Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2014, Vol. 1 Issue (1) : 21-27    https://doi.org/10.15302/J-FASE-2014002
REVIEW
Recent advances in fruit crop genomics
Qiang XU, Chaoyang LIU, Manosh Kumar BISWAS, Zhiyong PAN, Xiuxin DENG()
Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
 Download: PDF(303 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In recent years, dramatic progress has been made in the genomics of fruit crops. The publication of a dozen fruit crop genomes represents a milestone for both functional genomics and breeding programs in fruit crops. Rapid advances in high-throughput sequencing technology have revolutionized the manner and scale of genomics in fruit crops. Research on fruit crops is encompassing a wide range of biological questions which are unique and cannot be addressed in a model plant such as Arabidopsis. This review summarizes recent achievements of research on the genome, transcriptome, proteome, miRNAs and epigenome of fruit crops.

Keywords fruit crops      fruit biology      gene function      genomics     
Corresponding Author(s): Xiuxin DENG   
Issue Date: 22 May 2014
 Cite this article:   
Qiang XU,Chaoyang LIU,Manosh Kumar BISWAS, et al. Recent advances in fruit crop genomics[J]. Front. Agr. Sci. Eng. , 2014, 1(1): 21-27.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2014002
https://academic.hep.com.cn/fase/EN/Y2014/V1/I1/21
Fig.1  Genomics studies in fruit crops and their potential roles for interested trait dissection, genetic modification and breeding
Species Common name Genome size/Mb Gene number TE1 percentage Reference
Carica papaya Papaya 372 24746 52.0 [2]
Citrus sinensis Sweet orange 367 29655 20.5 [3]
Fragaria vesca Strawberry 240 34809 22.0 [4]
Malus domestica Apple 742 57386 42.4 [5]
Musa acuminata Banana 523 36542 43.7 [6]
Phoenix dactylifera Date palm 658 25059 [7]
Prunus persica Peach 265 27852 29.6 [8]
Pyrus bretschneideri Pear 527 42812 53.1 [9]
Actinidia chinensis Kiwifruit 758 39040 36.0 [10]
Vitis vinifera Grapevine 490 33514 41.4 [11]
Tab.1  Published de novo genomes of fruit crops
1 R K Varshney, S N Nayak, G D May, S A Jackson. Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends in Biotechnology, 2009, 27(9): 522–530
https://doi.org/10.1016/j.tibtech.2009.05.006
2 R Ming, S B Hou, Y Feng, Q Y Yu, A Dionne-Laporte, J H Saw, P Senin, W Wang, B V Ly, K L T Lewis, S L Salzberg, L Feng, M R Jones, R L Skelton, J E Murray, C X Chen, W B Qian, J G Shen, P Du, M Eustice, E Tong, H B Tang, E Lyons, R E Paull, T P Michael, K Wall, D W Rice, H Albert, M L Wang, Y J Zhu, M Schatz, N Nagarajan, R A Acob, P Z Guan, A Blas, C M Wai, C M Ackerman, Y Ren, C Liu, J M Wang, J P Wang, J K Na, E V Shakirov, B Haas, J Thimmapuram, D Nelson, X Y Wang, J E Bowers, A R Gschwend, A L Delcher, R Singh, J Y Suzuki, S Tripathi, K Neupane, H R Wei, B Irikura, M Paidi, N Jiang, W L Zhang, G Presting, A Windsor, R Navajas-Perez, M J Torres, F A Feltus, B Porter, Y J Li, A M Burroughs, M C Luo, L Liu, D A Christopher, S M Mount, P H Moore, T Sugimura, J M Jiang, M A Schuler, V Friedman, T Mitchell-Olds, D E Shippen, C W dePamphilis, J D Palmer, M Freeling, A H Paterson, D Gonsalves, L Wang, M Alam. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature, 2008, 452(7190): 991–996
https://doi.org/10.1038/nature06856
3 Q Xu, L L Chen, X Ruan, D Chen, A Zhu, C Chen, D Bertrand, W B Jiao, B H Hao, M P Lyon, J Chen, S Gao, F Xing, H Lan, J W Chang, X Ge, Y Lei, Q Hu, Y Miao, L Wang, S Xiao, M K Biswas, W Zeng, F Guo, H Cao, X Yang, X W Xu, Y J Cheng, J Xu, J H Liu, O J Luo, Z Tang, W W Guo, H Kuang, H Y Zhang, M L Roose, N Nagarajan, X X Deng, Y Ruan. The draft genome of sweet orange (Citrus sinensis). Nature Genetics, 2013, 45(1): 59–66
https://doi.org/10.1038/ng.2472
4 V Shulaev, D J Sargent, R N Crowhurst, T C Mockler, O Folkerts, A L Delcher, P Jaiswal, K Mockaitis, A Liston, S P Mane, P Burns, T M Davis, J P Slovin, N Bassil, R P Hellens, C Evans, T Harkins, C Kodira, B Desany, O R Crasta, R V Jensen, A C Allan, T P Michael, J C Setubal, J M Celton, D J G Rees, K P Williams, S H Holt, J J R Rojas, M Chatterjee, B Liu, H Silva, L Meisel, A Adato, S A Filichkin, M Troggio, R Viola, T L Ashman, H Wang, P Dharmawardhana, J Elser, R Raja, H D Priest, D W Bryant, S E Fox, S A Givan, L J Wilhelm, S Naithani, A Christoffels, D Y Salama, J Carter, E L Girona, A Zdepski, W Q Wang, R A Kerstetter, W Schwab, S S Korban, J Davik, A Monfort, B Denoyes-Rothan, P Arus, R Mittler, B Flinn, A Aharoni, J L Bennetzen, S L Salzberg, A W Dickerman, R Velasco, M Borodovsky, R E Veilleux, K M Folta. The genome of woodland strawberry (Fragaria vesca). Nature Genetics, 2011, 43(2): 109–116
https://doi.org/10.1038/ng.740
5 R Velasco, A Zharkikh, J Affourtit, A Dhingra, A Cestaro, A Kalyanaraman, P Fontana, S K Bhatnagar, M Troggio, D Pruss, S Salvi, M Pindo, P Baldi, S Castelletti, M Cavaiuolo, G Coppola, F Costa, V Cova, A Dal Ri, V Goremykin, M Komjanc, S Longhi, P Magnago, G Malacarne, M Malnoy, D Micheletti, M Moretto, M Perazzolli, A Si-Ammour, S Vezzulli, E Zini, G Eldredge, L M Fitzgerald, N Gutin, J Lanchbury, T Macalma, J T Mitchell, J Reid, B Wardell, C Kodira, Z Chen, B Desany, F Niazi, M Palmer, T Koepke, D Jiwan, S Schaeffer, V Krishnan, C Wu, V T Chu, S T King, J Vick, Q Tao, A Mraz, A Stormo, K Stormo, R Bogden, D Ederle, A Stella, A Vecchietti, M M Kater, S Masiero, P Lasserre, Y Lespinasse, A C Allan, V Bus, D Chagne, R N Crowhurst, A P Gleave, E Lavezzo, J A Fawcett, S Proost, P Rouze, L Sterck, S Toppo, B Lazzari, R P Hellens, C E Durel, A Gutin, R E Bumgarner, S E Gardiner, M Skolnick, M Egholm, Y Van de Peer, F Salamini, R Viola. The genome of the domesticated apple (Malus × domestica Borkh.). Nature Genetics, 2010, 42(10): 833–839
https://doi.org/10.1038/ng.654
6 A D'Hont, F Denoeud, J M Aury, F C Baurens, F Carreel, O Garsmeur, B Noel, S Bocs, G Droc, M Rouard, C Da Silva, K Jabbari, C Cardi, J Poulain, M Souquet, K Labadie, C Jourda, J Lengelle, M Rodier-Goud, A Alberti, M Bernard, M Correa, S Ayyampalayam, M R McKain, J Leebens-Mack, D Burgess, M Freeling, A M D Mbeguie, M Chabannes, T Wicker, O Panaud, J Barbosa, E Hribova, P Heslop-Harrison, R Habas, R Rivallan, P Francois, C Poiron, A Kilian, D Burthia, C Jenny, F Bakry, S Brown, V Guignon, G Kema, M Dita, C Waalwijk, S Joseph, A Dievart, O Jaillon, J Leclercq, X Argout, E Lyons, A Almeida, M Jeridi, J Dolezel, N Roux, A M Risterucci, J Weissenbach, M Ruiz, J C Glaszmann, F Quetier, N Yahiaoui, P Wincker. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature, 2012, 488(7410): 213–217
https://doi.org/10.1038/nature11241
7 E K Al-Dous, B George, M E Al-Mahmoud, M Y Al-Jaber, H Wang, Y M Salameh, E K Al-Azwani, S Chaluvadi, A C Pontaroli, J Debarry, V Arondel, J Ohlrogge, I J Saie, K M Suliman-Elmeer, J L Bennetzen, R R Kruegger, J A Malek. De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera). Nature Biotechnology, 2011, 29(6): 521–527
https://doi.org/10.1038/nbt.1860
8 I Verde, A G Abbott, S Scalabrin, S Jung, S Shu, F Marroni, T Zhebentyayeva, M T Dettori, J Grimwood, F Cattonaro, A Zuccolo, L Rossini, J Jenkins, E Vendramin, L A Meisel, V Decroocq, B Sosinski, S Prochnik, T Mitros, A Policriti, G Cipriani, L Dondini, S Ficklin, D M Goodstein, P Xuan, C D Fabbro, V Aramini, D Copetti, S Gonzalez, D S Horner, R Falchi, S Lucas, E Mica, J Maldonado, B Lazzari, D Bielenberg, R Pirona, M Miculan, A Barakat, R Testolin, A Stella, S Tartarini, P Tonutti, P Arus, A Orellana, C Wells, D Main, G Vizzotto, H Silva, F Salamini, J Schmutz, M Morgante, D S Rokhsar. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature Genetics, 2013, 45(5): 487–494
https://doi.org/10.1038/ng.2586
9 J Wu, Z Wang, Z Shi, S Zhang, R Ming, S Zhu, M A Khan, S Tao, S S Korban, H Wang, N J Chen, T Nishio, X Xu, L Cong, K Qi, X Huang, Y Wang, X Zhao, C Deng, C Gou, W Zhou, H Yin, G Qin, Y Sha, Y Tao, H Chen, Y Yang, Y Song, D Zhan, J Wang, L Li, M Dai, C Gu, D Shi, X Wang, H Zhang, L Zeng, D Zheng, C Wang, M Chen, G Wang, L Xie, V Sovero, S Sha, W Huang, M Zhang, J Sun, L Xu, Y Li, X Liu, Q Li, J Shen, R E Paull, J L Bennetzen, J Wang, S L Zhang. The genome of the pear (Pyrus bretschneideri Rehd.). Genome Research, 2013, 23(2): 396–408
https://doi.org/10.1101/gr.144311.112
10 S Huang, J Ding, D Deng, W Tang, H Sun, D Liu, L Zhang, X Niu, X Zhang, M Meng, J Yu, J Liu, Y Han, W Shi, D Zhang, S Cao, Z Wei, Y Cui, Y Xia, H Zeng, K Bao, L Lin, Y Min, H Zhang, M Miao, X Tang, Y Zhu, Y Sui, G Li, H Sun, J Yue, J Sun, F Liu, L Zhou, L Lei, X Zheng, M Liu, L Huang, J Song, C Xu, J Li, K Ye, S Zhong, B R Lu, G He, F Xiao, H L Wang, H Zheng, Z Fei, Y Liu. Draft genome of the kiwifruit Actinidia chinensis. Nature Communications, 2013, 4: 2640
https://doi.org/10.1038/ncomms3640
11 O Jaillon, J M Aury, B Noel, A Policriti, C Clepet, A Casagrande, N Choisne, S Aubourg, N Vitulo, C Jubin, A Vezzi, F Legeai, P Hugueney, C Dasilva, D Horner, E Mica, D Jublot, J Poulain, C Bruyere, A Billault, B Segurens, M Gouyvenoux, E Ugarte, F Cattonaro, V Anthouard, V Vico, C Del Fabbro, M Alaux, G Di Gaspero, V Dumas, N Felice, S Paillard, I Juman, M Moroldo, S Scalabrin, A Canaguier, I Le Clainche, G Malacrida, E Durand, G Pesole, V Laucou, P Chatelet, D Merdinoglu, M Delledonne, M Pezzotti, A Lecharny, C Scarpelli, F Artiguenave, M E Pe, G Valle, M Morgante, M Caboche, A F Adam-Blondon, J Weissenbach, F Quetier, P Wincker. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 2007, 449(7161): 463–467
https://doi.org/10.1038/nature06148
12 C Chen, K D Bowman, Y A Choi, P M Dang, M N Rao, S Huang, J R Soneji, T G McCollum, Jr F G Gmitter. EST-SSR genetic maps for Citrus sinensis and Poncirus trifoliata. Tree Genetics & Genomes, 2008, 4(1): 1–10
https://doi.org/10.1007/s11295-007-0083-3
13 P Ollitrault, J Terol, C Chen, C T Federici, S Lotfy, I Hippolyte, F Ollitrault, A B rard, A Chauveau, J Cuenca, G Costantino, Y Kacar, L Mu, A Garcia-Lor, Y Froelicher, P Aleza, A Bolan, C Billot, L Navarro, F Luro, M Roose, F Gmitter, M Talon, D Brunel. A reference genetic map of C. clementina hort. ex Tan.; citrus evolution inferences from comparative mapping. BMC Genomics, 2012, 13(1): 593
https://doi.org/10.1186/1471-2164-13-593
14 .da L C Maia, D A Palmieri, V Q Souza, M M Kopp, F I F Carvalho, A Costa de Oliveira. SSR Locator: Tool for simple sequence repeat discovery integrated with primer design and PCR simulation. International Journal of Plant Genomics, 2008: 412696
15 M Christoph. Phobos – A tandem repeat search tool for complete genomes. Available at RUHR-Univertsity Bochum website on March 26, 2014
16 M K Biswas, L Chai, C Mayer, Q Xu, W Guo, X Deng. Exploiting BAC-end sequences for the mining, characterization and utility of new short sequences repeat (SSR) markers in Citrus. Molecular Biology Reports, 2012, 39(5): 5373–5386
https://doi.org/10.1007/s11033-011-1338-5
17 Y Zorrilla-Fontanesi, A Cabeza, A M Torres, M A Botella, V Valpuesta, A Monfort, J F S nchez-Sevilla, I Amaya. Development and bin mapping of strawberry genic-SSRs in diploid Fragaria and their transferability across the Rosoideae subfamily. Molecular Breeding, 2011, 27(2): 137–156
https://doi.org/10.1007/s11032-010-9417-1
18 S Myles, A R Boyko, C L Owens, P J Brown, F Grassi, M K Aradhya, B Prins, A Reynolds, J M Chia, D Ware, C D Bustamante, E S Buckler. Genetic structure and domestication history of the grape. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(9): 3530–3535
https://doi.org/10.1073/pnas.1009363108
19 R Ahmad, D E Parfitt, J Fass, E Ogundiwin, A Dhingra, T M Gradziel, D Lin, N A Joshi, P J Martinez-Garcia, C H Crisosto. Whole genome sequencing of peach (Prunus persica L.) for SNP identification and selection. BMC Genomics, 2011, 12(1): 569
https://doi.org/10.1186/1471-2164-12-569
20 S Kumar, D J Garrick, M C Bink, C Whitworth, D Chagn , R K Volz. Novel genomic approaches unravel genetic architecture of complex traits in apple. BMC Genomics, 2013, 14(1): 393
https://doi.org/10.1186/1471-2164-14-393
21 C Dardick, A Callahan, R Horn, K B Ruiz, T Zhebentyayeva, C Hollender, M Whitaker, A Abbott, R Scorza. PpeTAC1 promotes the horizontal growth of branches in peach trees and is a member of a functionally conserved gene family found in diverse plants species. Plant Journal, 2013, 75(4): 618–630
https://doi.org/10.1111/tpj.12234
22 Q Xu, K Yu, A Zhu, J Ye, Q Liu, J Zhang, X Deng. Comparative transcripts profiling reveals new insight into molecular processes regulating lycopene accumulation in a sweet orange (Citrus sinensis) red-flesh mutant. BMC Genomics, 2009, 10(1): 540
https://doi.org/10.1186/1471-2164-10-540
23 S Zenoni, A Ferrarini, E Giacomelli, L Xumerle, M Fasoli, G Malerba, D Bellin, M Pezzotti, M Delledonne. Characterization of transcriptional complexity during berry development in Vitis vinifera using RNA-Seq. Plant Physiology, 2010, 152(4): 1787–1795
https://doi.org/10.1104/pp.109.149716
24 F Martinelli, S L Uratsu, U Albrecht, R L Reagan, M L Phu, M Britton, V Buffalo, J Fass, E Leicht, W Zhao, D Lin, R D’Souza, C E Davis, K D Bowman, A M Dandekar. Transcriptome profiling of citrus fruit response to huanglongbing disease. PLoS ONE, 2012, 7(5): e38039
https://doi.org/10.1371/journal.pone.0038039
25 K Yu, Q Xu, X Da, F Guo, Y Ding, X Deng. Transcriptome changes during fruit development and ripening of sweet orange (Citrus sinensis). BMC Genomics, 2012, 13(1): 10
https://doi.org/10.1186/1471-2164-13-10
26 C Krost, R Petersen, S Lokan, B Brauksiepe, P Braun, E R Schmidt. Evaluation of the hormonal state of columnar apple trees (Malus × domestica) based on high throughput gene expression studies. Plant Molecular Biology, 2013, 81(3): 211–220
https://doi.org/10.1007/s11103-012-9992-0
27 E Katz, M Fon, Y Lee, B Phinney, A Sadka, E Blumwald. The citrus fruit proteome: insights into citrus fruit metabolism. Planta, 2007, 226(4): 989–1005
https://doi.org/10.1007/s00425-007-0545-8
28 Z Pan, Y Zeng, J An, J Ye, Q Xu, X Deng. An integrative analysis of transcriptome and proteome provides new insights into carotenoid biosynthesis and regulation in sweet orange fruits. Journal of Proteomics, 2012, 75(9): 2670–2684
https://doi.org/10.1016/j.jprot.2012.03.016
29 V Muccilli, C Licciardello, D Fontanini, M P Russo, V Cunsolo, R Saletti, G Reforgiato Recupero, S Foti. Proteome analysis of Citrus sinensis L.(Osbeck) flesh at ripening time. Journal of Proteomics, 2009, 73(1): 134–152
https://doi.org/10.1016/j.jprot.2009.09.005
30 M J Mart nez-Esteso, S Sell s-Marchart, D Lijavetzky, M A Pedre o, R Bru-Mart nez. A DIGE-based quantitative proteomic analysis of grape berry flesh development and ripening reveals key events in sugar and organic acid metabolism. Journal of Experimental Botany, 2011, 62(8): 2521–2569
https://doi.org/10.1093/jxb/erq434
31 Z Yun, S Jin, Y Ding, Z Wang, H Gao, Z Pan, J Xu, Y Cheng, X Deng. Comparative transcriptomics and proteomics analysis of citrus fruit, to improve understanding of the effect of low temperature on maintaining fruit quality during lengthy post-harvest storage. Journal of Experimental Botany, 2012, 63(8): 2873–2893
https://doi.org/10.1093/jxb/err390
32 B S Garavaglia, L Thomas, T Zimaro, N Gottig, L D Daurelio, B Ndimba, E G Orellano, J Ottado, C Gehring. A plant natriuretic peptide-like molecule of the pathogen Xanthomonas axonopodis pv. citri causes rapid changes in the proteome of its citrus host. BMC Plant Biology, 2010, 10(1): 51
https://doi.org/10.1186/1471-2229-10-51
33 S P Rodrigues, J A Ventura, C Aguilar, E S Nakayasu, H Choi, T J Sobreira, L L Nohara, L S Wermelinger, I C Almeida, R B Zingali, P M Fernandes. Label-free quantitative proteomics reveals differentially regulated proteins in the latex of sticky diseased Carica papaya L. plants. Journal of Proteomics, 2012, 75(11): 3191–3198
https://doi.org/10.1016/j.jprot.2012.03.021
34 G Tanou, P Filippou, M Belghazi, D Job, G Diamantidis, V Fotopoulos, A Molassiotis. Oxidative and nitrosative-based signaling and associated post-translational modifications orchestrate the acclimation of citrus plants to salinity stress. Plant Journal, 2012, 72(4): 585–599
https://doi.org/10.1111/j.1365-313X.2012.05100.x
35 G Chuck, D O’Connor. Small RNAs going the distance during plant development. Current Opinion in Plant Biology, 2010, 13(1): 40–45
https://doi.org/10.1016/j.pbi.2009.08.006
36 A Carra, E Mica, G Gambino, M Pindo, C Moser, M E Pè, A Schubert. Cloning and characterization of small non-coding RNAs from grape. Plant Journal, 2009, 59(5): 750–763
https://doi.org/10.1111/j.1365-313X.2009.03906.x
37 C Song, J Fang, X Li, H Liu, C T Chao. Identification and characterization of 27 conserved microRNAs in citrus. Planta, 2009, 230(4): 671–685
https://doi.org/10.1007/s00425-009-0971-x
38 Q Xu, Y Liu, A Zhu, X Wu, J Ye, K Yu, W Guo, X Deng. Discovery and comparative profiling of microRNAs in a sweet orange red-flesh mutant and its wild type. BMC Genomics, 2010, 11(1): 246
https://doi.org/10.1186/1471-2164-11-246
39 V Pantaleo, G Szittya, S Moxon, L Miozzi, V Moulton, T Dalmay, J Burgyan. Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant Journal, 2010, 62(6): 960–976
40 R Xia, H Zhu, Y An, E P Beers, Z Liu. Apple miRNAs and tasiRNAs with novel regulatory networks. Genome Biology, 2012, 13(6): R47
https://doi.org/10.1186/gb-2012-13-6-r47
41 R Schwab, S Ossowski, M Riester, N Warthmann, D Weigel. Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell, 2006, 18(5): 1121–1133
https://doi.org/10.1105/tpc.105.039834
42 WMD3-Web app for the automated design of artificial microRNAs. Available at WeigelWorld website on March 26, 2014
43 N S Jelly, P Schellenbaum, B Walter, P Maillot. Transient expression of artificial microRNAs targeting Grapevine fanleaf virus and evidence for RNA silencing in grapevine somatic embryos. Transgenic Research, 2012, 21(6): 1319–1327
https://doi.org/10.1007/s11248-012-9611-5
44 MiRBase: the microRNA database. Available at Mirbase website on March 26, 2014
45 I R Henderson, S E Jacobsen. Epigenetic inheritance in plants. Nature, 2007, 447(7143): 418–424
https://doi.org/10.1038/nature05917
46 A Kaity, S Ashmore, R A Drew, M Dulloo. Assessment of genetic and epigenetic changes following cryopreservation in papaya. Plant Cell Reports, 2008, 27(9): 1529–1539
https://doi.org/10.1007/s00299-008-0558-1
47 R Hasb n, L Valledor, M Berdasco, E Santamar a, M Ca al, R Rodr guez, D Rios, M S nchez. In vitro proliferation and genome DNA methylation in adult chestnuts. Acta Horticulturae, 2005, 693: 333
48 I A Hafiz, N A Abbasi, T Ahmad, A Hussain. DNA methylation profiles differ between juvenile and adult phase leaves of crab apple (Malus micromalus) seedling tree. Pakistan Journal of Botany, 2008, 40(3): 1025–1032
49 A Telias, K Lin-Wang, D E Stevenson, J M Cooney, R P Hellens, A C Allan, E E Hoover, J M Bradeen. Apple skin patterning is associated with differential expression of MYB10. BMC Plant Biology, 2011, 11(1): 93
https://doi.org/10.1186/1471-2229-11-93
50 K V Kiselev, A P Tyunin, Y N Zhuravlev. Involvement of DNA methylation in the regulation of STS10 gene expression in Vitis amurensis. Planta, 2013, 237(4): 933–941
https://doi.org/10.1007/s00425-012-1806-8
51 Z Wang, D Meng, A Wang, T Li, S Jiang, P Cong, T Li. The methylation of the PcMYB10 promoter is associated with green-skinned sport in Max Red Bartlett pear. Plant Physiology, 2013, 162(2): 885–896
https://doi.org/10.1104/pp.113.214700
52 B Vogelstein, N Papadopoulos, V E Velculescu, S Zhou, L A Diaz, K W Kinzler. Cancer genome landscapes. Science, 2013, 339(6127): 1546–1558
https://doi.org/10.1126/science.1235122
53 M Löwer, B Y Renard, J de Graaf, M Wagner, C Paret, C Kneip, ö Türeci, M Diken, C Britten, S Kreiter, M Koslowski, J C Castle, U Sahin. Confidence-based somatic mutation evaluation and prioritization. PLoS Computational Biology, 2012, 8(9): e1002714
https://doi.org/10.1371/journal.pcbi.1002714
[1] Wenteng XU, Songlin CHEN. Genomics and genetic breeding in aquatic animals: progress and prospects[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 305-318.
[2] Shengkui ZHANG,Ping’an MA,Haiyan WANG,Cheng LU,Xin CHEN,Zhiqiang XIA,Meiling ZOU,Xinchen ZHOU,Wenquan WANG. Genomics approaches to unlock the high yield potential of cassava, a tropical model plant[J]. Front. Agr. Sci. Eng. , 2014, 1(4): 259-266.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed