TRPV3 and TRPV4 mediate warmth-evoked currents in primary mouse keratinocytes. J Biol Chem 279:21569–21575
https://doi.org/10.1074/jbc.M401872200
25 RW Colburn, ML Lubin, DJ Stone, Y Wang, D Lawrence, MR D’Andrea, MR Brandt, Y Liu, CM Flores, N Qin (2007) Attenuated cold sensitivity in TRPM8 null mice. Neuron 54:379–386
https://doi.org/10.1016/j.neuron.2007.04.017
26 SP Cook, EW McCleskey (2002) Cell damage excites nociceptors through release of cytosolic ATP. Pain 95:41–47
https://doi.org/10.1016/S0304-3959(01)00372-4
27 KD Davis, GE Pope (2002) Noxious cold evokes multiple sensations with distinct time courses. Pain 98:179–185
https://doi.org/10.1016/S0304-3959(02)00043-X
28 JB Davis, J Gray, MJ Gunthorpe, JP Hatcher, PT Davey, P Overend, MH Harries, J Latcham, C Clapham, K Atkinsonet al. (2000) Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405:183–187
https://doi.org/10.1038/35012076
29 M Denda, S Fuziwara, K Inoue, S Denda, H Akamatsu, A Tomitaka, K Matsunaga (2001) Immunoreactivity of VR1 on epidermal keratinocyte of human skin. Biochem Biophys Res Commun 285:1250–1252
https://doi.org/10.1006/bbrc.2001.5299
30 M Denda, M Tsutsumi, S Denda (2010a) Topical application of TRPM8 agonists accelerates skin permeability barrier recovery and reduces epidermal proliferation induced by barrier insult: role of cold-sensitive TRP receptors in epidermal permeability barrier homoeostasis. Exp Dermatol 19:791–795
https://doi.org/10.1111/j.1600-0625.2010.01154.x
31 M Denda, M Tsutsumi, M Goto, K Ikeyama, S Denda(2010b) Topical application of TRPA1 agonists and brief cold exposure accelerate skin permeability barrier recovery. J Investig Dermatol 130:1942–1945
https://doi.org/10.1038/jid.2010.32
32 A Dhaka, AN Murray, J Mathur, TJ Earley, MJ Petrus, A Patapoutian (2007) TRPM8 is required for cold sensation in mice. Neuron 54:371–378
https://doi.org/10.1016/j.neuron.2007.02.024
33 E Di Marco, PC Marchisio, S Bondanza, AT Franzi, R Cancedda, M De Luca (1991) Growth-regulated synthesis and secretion of biologically active nerve growth factor by human keratinocytes. J Biol Chem 266:21718–21722
34 L Djouhri, SN Lawson (2004) Abeta-fiber nociceptive primary afferent neurons: a review of incidence and properties in relation to other afferent A-fiber neurons in mammals. Brain Res Rev 46:131–145
https://doi.org/10.1016/j.brainresrev.2004.07.015
35 X Dong, S Han, MJ Zylka, MI Simon, DJ Anderson (2001) A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons. Cell 106:619–632
https://doi.org/10.1016/S0092-8674(01)00483-4
36 TE Finger, V Danilova, J Barrows, DL Bartel, AJ Vigers, L Stone, G Hellekant, SC Kinnamon (2005) ATP signaling is crucial for communication from taste buds to gustatory nerves. Science 310:1495–1499
https://doi.org/10.1126/science.1118435
37 M Fischer, D Glanz, M Urbatzka, T Brzoska, C Abels (2009) Keratinocytes: a source of the transmitter L-glutamate in the epidermis. Exp Dermatol 18:1064–1066
https://doi.org/10.1111/j.1600-0625.2009.00886.x
38 SA Grando, DA Kist, M Qi, MV Dahl (1993) Human keratinocytes synthesize, secrete, and degrade acetylcholine. J Investig Dermatol 101:32–36
https://doi.org/10.1111/1523-1747.ep12358588
39 AVH Greig, C Linge, G Terenghi, DA McGrouther, G Burnstock (2003) Purinergic receptors are part of a functional signaling system for proliferation and differentiation of human epidermal keratinocytes. J Investig Dermatol 120:1007–1015
https://doi.org/10.1046/j.1523-1747.2003.12261.x
40 AD Güler, H Lee, T Iida, I Shimizu, M Tominaga, M Caterina (2002) Heat-evoked activation of the ion channel, TRPV4. J Neurosci 22:6408–6414
https://doi.org/10.1523/JNEUROSCI.22-15-06408.2002
41 H Haeberle, M Fujiwara, J Chuang, MM Medina, MV Panditrao, S Bechstedt, J Howard, EA Lumpkin (2004) Molecular profiling reveals synaptic release machinery in Merkel cells. Proc Natl Acad Sci USA 101:14503–14508
https://doi.org/10.1073/pnas.0406308101
42 SB Han, H Kim, SH Cho, JD Lee, JH Chung, HS Kim (2016) Transient receptor potential vanilloid-1 in epidermal keratinocytes may contribute to acute pain in herpes zoster. Acta Dermato Venereol 96:319–322
https://doi.org/10.2340/00015555-2247
43 M Hilliges, L Wang, O Johansson (1995) Ultrastructural evidence for nerve fibers within all vital layers of the human epidermis. J Investig Dermatol 104:134–137
https://doi.org/10.1111/1523-1747.ep12613631
44 Q Hou, T Barr, L Gee, J Vickers, J Wymer, E Borsani, L Rodella, S, Getsios T Burdo, E Eisenberget al. (2011) Keratinocyte expression of calcitonin gene-related peptide β: implications for neuropathic and inflammatory pain mechanisms. Pain 152:2036–2051
https://doi.org/10.1016/j.pain.2011.04.033
45 SM Huang, H Lee, M-K Chung, U Park, YY Yu, HB Bradshaw, PA Coulombe, JM Walker, MJ Caterina (2008) Overexpressed transient receptor potential vanilloid 3 ion channels in skin keratinocytes modulate pain sensitivity via prostaglandin E2. J Neurosci 28:13727–13737
https://doi.org/10.1523/JNEUROSCI.5741-07.2008
46 SM Huang, X Li, Y Yu, J Wang, MJ Caterina (2011) TRPV3 and TRPV4 ion channels are not major contributors to mouse heat sensation. Mol Pain 7:37
https://doi.org/10.1186/1744-8069-7-37
47 R Ikeda, M Cha, J, Ling Z Jia, D Coyle, JG Gu (2014) Merkel cells transduce and encode tactile stimuli to drive Aβ-afferent impulses. Cell 157:664–675
https://doi.org/10.1016/j.cell.2014.02.026
48 K Inoue, S Koizumi, S Fuziwara, S Denda, K Inoue, M Denda (2002) Functional vanilloid receptors in cultured normal human epidermal keratinocytes. Biochem Biophys Res Commun 291:124–129
https://doi.org/10.1006/bbrc.2002.6393
49 R-R Ji, A Chamessian, Y-Q Zhang (2016) Pain regulation by nonneuronal cells and inflammation. Science 354:572–577
https://doi.org/10.1126/science.aaf8924
50 S-E Jordt, DM Bautista, H-H Chuang, DD McKemy, PM Zygmunt, ED Högestätt, ID Meng, D Julius (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427:260–265
https://doi.org/10.1038/nature02282
51 Y Karashima, K Talavera, W Everaerts, A Janssens, KY Kwan, R Vennekens, B Nilius, T Voets (2009) TRPA1 acts as a cold sensor in vitro and in vivo. Proc Natl Acad Sci USA 106:1273–1278
https://doi.org/10.1073/pnas.0808487106
52 WR Kennedy, G Wendelschafer-Crabb (1993) The innervation of human epidermis. J Neurol Sci 115:184–190
https://doi.org/10.1016/0022-510X(93)90223-L
53 A Khodorova, MU Fareed, A Gokin, GR Strichartz, G Davar (2002) Local injection of a selective endothelin-B receptor agonist inhibits endothelin-1-induced pain-like behavior and excitation of nociceptors in a naloxone-sensitive manner. J Neurosci 22:7788–7796
https://doi.org/10.1523/JNEUROSCI.22-17-07788.2002
54 A Khodorova, B Navarro, LS Jouaville, J-E Murphy, FL Rice, JE Mazurkiewicz, D Long-Woodward, M Stoffel, GR Strichartz, R Yukhananovet al. (2003) Endothelin-B receptor activation triggers an endogenous analgesic cascade at sites of peripheral injury. Nat Med 9:1055–1061
https://doi.org/10.1038/nm885
55 S Koizumi, K Fujishita, K Inoue, Y Shigemoto-Mogami, M Tsuda, K Inoue (2004) Ca2+ waves in keratinocytes are transmitted to sensory neurons: the involvement of extracellular ATP and P2Y2 receptor activation. Biochem J 380:329–338
https://doi.org/10.1042/bj20031089
56 KY Kwan, AJ Allchorne, MA Vollrath, AP Christensen, D-S Zhang, CJ Woolf, DP Corey (2006) TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50:277–289
https://doi.org/10.1016/j.neuron.2006.03.042
57 KY Kwan, JM Glazer, DP Corey, FL Rice, CL Stucky (2009) TRPA1 modulates mechanotransduction in cutaneous sensory neurons. J Neurosci 29:4808–4819
https://doi.org/10.1523/JNEUROSCI.5380-08.2009
58 H Lee, T Iida, A Mizuno, M Suzuki, MJ Caterina (2005) Altered thermal selection behavior in mice lacking transient receptor potential vanilloid 4. J Neurosci 25:1304–1310
https://doi.org/10.1523/JNEUROSCI.4745.04.2005
59 M LeMasurier, PG Gillespie (2005) Hair-cell mechanotransduction and cochlear amplification. Neuron 48:403–415
https://doi.org/10.1016/j.neuron.2005.10.017
60 W-W Li, I Sabsovich, T-Z Guo, R Zhao, WS Kingery, JD Clark (2009) The role of enhanced cutaneous IL-1beta signaling in a rat tibia fracture model of complex regional pain syndrome. Pain 144:303–313
https://doi.org/10.1016/j.pain.2009.04.033
61 EA Lumpkin, MJ Caterina (2007) Mechanisms of sensory transduction in the skin. Nature 445:858–865
https://doi.org/10.1038/nature05662
62 LJ Macpherson, BH Geierstanger, V Viswanath, M Bandell, SR Eid, S Hwang, A Patapoutian (2005) The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin. Curr Biol CB 15:929–934
https://doi.org/10.1016/j.cub.2005.04.018
63 S Maksimovic, Y Baba, EA Lumpkin (2013) Neurotransmitters and synaptic components in the Merkel cell-neurite complex, a gentletouch receptor. Ann N Y Acad Sci 1279:13–21
https://doi.org/10.1111/nyas.12057
64 S Maksimovic, M Nakatani, Y Baba, AM Nelson, KL Marshall, SA Wellnitz, P Firozi, S-H Woo, S Ranade, A Patapoutianet al. (2014) Epidermal Merkel cells are mechanosensory cells that tune mammalian touch receptors. Nature 509:617–621
https://doi.org/10.1038/nature13250
65 JC McArthur, EA Stocks, P Hauer, DR Cornblath, JW Griffin (1998) Epidermal nerve fiber density: normative reference range and diagnostic efficiency. Arch Neurol 55:1513–1520
https://doi.org/10.1001/archneur.55.12.1513
66 DD McKemy, WM Neuhausser, D Julius (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416:52–58
https://doi.org/10.1038/nature719
67 SB McMahon, DLH Bennett, S Bevan (2008) Inflammatory mediators and modulators of pain. In: McMahon SB, Koltzenburg M(eds) Wall and and Melzack’s textbook of pain. Elsevier, Philadelphia, pp 49–72
https://doi.org/10.1016/B0-443-07287-6/50008-4
68 F Moehring, AM Cowie, AD Menzel, AD Weyer, M Grzybowski, T Arzua, AM Geurts, O Palygin, CL Stucky (2018a) Keratinocytes mediate innocuous and noxious touch via ATP-P2X4 signaling. ELife 7:e31684
https://doi.org/10.7554/eLife.31684
69 F Moehring, P Halder, RP Seal, CL Stucky (2018b) Uncovering the cells and circuits of touch in normal and pathological settings. Neuron 100:349–360
https://doi.org/10.1016/j.neuron.2018.10.019
70 C Moore, F Cevikbas, HA Pasolli, Y Chen, W Kong, C Kempkes, P Parekh, SH Lee, N-A Kontchou, I Yehet al. (2013) UVB radiation generates sunburn pain and affects skin by activating epidermal TRPV4 ion channels and triggering endothelin-1 signaling. Proc Natl Acad Sci USA 110:E3225–E3234
https://doi.org/10.1073/pnas.1312933110
71 A Moqrich, SW Hwang, TJ Earley, MJ Petrus, AN Murray, KSR Spencer, M Andahazy, GM Story, A Patapoutian (2005) Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307:1468–1472
https://doi.org/10.1126/science.1108609
72 T Moriyama, T Higashi, K Togashi, T Iida, E Segi, Y Sugimoto, T Tominaga, S Narumiya, M Tominaga (2005) Sensitization of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins. Mol Pain 1:3
https://doi.org/10.1186/1744-8069-1-3
73 KM Morrison, GR Miesegaes, EA Lumpkin, SM Maricich (2009) Mammalian Merkel cells are descended from the epidermal lineage. Dev Biol 336:76–83
https://doi.org/10.1016/j.ydbio.2009.09.032
74 WK Nahm, BD Philpot, MM Adams, EV Badiavas, LH Zhou, J Butmarc, MF Bear, V Falanga (2004) Significance of N-methyl-Daspartate (NMDA) receptor-mediated signaling in human keratinocytes. J Cell Physiol 200:309–317
https://doi.org/10.1002/jcp.20010
75 K Obata, H Katsura, T Mizushima, H Yamanaka, K Kobayashi, Y Dai, T Fukuoka, A Tokunaga, M Tominaga, K Noguchi (2005) TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. J Clin Investig 115:2393–2401
https://doi.org/10.1172/JCI25437
76 J Oberwinkler, SE Philipp (2014) TRPM3. In: Nilius B, Flockerzi V(eds) Mammalian transient receptor potential (TRP) cation channels. Springer, Berlin, pp 427–459
https://doi.org/10.1007/978-3-642-54215-2_17
77 Z Pang, T Sakamoto, V Tiwari, Y-S Kim, F Yang, X Dong, AD Güler, Y Guan, MJ Caterina (2015) Selective keratinocyte stimulation is sufficient to evoke nociception in mice. Pain 156:656–665
https://doi.org/10.1097/j.pain.0000000000000092
78 U Park, N Vastani, Y Guan, SN Raja, M Koltzenburg, MJ Caterina (2011) TRP vanilloid 2 knock-out mice are susceptible to perinatal lethality but display normal thermal and mechanical nociception. J Neurosci 31:11425–11436
https://doi.org/10.1523/JNEUROSCI.1384-09.2011
79 Y Pei, LA Barber, RC Murphy, CA Johnson, SW Kelley, LC Dy, RH Fertel, TM Nguyen, DA Williams, JB Travers (1998) Activation of the epidermal platelet-activating factor receptor results in cytokine and cyclooxygenase-2 biosynthesis. J Immunol (Baltim Md) 1950 (161):1954–1961
80 AM Peier, A Moqrich, AC Hergarden, AJ Reeve, DA Andersson, GM Story, TJ Earley, I Dragoni, P McIntyre, S Bevanet al. (2002a) A TRP channel that senses cold stimuli and menthol. Cell 108:705–715
https://doi.org/10.1016/S0092-8674(02)00652-9
81 AM Peier, AJ Reeve, DA Andersson, A Moqrich, TJ Earley, AC Hergarden, GM Story, S Colley, JB Hogenesch, P McIntyreet al. (2002b) A heat-sensitive TRP channel expressed in keratinocytes. Science 296:2046–2049
https://doi.org/10.1126/science.1073140
82 LA Pogorzala, SK Mishra, MA Hoon (2013) The cellular code for mammalian thermosensation. J Neurosci 33:5533–5541
https://doi.org/10.1523/JNEUROSCI.5788-12.2013
83 C Radtke, PM Vogt, M Devor, JD Kocsis (2010) Keratinocytes acting on injured afferents induce extreme neuronal hyperexcitability and chronic pain. Pain 148:94–102
https://doi.org/10.1016/j.pain.2009.10.014
84 D Roggenkamp, S Falkner, F Stäb, M Petersen, M Schmelz, G Neufang (2012) Atopic keratinocytes induce increased neurite outgrowth in a coculture model of porcine dorsal root ganglia neurons and human skin cells. J Investig Dermatol 132:1892–1900
https://doi.org/10.1038/jid.2012.44
85 Y Sekino, J Nakano, Y Hamaue, S Chuganji, J Sakamoto, T Yoshimura, T Origuchi, M Okita (2014) Sensory hyperinnervation and increase in NGF, TRPV1 and P2X3 expression in the epidermis following cast immobilization in rats. Eur J Pain (Lond Engl) 18:639–648
https://doi.org/10.1002/j.1532-2149.2013.00412.x
86 X Shi, L Wang, X Li, P Sahbaie, WS Kingery, JD Clark (2011) Neuropeptides contribute to peripheral nociceptive sensitization by regulating interleukin-1β production in keratinocytes. Anesth Analg 113:175–183
https://doi.org/10.1213/ANE.0b013e31821a0258
87 X Shi, L Wang, JD Clark, WS Kingery (2013) Keratinocytes express cytokines and nerve growth factor in response to neuropeptide activation of the ERK1/2 and JNK MAPK transcription pathways. Regul Pept 186:92–103
https://doi.org/10.1016/j.regpep.2013.08.001
88 GD Smith, MJ Gunthorpe, RE Kelsell, PD Hayes, P Reilly, P Facer, JE Wright, JC Jerman, J-P Walhin, L Ooiet al. (2002) TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 418:186–190
https://doi.org/10.1038/nature00894
89 WD Snider, SB McMahon (1998) Tackling pain at the source: new ideas about nociceptors. Neuron 20:629–632
https://doi.org/10.1016/S0896-6273(00)81003-X
90 AC Sondersorg, D Busse, J Kyereme, M Rothermel, G Neufang, G Gisselmann, H Hatt, H Conrad (2014) Chemosensory information processing between keratinocytes and trigeminal neurons. J Biol Chem 289:17529–17540
https://doi.org/10.1074/jbc.M113.499699
91 MD Southall, T Li, LS Gharibova, Y Pei, GD Nicol, JB Travers (2003) Activation of epidermal vanilloid receptor-1 induces release of proinflammatory mediators in human keratinocytes. J Pharmacol Exp Ther 304:217–222
https://doi.org/10.1124/jpet.102.040675
92 GM Story, AM Peier, AJ Reeve, SR Eid, J Mosbacher, TR Hricik, TJ Earley, AC Hergarden, DA Andersson, SW Hwanget al. (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112:819–829
https://doi.org/10.1016/S0092-8674(03)00158-2
93 M Suzuki, Y Watanabe, Y Oyama, A Mizuno, E Kusano, A Hirao, S Ookawara (2003) Localization of mechanosensitive channel TRPV4 in mouse skin. Neurosci Lett 353:189–192
https://doi.org/10.1016/j.neulet.2003.09.041
94 M Talagas, N Lebonvallet, L Misery (2018a) Intraepidermal nerve fibres are not the exclusive tranducers of nociception. J Neurosci Methods 306:92–93
https://doi.org/10.1016/j.jneumeth.2018.05.013
95 M Talagas, N Lebonvallet, R Leschiera, P Marcorelles, L Misery (2018b) What about physical contacts between epidermal keratinocytes and sensory neurons? Exp Dermatol 27:9–13
https://doi.org/10.1111/exd.13411
96 H Todaka, J Taniguchi, J Satoh, A Mizuno, M Suzuki (2004) Warm temperature-sensitive transient receptor potential vanilloid 4 (TRPV4) plays an essential role in thermal hyperalgesia. J Biol Chem 279:35133–35138
https://doi.org/10.1074/jbc.M406260200
97 M Tominaga, MJ Caterina, AB Malmberg, TA Rosen, H Gilbert, K Skinner, BE Raumann, AI Basbaum, D Julius (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21:531–543
https://doi.org/10.1016/S0896-6273(00)80564-4
98 M Tominaga, M Wada, M Masu (2001) Potentiation of capsaicin receptor activity by metabotropic ATP receptors as a possible mechanism for ATP-evoked pain and hyperalgesia. Proc Natl Acad Sci USA 98:6951–6956
https://doi.org/10.1073/pnas.111025298
99 R Tsuboi, C Sato, Y Oshita, H Hama, T Sakurai, K Goto, H Ogawa (1995) Ultraviolet B irradiation increases endothelin-1 and endothelin receptor expression in cultured human keratinocytes. FEBS Lett 371:188–190
https://doi.org/10.1016/0014-5793(95)00912-S
100 M Tsutsumi, K Inoue, S Denda, K Ikeyama, M Goto, M Denda (2009) Mechanical-stimulation-evoked calcium waves in proliferating and differentiated human keratinocytes. Cell Tissue Res 338:99–106
https://doi.org/10.1007/s00441-009-0848-0
101 M Tsutsumi, S Denda, K Ikeyama, M Goto, M Denda (2010) Exposure to low temperature induces elevation of intracellular calcium in cultured human keratinocytes. J Investig Dermatol 130:1945–1948
https://doi.org/10.1038/jid.2010.33
102 A Van Keymeulen, G Mascre, KK Youseff, I Harel, C Michaux, N De Geest, C Szpalski, Y Achouri, W Bloch, BA Hassanet al. (2009) Epidermal progenitors give rise to Merkel cells during embryonic development and adult homeostasis. J Cell Biol 187:91–100
https://doi.org/10.1083/jcb.200907080
103 I Vandewauw, K De Clercq, M Mulier, K Held, S Pinto, N Van Ranst, A Segal, T Voet, R Vennekens, K Zimmermannet al. (2018) A TRP channel trio mediates acute noxious heat sensing. Nature 555:662–666
https://doi.org/10.1038/nature26137
104 J Vriens, G Owsianik, T Hofmann, SE Philipp, J Stab, X Chen, M Benoit, F Xue, A Janssens, S Kerselaerset al. (2011) TRPM3 is a nociceptor channel involved in the detection of noxious heat. Neuron 70:482–494
https://doi.org/10.1016/j.neuron.2011.02.051
105 L Wang, M Hilliges, T Jernberg, D Wiegleb-Edström, O Johansson (1990) Protein gene product 9.5-immunoreactive nerve fibres and cells in human skin. Cell Tissue Res 261:25–33
https://doi.org/10.1007/BF00329435
106 SG Waxman, TR Cummins, SD Dib-Hajj, JA Black (2000) Voltagegated sodium channels and the molecular pathogenesis of pain: a review. J Rehabil Res Dev 37:517–528
107 M Wintzen, M Yaar, JP Burbach, BA Gilchrest (1996) Proopiomelanocortin gene product regulation in keratinocytes. J Investig Dermatol 106:673–678
https://doi.org/10.1111/1523-1747.ep12345496
108 CJ Woodbury, M Zwick, S Wang, JJ Lawson, MJ Caterina, M Koltzenburg, KM Albers, HR Koerber, BM Davis (2004) Nociceptors lacking TRPV1 and TRPV2 have normal heat responses. J Neurosci 24:6410–6415
https://doi.org/10.1523/JNEUROSCI.1421-04.2004
109 CJ Woolf, Q Ma (2007) Nociceptors–noxious stimulus detectors. Neuron 55:353–364
https://doi.org/10.1016/j.neuron.2007.07.016
110 H Xu, IS Ramsey, SA Kotecha, MM Moran, JA Chong, D Lawson, P Ge, J Lilly, I Silos-Santiago, Y Xieet al. (2002) TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 418:181–186
https://doi.org/10.1038/nature00882
111 SB Zanello, DM Jackson, MF Holick (1999) An immunocytochemical approach to the study of beta-endorphin production in human keratinocytes using confocal microscopy. Ann N Y Acad Sci 885:85–99
https://doi.org/10.1111/j.1749-6632.1999.tb08667.x
112 P Zhao, TP Barr, Q Hou, SD Dib-Hajj, JA Black, PJ Albrecht, K Petersen, E Eisenberg, JP Wymer, FL Riceet al. (2008) Voltage-gated sodium channel expression in rat and human epidermal keratinocytes: evidence for a role in pain. Pain 139:90–105
https://doi.org/10.1016/j.pain.2008.03.016
113 K Zimmermann, A Leffler, MMJ Fischer, K Messlinger, C Nau, PW Reeh (2005) The TRPV1/2/3 activator 2-aminoethoxydiphenyl borate sensitizes native nociceptive neurons to heat in wildtype but not TRPV1 deficient mice. Neuroscience 135:1277–1284
https://doi.org/10.1016/j.neuroscience.2005.07.018
114 MJ Zylka, FL Rice, DJ Anderson (2005) Topographically distinct epidermal nociceptive circuits revealed by axonal tracers targeted to Mrgprd. Neuron 45:17–25
https://doi.org/10.1016/j.neuron.2004.12.015
[1] Daisuke Aki, Qian Li, Hui Li, Yun-Cai Liu, Jee Ho Lee. Immune regulation by protein ubiquitination: roles of the E3 ligases VHL and Itch[J]. Protein Cell, 2019, 10(6): 395-404.
[2] Ping Wang, Zunpeng Liu, Xiaoqian Zhang, Jingyi Li, Liang Sun, Zhenyu Ju, Jian Li, Piu Chan, Guang-Hui Liu, Weiqi Zhang, Moshi Song, Jing Qu. CRISPR/Cas9-mediated gene knockout reveals a guardian role of NF-κB/RelA in maintaining the homeostasis of human vascular cells[J]. Protein Cell, 2018, 9(11): 945-965.
[3] Olivier Gouin, Killian L’Herondelle, Nicolas Lebonvallet, Christelle Le Gall-Ianotto, Mehdi Sakka, Virginie Buhé, Emmanuelle Plée-Gautier, Jean-Luc Carré, Luc Lefeuvre, Laurent Misery, Raphaele Le Garrec. TRPV1 and TRPA1 in cutaneous neurogenic and chronic inflammation: pro-inflammatory response induced by their activation and their sensitization[J]. Protein Cell, 2017, 8(9): 644-661.
[4] Jie Yang, Luming Zhao, Ming Xu, Na Xiong. Establishment and function of tissue-resident innate lymphoid cells in the skin[J]. Protein Cell, 2017, 8(7): 489-500.
[5] Weiyun Huang, Minhao Liu, S. Frank Yan, Nieng Yan. Structure-based assessment of diseaserelated mutations in human voltage-gated sodium channels[J]. Protein Cell, 2017, 8(6): 401-438.
[6] Fan Yang,Jie Zheng. Understand spiciness: mechanism of TRPV1 channel activation by capsaicin[J]. Protein Cell, 2017, 8(3): 169-177.
[7] Rashad Alkasir,Jing Li,Xudong Li,Miao Jin,Baoli Zhu. Human gut microbiota: the links with dementia development[J]. Protein Cell, 2017, 8(2): 90-102.
[8] Sensen Zhang, Ningning Li, Wenwen Zeng, Ning Gao, Maojun Yang. Cryo-EM structures of the mammalian endo-lysosomal TRPML1 channel elucidate the combined regulation mechanism[J]. Protein Cell, 2017, 8(11): 834-847.
[9] Zilong Zhao, Yuan Zhou, Ye Tian, Min Li, Jing-fei Dong, Jianning Zhang. Cellular microparticles and pathophysiology of traumatic brain injury[J]. Protein Cell, 2017, 8(11): 801-810.
[10] Ruiqing Yan,Zhihua Liu. LRRK2 enhances Nod1/2-mediated inflammatory cytokine production by promoting Rip2 phosphorylation[J]. Protein Cell, 2017, 8(1): 55-66.
[11] Min Xu,Xuan Yang,Xiu-An Yang,Lei Zhou,Tie-Zheng Liu,Zusen Fan,Tao Jiang. Structural insights into the regulatory mechanism of the Pseudomonas aeruginosa YfiBNR system[J]. Protein Cell, 2016, 7(6): 403-416.
[12] Zhan-Qi Cao,Xiu-Li Guo. The role of galectin-4 in physiology and diseases[J]. Protein Cell, 2016, 7(5): 314-324.
[13] Wenbin Li,Xinghua Zhang,Yongkang Chen,Yibin Xie,Jiancheng Liu,Qiang Feng,Yi Wang,Wei Yuan,Jie Ma. G-CSF is a key modulator of MDSC and could be a potential therapeutic target in colitisassociated colorectal cancers[J]. Protein Cell, 2016, 7(2): 130-140.
[14] Yingli Shang,Sinead Smith,Xiaoyu Hu. Role of Notch signaling in regulating innate immunity and inflammation in health and disease[J]. Protein Cell, 2016, 07(03): 159-174.
[15] Chunji Quan,Moon Kyun Cho,Yuan Shao,Laurel E. Mianecki,Eric Liao,Daniel Perry,Taihao Quan. Dermal fibroblast expression of stromal cellderived factor-1 (SDF-1) promotes epidermal keratinocyte proliferation in normal and diseased skin[J]. Protein Cell, 2015, 06(12): 890-903.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed