| 
					
						|  |  
    					|  |  
    					| Recent advances in fruit crop genomics |  
						| Qiang XU, Chaoyang LIU, Manosh Kumar BISWAS, Zhiyong PAN, Xiuxin DENG(  ) |  
						| Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China |  
						|  |  
					
						| 
								
									|  
          
          
            
              
				
								                
													
													    |  |  
														| 
													
													    | Abstract In recent years, dramatic progress has been made in the genomics of fruit crops. The publication of a dozen fruit crop genomes represents a milestone for both functional genomics and breeding programs in fruit crops. Rapid advances in high-throughput sequencing technology have revolutionized the manner and scale of genomics in fruit crops. Research on fruit crops is encompassing a wide range of biological questions which are unique and cannot be addressed in a model plant such as Arabidopsis. This review summarizes recent achievements of research on the genome, transcriptome, proteome, miRNAs and epigenome of fruit crops. |  
															| Keywords 
																																																				fruit crops  
																		  																																				fruit biology  
																		  																																				gene function  
																		  																																				genomics |  
															| Corresponding Author(s):
																Xiuxin DENG |  
															| Issue Date: 22 May 2014 |  |  
								            
								                
																																												
															| 1 | R K Varshney, S N Nayak, G D May, S A Jackson. Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends in Biotechnology, 2009, 27(9): 522–530 https://doi.org/10.1016/j.tibtech.2009.05.006
 |  
															| 2 | R Ming, S B Hou, Y Feng, Q Y Yu, A Dionne-Laporte, J H Saw, P Senin, W Wang, B V Ly, K L T Lewis, S L Salzberg, L Feng, M R Jones, R L Skelton, J E Murray, C X Chen, W B Qian, J G Shen, P Du, M Eustice, E Tong, H B Tang, E Lyons, R E Paull, T P Michael, K Wall, D W Rice, H Albert, M L Wang, Y J Zhu, M Schatz, N Nagarajan, R A Acob, P Z Guan, A Blas, C M Wai, C M Ackerman, Y Ren, C Liu, J M Wang, J P Wang, J K Na, E V Shakirov, B Haas, J Thimmapuram, D Nelson, X Y Wang, J E Bowers, A R Gschwend, A L Delcher, R Singh, J Y Suzuki, S Tripathi, K Neupane, H R Wei, B Irikura, M Paidi, N Jiang, W L Zhang, G Presting, A Windsor, R Navajas-Perez, M J Torres, F A Feltus, B Porter, Y J Li, A M Burroughs, M C Luo, L Liu, D A Christopher, S M Mount, P H Moore, T Sugimura, J M Jiang, M A Schuler, V Friedman, T Mitchell-Olds, D E Shippen, C W dePamphilis, J D Palmer, M Freeling, A H Paterson, D Gonsalves, L Wang, M Alam. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature, 2008, 452(7190): 991–996 https://doi.org/10.1038/nature06856
 |  
															| 3 | Q Xu, L L Chen, X Ruan, D Chen, A Zhu, C Chen, D Bertrand, W B Jiao, B H Hao, M P Lyon, J Chen, S Gao, F Xing, H Lan, J W Chang, X Ge, Y Lei, Q Hu, Y Miao, L Wang, S Xiao, M K Biswas, W Zeng, F Guo, H Cao, X Yang, X W Xu, Y J Cheng, J Xu, J H Liu, O J Luo, Z Tang, W W Guo, H Kuang, H Y Zhang, M L Roose, N Nagarajan, X X Deng, Y Ruan. The draft genome of sweet orange (Citrus sinensis). Nature Genetics, 2013, 45(1): 59–66 https://doi.org/10.1038/ng.2472
 |  
															| 4 | V Shulaev, D J Sargent, R N Crowhurst, T C Mockler, O Folkerts, A L Delcher, P Jaiswal, K Mockaitis, A Liston, S P Mane, P Burns, T M Davis, J P Slovin, N Bassil, R P Hellens, C Evans, T Harkins, C Kodira, B Desany, O R Crasta, R V Jensen, A C Allan, T P Michael, J C Setubal, J M Celton, D J G Rees, K P Williams, S H Holt, J J R Rojas, M Chatterjee, B Liu, H Silva, L Meisel, A Adato, S A Filichkin, M Troggio, R Viola, T L Ashman, H Wang, P Dharmawardhana, J Elser, R Raja, H D Priest, D W Bryant, S E Fox, S A Givan, L J Wilhelm, S Naithani, A Christoffels, D Y Salama, J Carter, E L Girona, A Zdepski, W Q Wang, R A Kerstetter, W Schwab, S S Korban, J Davik, A Monfort, B Denoyes-Rothan, P Arus, R Mittler, B Flinn, A Aharoni, J L Bennetzen, S L Salzberg, A W Dickerman, R Velasco, M Borodovsky, R E Veilleux, K M Folta. The genome of woodland strawberry (Fragaria vesca). Nature Genetics, 2011, 43(2): 109–116 https://doi.org/10.1038/ng.740
 |  
															| 5 | R Velasco, A Zharkikh, J Affourtit, A Dhingra, A Cestaro, A Kalyanaraman, P Fontana, S K Bhatnagar, M Troggio, D Pruss, S Salvi, M Pindo, P Baldi, S Castelletti, M Cavaiuolo, G Coppola, F Costa, V Cova, A Dal Ri, V Goremykin, M Komjanc, S Longhi, P Magnago, G Malacarne, M Malnoy, D Micheletti, M Moretto, M Perazzolli, A Si-Ammour, S Vezzulli, E Zini, G Eldredge, L M Fitzgerald, N Gutin, J Lanchbury, T Macalma, J T Mitchell, J Reid, B Wardell, C Kodira, Z Chen, B Desany, F Niazi, M Palmer, T Koepke, D Jiwan, S Schaeffer, V Krishnan, C Wu, V T Chu, S T King, J Vick, Q Tao, A Mraz, A Stormo, K Stormo, R Bogden, D Ederle, A Stella, A Vecchietti, M M Kater, S Masiero, P Lasserre, Y Lespinasse, A C Allan, V Bus, D Chagne, R N Crowhurst, A P Gleave, E Lavezzo, J A Fawcett, S Proost, P Rouze, L Sterck, S Toppo, B Lazzari, R P Hellens, C E Durel, A Gutin, R E Bumgarner, S E Gardiner, M Skolnick, M Egholm, Y Van de Peer, F Salamini, R Viola. The genome of the domesticated apple (Malus × domestica Borkh.). Nature Genetics, 2010, 42(10): 833–839 https://doi.org/10.1038/ng.654
 |  
															| 6 | A D'Hont, F Denoeud, J M Aury, F C Baurens, F Carreel, O Garsmeur, B Noel, S Bocs, G Droc, M Rouard, C Da Silva, K Jabbari, C Cardi, J Poulain, M Souquet, K Labadie, C Jourda, J Lengelle, M Rodier-Goud, A Alberti, M Bernard, M Correa, S Ayyampalayam, M R McKain, J Leebens-Mack, D Burgess, M Freeling, A M D Mbeguie, M Chabannes, T Wicker, O Panaud, J Barbosa, E Hribova, P Heslop-Harrison, R Habas, R Rivallan, P Francois, C Poiron, A Kilian, D Burthia, C Jenny, F Bakry, S Brown, V Guignon, G Kema, M Dita, C Waalwijk, S Joseph, A Dievart, O Jaillon, J Leclercq, X Argout, E Lyons, A Almeida, M Jeridi, J Dolezel, N Roux, A M Risterucci, J Weissenbach, M Ruiz, J C Glaszmann, F Quetier, N Yahiaoui, P Wincker. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature, 2012, 488(7410): 213–217 https://doi.org/10.1038/nature11241
 |  
															| 7 | E K Al-Dous, B George, M E Al-Mahmoud, M Y Al-Jaber, H Wang, Y M Salameh, E K Al-Azwani, S Chaluvadi, A C Pontaroli, J Debarry, V Arondel, J Ohlrogge, I J Saie, K M Suliman-Elmeer, J L Bennetzen, R R Kruegger, J A Malek. De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera). Nature Biotechnology, 2011, 29(6): 521–527 https://doi.org/10.1038/nbt.1860
 |  
															| 8 | I Verde, A G Abbott, S Scalabrin, S Jung, S Shu, F Marroni, T Zhebentyayeva, M T Dettori, J Grimwood, F Cattonaro, A Zuccolo, L Rossini, J Jenkins, E Vendramin, L A Meisel, V Decroocq, B Sosinski, S Prochnik, T Mitros, A Policriti, G Cipriani, L Dondini, S Ficklin, D M Goodstein, P Xuan, C D Fabbro, V Aramini, D Copetti, S Gonzalez, D S Horner, R Falchi, S Lucas, E Mica, J Maldonado, B Lazzari, D Bielenberg, R Pirona, M Miculan, A Barakat, R Testolin, A Stella, S Tartarini, P Tonutti, P Arus, A Orellana, C Wells, D Main, G Vizzotto, H Silva, F Salamini, J Schmutz, M Morgante, D S Rokhsar. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature Genetics, 2013, 45(5): 487–494 https://doi.org/10.1038/ng.2586
 |  
															| 9 | J Wu, Z Wang, Z Shi, S Zhang, R Ming, S Zhu, M A Khan, S Tao, S S Korban, H Wang, N J Chen, T Nishio, X Xu, L Cong, K Qi, X Huang, Y Wang, X Zhao, C Deng, C Gou, W Zhou, H Yin, G Qin, Y Sha, Y Tao, H Chen, Y Yang, Y Song, D Zhan, J Wang, L Li, M Dai, C Gu, D Shi, X Wang, H Zhang, L Zeng, D Zheng, C Wang, M Chen, G Wang, L Xie, V Sovero, S Sha, W Huang, M Zhang, J Sun, L Xu, Y Li, X Liu, Q Li, J Shen, R E Paull, J L Bennetzen, J Wang, S L Zhang. The genome of the pear (Pyrus bretschneideri Rehd.). Genome Research, 2013, 23(2): 396–408 https://doi.org/10.1101/gr.144311.112
 |  
															| 10 | S Huang, J Ding, D Deng, W Tang, H Sun, D Liu, L Zhang, X Niu, X Zhang, M Meng, J Yu, J Liu, Y Han, W Shi, D Zhang, S Cao, Z Wei, Y Cui, Y Xia, H Zeng, K Bao, L Lin, Y Min, H Zhang, M Miao, X Tang, Y Zhu, Y Sui, G Li, H Sun, J Yue, J Sun, F Liu, L Zhou, L Lei, X Zheng, M Liu, L Huang, J Song, C Xu, J Li, K Ye, S Zhong, B R Lu, G He, F Xiao, H L Wang, H Zheng, Z Fei, Y Liu. Draft genome of the kiwifruit Actinidia chinensis. Nature Communications, 2013, 4: 2640 https://doi.org/10.1038/ncomms3640
 |  
															| 11 | O Jaillon, J M Aury, B Noel, A Policriti, C Clepet, A Casagrande, N Choisne, S Aubourg, N Vitulo, C Jubin, A Vezzi, F Legeai, P Hugueney, C Dasilva, D Horner, E Mica, D Jublot, J Poulain, C Bruyere, A Billault, B Segurens, M Gouyvenoux, E Ugarte, F Cattonaro, V Anthouard, V Vico, C Del Fabbro, M Alaux, G Di Gaspero, V Dumas, N Felice, S Paillard, I Juman, M Moroldo, S Scalabrin, A Canaguier, I Le Clainche, G Malacrida, E Durand, G Pesole, V Laucou, P Chatelet, D Merdinoglu, M Delledonne, M Pezzotti, A Lecharny, C Scarpelli, F Artiguenave, M E Pe, G Valle, M Morgante, M Caboche, A F Adam-Blondon, J Weissenbach, F Quetier, P Wincker. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 2007, 449(7161): 463–467 https://doi.org/10.1038/nature06148
 |  
															| 12 | C Chen, K D Bowman, Y A Choi, P M Dang, M N Rao, S Huang, J R Soneji, T G McCollum, Jr F G Gmitter. EST-SSR genetic maps for Citrus sinensis and Poncirus trifoliata. Tree Genetics & Genomes, 2008, 4(1): 1–10 https://doi.org/10.1007/s11295-007-0083-3
 |  
															| 13 | P Ollitrault, J Terol, C Chen, C T Federici, S Lotfy, I Hippolyte, F Ollitrault, A B rard, A Chauveau, J Cuenca, G Costantino, Y Kacar, L Mu, A Garcia-Lor, Y Froelicher, P Aleza, A Bolan, C Billot, L Navarro, F Luro, M Roose, F Gmitter, M Talon, D Brunel. A reference genetic map of C. clementina hort. ex Tan.; citrus evolution inferences from comparative mapping. BMC Genomics, 2012, 13(1): 593 https://doi.org/10.1186/1471-2164-13-593
 |  
															| 14 | .da L C Maia, D A Palmieri, V Q Souza, M M Kopp, F I F Carvalho, A Costa de Oliveira. SSR Locator: Tool for simple sequence repeat discovery integrated with primer design and PCR simulation. International Journal of Plant Genomics, 2008: 412696 |  
															| 15 | M Christoph. Phobos – A tandem repeat search tool for complete genomes. Available at RUHR-Univertsity Bochum website on March 26, 2014 |  
															| 16 | M K Biswas, L Chai, C Mayer, Q Xu, W Guo, X Deng. Exploiting BAC-end sequences for the mining, characterization and utility of new short sequences repeat (SSR) markers in Citrus. Molecular Biology Reports, 2012, 39(5): 5373–5386 https://doi.org/10.1007/s11033-011-1338-5
 |  
															| 17 | Y Zorrilla-Fontanesi, A Cabeza, A M Torres, M A Botella, V Valpuesta, A Monfort, J F S nchez-Sevilla, I Amaya. Development and bin mapping of strawberry genic-SSRs in diploid Fragaria and their transferability across the Rosoideae subfamily. Molecular Breeding, 2011, 27(2): 137–156 https://doi.org/10.1007/s11032-010-9417-1
 |  
															| 18 | S Myles, A R Boyko, C L Owens, P J Brown, F Grassi, M K Aradhya, B Prins, A Reynolds, J M Chia, D Ware, C D Bustamante, E S Buckler. Genetic structure and domestication history of the grape. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(9): 3530–3535 https://doi.org/10.1073/pnas.1009363108
 |  
															| 19 | R Ahmad, D E Parfitt, J Fass, E Ogundiwin, A Dhingra, T M Gradziel, D Lin, N A Joshi, P J Martinez-Garcia, C H Crisosto. Whole genome sequencing of peach (Prunus persica L.) for SNP identification and selection. BMC Genomics, 2011, 12(1): 569 https://doi.org/10.1186/1471-2164-12-569
 |  
															| 20 | S Kumar, D J Garrick, M C Bink, C Whitworth, D Chagn , R K Volz. Novel genomic approaches unravel genetic architecture of complex traits in apple. BMC Genomics, 2013, 14(1): 393 https://doi.org/10.1186/1471-2164-14-393
 |  
															| 21 | C Dardick, A Callahan, R Horn, K B Ruiz, T Zhebentyayeva, C Hollender, M Whitaker, A Abbott, R Scorza. PpeTAC1 promotes the horizontal growth of branches in peach trees and is a member of a functionally conserved gene family found in diverse plants species. Plant Journal, 2013, 75(4): 618–630 https://doi.org/10.1111/tpj.12234
 |  
															| 22 | Q Xu, K Yu, A Zhu, J Ye, Q Liu, J Zhang, X Deng. Comparative transcripts profiling reveals new insight into molecular processes regulating lycopene accumulation in a sweet orange (Citrus sinensis) red-flesh mutant. BMC Genomics, 2009, 10(1): 540 https://doi.org/10.1186/1471-2164-10-540
 |  
															| 23 | S Zenoni, A Ferrarini, E Giacomelli, L Xumerle, M Fasoli, G Malerba, D Bellin, M Pezzotti, M Delledonne. Characterization of transcriptional complexity during berry development in Vitis vinifera using RNA-Seq. Plant Physiology, 2010, 152(4): 1787–1795 https://doi.org/10.1104/pp.109.149716
 |  
															| 24 | F Martinelli, S L Uratsu, U Albrecht, R L Reagan, M L Phu, M Britton, V Buffalo, J Fass, E Leicht, W Zhao, D Lin, R D’Souza, C E Davis, K D Bowman, A M Dandekar. Transcriptome profiling of citrus fruit response to huanglongbing disease. PLoS ONE, 2012, 7(5): e38039 https://doi.org/10.1371/journal.pone.0038039
 |  
															| 25 | K Yu, Q Xu, X Da, F Guo, Y Ding, X Deng. Transcriptome changes during fruit development and ripening of sweet orange (Citrus sinensis). BMC Genomics, 2012, 13(1): 10 https://doi.org/10.1186/1471-2164-13-10
 |  
															| 26 | C Krost, R Petersen, S Lokan, B Brauksiepe, P Braun, E R Schmidt. Evaluation of the hormonal state of columnar apple trees (Malus × domestica) based on high throughput gene expression studies. Plant Molecular Biology, 2013, 81(3): 211–220 https://doi.org/10.1007/s11103-012-9992-0
 |  
															| 27 | E Katz, M Fon, Y Lee, B Phinney, A Sadka, E Blumwald. The citrus fruit proteome: insights into citrus fruit metabolism. Planta, 2007, 226(4): 989–1005 https://doi.org/10.1007/s00425-007-0545-8
 |  
															| 28 | Z Pan, Y Zeng, J An, J Ye, Q Xu, X Deng. An integrative analysis of transcriptome and proteome provides new insights into carotenoid biosynthesis and regulation in sweet orange fruits. Journal of Proteomics, 2012, 75(9): 2670–2684 https://doi.org/10.1016/j.jprot.2012.03.016
 |  
															| 29 | V Muccilli, C Licciardello, D Fontanini, M P Russo, V Cunsolo, R Saletti, G Reforgiato Recupero, S Foti. Proteome analysis of Citrus sinensis L.(Osbeck) flesh at ripening time. Journal of Proteomics, 2009, 73(1): 134–152 https://doi.org/10.1016/j.jprot.2009.09.005
 |  
															| 30 | M J Mart nez-Esteso, S Sell s-Marchart, D Lijavetzky, M A Pedre o, R Bru-Mart nez. A DIGE-based quantitative proteomic analysis of grape berry flesh development and ripening reveals key events in sugar and organic acid metabolism. Journal of Experimental Botany, 2011, 62(8): 2521–2569 https://doi.org/10.1093/jxb/erq434
 |  
															| 31 | Z Yun, S Jin, Y Ding, Z Wang, H Gao, Z Pan, J Xu, Y Cheng, X Deng. Comparative transcriptomics and proteomics analysis of citrus fruit, to improve understanding of the effect of low temperature on maintaining fruit quality during lengthy post-harvest storage. Journal of Experimental Botany, 2012, 63(8): 2873–2893 https://doi.org/10.1093/jxb/err390
 |  
															| 32 | B S Garavaglia, L Thomas, T Zimaro, N Gottig, L D Daurelio, B Ndimba, E G Orellano, J Ottado, C Gehring. A plant natriuretic peptide-like molecule of the pathogen Xanthomonas axonopodis pv. citri causes rapid changes in the proteome of its citrus host. BMC Plant Biology, 2010, 10(1): 51 https://doi.org/10.1186/1471-2229-10-51
 |  
															| 33 | S P Rodrigues, J A Ventura, C Aguilar, E S Nakayasu, H Choi, T J Sobreira, L L Nohara, L S Wermelinger, I C Almeida, R B Zingali, P M Fernandes. Label-free quantitative proteomics reveals differentially regulated proteins in the latex of sticky diseased Carica papaya L. plants. Journal of Proteomics, 2012, 75(11): 3191–3198 https://doi.org/10.1016/j.jprot.2012.03.021
 |  
															| 34 | G Tanou, P Filippou, M Belghazi, D Job, G Diamantidis, V Fotopoulos, A Molassiotis. Oxidative and nitrosative-based signaling and associated post-translational modifications orchestrate the acclimation of citrus plants to salinity stress. Plant Journal, 2012, 72(4): 585–599 https://doi.org/10.1111/j.1365-313X.2012.05100.x
 |  
															| 35 | G Chuck, D O’Connor. Small RNAs going the distance during plant development. Current Opinion in Plant Biology, 2010, 13(1): 40–45 https://doi.org/10.1016/j.pbi.2009.08.006
 |  
															| 36 | A Carra, E Mica, G Gambino, M Pindo, C Moser, M E Pè, A Schubert. Cloning and characterization of small non-coding RNAs from grape. Plant Journal, 2009, 59(5): 750–763 https://doi.org/10.1111/j.1365-313X.2009.03906.x
 |  
															| 37 | C Song, J Fang, X Li, H Liu, C T Chao. Identification and characterization of 27 conserved microRNAs in citrus. Planta, 2009, 230(4): 671–685 https://doi.org/10.1007/s00425-009-0971-x
 |  
															| 38 | Q Xu, Y Liu, A Zhu, X Wu, J Ye, K Yu, W Guo, X Deng. Discovery and comparative profiling of microRNAs in a sweet orange red-flesh mutant and its wild type. BMC Genomics, 2010, 11(1): 246 https://doi.org/10.1186/1471-2164-11-246
 |  
															| 39 | V Pantaleo, G Szittya, S Moxon, L Miozzi, V Moulton, T Dalmay, J Burgyan. Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant Journal, 2010, 62(6): 960–976 |  
															| 40 | R Xia, H Zhu, Y An, E P Beers, Z Liu. Apple miRNAs and tasiRNAs with novel regulatory networks. Genome Biology, 2012, 13(6): R47 https://doi.org/10.1186/gb-2012-13-6-r47
 |  
															| 41 | R Schwab, S Ossowski, M Riester, N Warthmann, D Weigel. Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell, 2006, 18(5): 1121–1133 https://doi.org/10.1105/tpc.105.039834
 |  
															| 42 | WMD3-Web app for the automated design of artificial microRNAs. Available at WeigelWorld website on March 26, 2014 |  
															| 43 | N S Jelly, P Schellenbaum, B Walter, P Maillot. Transient expression of artificial microRNAs targeting Grapevine fanleaf virus and evidence for RNA silencing in grapevine somatic embryos. Transgenic Research, 2012, 21(6): 1319–1327 https://doi.org/10.1007/s11248-012-9611-5
 |  
															| 44 | MiRBase: the microRNA database. Available at Mirbase website on March 26, 2014 |  
															| 45 | I R Henderson, S E Jacobsen. Epigenetic inheritance in plants. Nature, 2007, 447(7143): 418–424 https://doi.org/10.1038/nature05917
 |  
															| 46 | A Kaity, S Ashmore, R A Drew, M Dulloo. Assessment of genetic and epigenetic changes following cryopreservation in papaya. Plant Cell Reports, 2008, 27(9): 1529–1539 https://doi.org/10.1007/s00299-008-0558-1
 |  
															| 47 | R Hasb n, L Valledor, M Berdasco, E Santamar a, M Ca al, R Rodr guez, D Rios, M S nchez. In vitro proliferation and genome DNA methylation in adult chestnuts.  Acta Horticulturae, 2005, 693: 333 |  
															| 48 | I A Hafiz, N A Abbasi, T Ahmad, A Hussain. DNA methylation profiles differ between juvenile and adult phase leaves of crab apple (Malus micromalus) seedling tree. Pakistan Journal of Botany, 2008, 40(3): 1025–1032 |  
															| 49 | A Telias, K Lin-Wang, D E Stevenson, J M Cooney, R P Hellens, A C Allan, E E Hoover, J M Bradeen. Apple skin patterning is associated with differential expression of MYB10. BMC Plant Biology, 2011, 11(1): 93 https://doi.org/10.1186/1471-2229-11-93
 |  
															| 50 | K V Kiselev, A P Tyunin, Y N Zhuravlev. Involvement of DNA methylation in the regulation of STS10 gene expression in Vitis amurensis. Planta, 2013, 237(4): 933–941 https://doi.org/10.1007/s00425-012-1806-8
 |  
															| 51 | Z Wang, D Meng, A Wang, T Li, S Jiang, P Cong, T Li. The methylation of the PcMYB10 promoter is associated with green-skinned sport in Max Red Bartlett pear. Plant Physiology, 2013, 162(2): 885–896 https://doi.org/10.1104/pp.113.214700
 |  
															| 52 | B Vogelstein, N Papadopoulos, V E Velculescu, S Zhou, L A Diaz, K W Kinzler. Cancer genome landscapes. Science, 2013, 339(6127): 1546–1558 https://doi.org/10.1126/science.1235122
 |  
															| 53 | M Löwer, B Y Renard, J de Graaf, M Wagner, C Paret, C Kneip, ö Türeci, M Diken, C Britten, S Kreiter, M Koslowski, J C Castle, U Sahin. Confidence-based somatic mutation evaluation and prioritization. PLoS Computational Biology, 2012, 8(9): e1002714 https://doi.org/10.1371/journal.pcbi.1002714
 |  
								            
												
											    	
											        	|  | Viewed |  
											        	|  |  |  
												        |  | Full text 
 | 
 
 |  
												        |  |  |  
												        |  | Abstract 
 | 
 |  
												        |  |  |  
												        |  | Cited |  |  
												        |  |  |  |  
													    |  | Shared |  |  
													    |  |  |  |  
													    |  | Discussed |  |  |  |  |