Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2014, Vol. 1 Issue (4) : 259-266    https://doi.org/10.15302/J-FASE-2014043
REVIEW
Genomics approaches to unlock the high yield potential of cassava, a tropical model plant
Shengkui ZHANG1,2,Ping’an MA1,Haiyan WANG1,Cheng LU1,Xin CHEN1,Zhiqiang XIA1,Meiling ZOU1,Xinchen ZHOU1,Wenquan WANG1,2,*()
1. Institute of Tropical Biosciences & Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou 571101, China
2. Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou 571101, China
 Download: PDF(603 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Cassava, a tropical food, feed and biofuel crop, has great capacity for biomass accumulation and an extraordinary efficiency in water use and mineral nutrition, which makes it highly suitable as a model plant for tropical crops. However, the understanding of the metabolism and genomics of this important crop is limited. The recent breakthroughs in the genomics of cassava, including whole-genome sequencing and transcriptome analysis, as well as advances in the biology of photosynthesis, starch biosynthesis, adaptation to drought and high temperature, and resistance to virus and bacterial diseases, are reviewed here. Many of the new developments have come from comparative analyses between a wild ancestor and existing cultivars. Finally, the current challenges and future potential of cassava as a model plant are discussed.

Keywords cassava      genomics      yield potential      adaptability      tropical model     
Corresponding Author(s): Wenquan WANG   
Online First Date: 10 February 2015    Issue Date: 10 March 2015
 Cite this article:   
Shengkui ZHANG,Ping’an MA,Haiyan WANG, et al. Genomics approaches to unlock the high yield potential of cassava, a tropical model plant[J]. Front. Agr. Sci. Eng. , 2014, 1(4): 259-266.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2014043
https://academic.hep.com.cn/fase/EN/Y2014/V1/I4/259
Fig.1  An ideal plant type of a cassava cultivar with a high yield potential
Fig.2  Roadmap of the systemic genes and signal transduction network in cassava
1 Li P, Brutnell T P. Setaria viridis and Setaria italica, model genetic systems for the Panicoid grasses. Journal of Experimental Botany, 2011, 62(9): 3031–3037
https://doi.org/10.1093/jxb/err096
2 Doust A N, Kellogg E A, Devos K M, Bennetzen J L. Foxtail millet: a sequence- driven grass model system. Plant Physiology, 2009, 149(1): 137–141
https://doi.org/10.1104/pp.108.129627
3 Brutnell T P, Wang L, Swartwood K, Goldschmidt A, Jackson D, Zhu X G, Kellogg E, Van Eck J. Setaria viridis: a model for C4 photosynthesis. Plant Cell, 2010, 22(8): 2537–2544
https://doi.org/10.1105/tpc.110.075309
4 Diao X, Schnable J, Bennetzen J L, Li J. Initiation of Setaria as a model plant. Frontiers of Agricultural Science and Engineering, 2014, 1(1): 16–20
https://doi.org/10.15302/J-FASE-2014011
5 Fregene M. Cassava biotechnology. In: Hillocks R J. Cassava: biology, production and utilization. CAB International, 2002: 179–207
6 Allem A C. The origin of Manihot esculenta Crantz (Euphorbiaceae). Genetic Resources and Crop Evolution, 1994, 41(3): 133–150
https://doi.org/10.1007/BF00051630
7 Allem A C. The closest wild relatives of cassava (Manihot esculenta Crantz). Euphytica, 1999, 107(1): 123–133
https://doi.org/10.1023/A:1026422229054
8 Olsen K M, Schaal B A. Evidence on the origin of cassava: phylogeography of Manihot esculenta. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(10): 5586–5591
https://doi.org/10.1073/pnas.96.10.5586
9 Bartlett A S, Barghoorn E S, Berger R. Fossil maize from Panama. Science, 1969, 165(3891): 389–390
https://doi.org/10.1126/science.165.3891.389
10 Gibbons A. New view of early Amazonia: recent findings suggest complex culture was indigenous to the Amazon Basin–upsetting some received opinions about environment and culture. Science, 1990, 248(4962): 1488–1490
https://doi.org/10.1126/science.248.4962.1488
11 El-Sharkawy M A, Cock J H. Photosynthesis of cassava (Manihot esculenta). Experimental Agriculture, 1990, 26(03): 325–340
https://doi.org/10.1017/S0014479700018494
12 El-Sharkawy M A, Cock J H, Lynam J K, del Pilar Hernàndez A, Cadavid L F L. Relationships between biomass, root-yield and single-leaf photosynthesis in field-grown cassava. Field Crops Research, 1990, 25(3–4): 183–201
https://doi.org/10.1016/0378-4290(90)90002-S
13 El-Sharkawy M A, Cock J H, Held A A. Photosynthetic responses of cassava cultivars (Manihot esculenta Crantz) from different habitats to temperature. Photosynthesis Research, 1984, 5(3): 243–250
https://doi.org/10.1007/BF00030025
14 El-Sharkawy M A, De Tafur S M, Cadavid L F. Potential photosynthesis of cassava as affected by growth conditions. Crop Science, 1992, 32(6): 1336–1342
https://doi.org/10.2135/cropsci1992.0011183X003200060006x
15 El-Sharkawy M A, Cock J H, De Cadena G. Influence of differences in leaf anatomy on net photosynthetic rates of some cultivars of cassava. Photosynthesis Research, 1984, 5(3): 235–242
https://doi.org/10.1007/BF00030024
16 Cock J H, Ria?o N M, El-Sharkawy M A, Lopez Y, Bastidas G. C3–C4 intermediate photosynthetic characteristics of cassava (Manihot esculenta Crantz). II. Initial products of 14CO2 fixation. Photosynthesis Research, 1987, 12(3): 237–241
https://doi.org/10.1007/BF00055123
17 El-Sharkawy M A, Cock J H. C3–C4 intermediate photosynthetic characteristics of cassava (Manihot esculenta Crantz). I. Gas exchange. Photosynthesis Research, 1987, 12(3): 219–235
https://doi.org/10.1007/BF00055122
18 Calatayud P A, Barón C H, Velásquez H, Arroyave J A, Lamaze T. Wild manihot species do not possess C4 photosynthesis. Annals of Botany, 2002, 89(1): 125–127
https://doi.org/10.1093/aob/mcf016
19 Prochnik S, Marri P R, Desany B, Rabinowicz P D, Kodira C, Mohiuddin M, Rodriguez F, Fauquet C, Tohme J, Harkins T, Rokhsar D S, Rounsley S. The cassava genome: current progress, future directions. Tropical Plant Biology, 2012, 5(1): 88–94
https://doi.org/10.1007/s12042-011-9088-z
20 Wang W, Feng B, Xiao J, Xia Z, Zhou X, Li P, Zhang W, Wang Y, M?ller B L, Zhang P, Luo M C, Xiao G, Liu J, Yang J, Chen S, Rabinowicz P D, Chen X, Zhang H B, Ceballos H, Lou Q, Zou M, Carvalho L J, Zeng C, Xia J, Sun S, Fu Y, Wang H, Lu C, Ruan M, Zhou S, Wu Z, Liu H, Kannangara R M, J?rgensen K, Neale R L, Bonde M, Heinz N, Zhu W, Wang S, Zhang Y, Pan K, Wen M, Ma P A, Li Z, Hu M, Liao W, Hu W, Zhang S, Pei J, Guo A, Guo J, Zhang J, Zhang Z, Ye J, Ou W, Ma Y, Liu X, Tallon L J, Galens K, Ott S, Huang J, Xue J, An F, Yao Q, Lu X, Fregene M, López-Lavalle L A B, Wu J, You F M, Chen M, Hu S, Wu G, Zhong S, Ling P, Chen Y, Wang Q, Liu G, Liu B, Li K, Peng M. Cassava genome from a wild ancestor to cultivated varieties. Nature Communications, 2014, 5: 5110
https://doi.org/10.1038/ncomms6110
21 Morris G P, Ramu P, Deshpande S P, Hash C T, Shah T, Upadhyaya H D, Riera-Lizarazu O, Brown P J, Acharya C B, Mitchell S E, Harriman J, Glaubitz J C, Buckler E S, Kresovich S. Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(2): 453–458
https://doi.org/10.1073/pnas.1215985110
22 Rabbi I Y, Kulembeka H P, Masumba E, Marri P R, Ferguson M. An EST-derived SNP and SSR genetic linkage map of cassava (Manihot esculenta Crantz). Theoretical and Applied Genetics, 2012, 125(2): 329–342
https://doi.org/10.1007/s00122-012-1836-4
23 Chen X, Xia Z, Fu Y, Lu C, Wang W. Constructing a genetic linkage map using an F1 population of non-inbred parents in cassava (Manihot esculenta Crantz). Plant Molecular Biology Reporter, 2010, 28(4): 676–683
https://doi.org/10.1007/s11105-010-0198-9
24 Kunkeaw S, Yoocha T, Sraphet S, Boonchanawiwat A, Boonseng O, Lightfoot D A, Triwitayakorn K, Tangphatsornruang S. Construction of a genetic linkage map using simple sequence repeat markers from expressed sequence tags for cassava (Manihot esculenta Crantz). Molecular Breeding, 2011, 27(1): 67–75
https://doi.org/10.1007/s11032-010-9414-4
25 El-Sharkawy M A, De Tafur S M, Cadavid L F. Photosynthesis of cassava and its relation to crop productivity. Photosynthetica, 1993, 28: 431–438
26 El-Sharkawy M A, Cock J H. The humidity factor in stomatal control and its effects on crop productivity. In: R. Marcelle R, Clijsters H, van Poucke M, eds. Biological Control of Photosynthesis. Dordrecht: Martinus Nijhoff Publishers, 1986, 187–198
27 El-Sharkawy M A, Cock J H, Held K A A. Water use efficiency of cassava. II. Differing sensitivity of stomata to air humidity in cassava and other warm-climate species. Crop Science, 1984, 24(3): 503–507
28 El-Sharkawy M A, Cock J H, Del Pilar Hernandez A. Stomatal response to air humidity and its relation to stomatal density in a wide range of warm climate species. Photosynthesis Research, 1985, 7(2): 137–149
https://doi.org/10.1007/BF00037004
29 Alves A A, Setter T L. Response of cassava leaf area expansion to water deficit: cell proliferation, cell expansion and delayed development. Annals of Botany, 2004, 94(4): 605–613
https://doi.org/10.1093/aob/mch179
30 Okogbenin E, Setter T L, Ferguson M, Mutegi R, Ceballos H, Olasanmi B, Fregene M. Phenotypic approaches to drought in cassava: review. Frontiers in Physiology, 2013, 4: 1–15
https://doi.org/10.3389/fphys.2013.00093
31 Hubbard K E, Nishimura N, Hitomi K, Getzoff E D, Schroeder J I. Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Genes & Development, 2010, 24(16): 1695–1708
https://doi.org/10.1101/gad.1953910
32 Zelazny E, Vert G. Plant nutrition: root transporters on the move. Plant Physiology, 2014, 166(2): 500–508
https://doi.org/10.1104/pp.114.244475
33 Alves A A C, Setter T L. Abscisic acid accumulation and osmotic adjustment in cassava under water deficit. Environmental and Experimental Botany, 2004, 51(3): 259–271
https://doi.org/10.1016/j.envexpbot.2003.11.005
34 Utsumi Y, Tanaka M, Morosawa T, Kurotani A, Yoshida T, Mochida K, Matsui A, Umemura Y, Ishitani M, Shinozaki K, Sakurai T, Seki M. Transcriptome analysis using a high-density Oligomicroarray under drought stress in various genotypes of cassava: an important tropical Crop. DNA Research, 2012, 19(4): 335–345
https://doi.org/10.1093/dnares/dss016
35 Li H Q, Sautter C, Potrykus I, Puonti-Kaerlas J. Genetic transformation of cassava (Manihot esculenta Crantz). Nature Biotechnology, 1996, 14(6): 736–740
https://doi.org/10.1038/nbt0696-736
36 Sch?pke C, Taylor N, Cárcamo R, Konan N K, Marmey P, Henshaw G G, Beachy R N, Fauquet C. Regeneration of transgenic cassava plants (Manihot esculenta Crantz) from microbombarded embryogenic suspension cultures. Nature Biotechnology, 1996, 14(6): 731–735
https://doi.org/10.1038/nbt0696-731
37 Zhang P, Jaynes J M, Potrykus I, Gruissem W, Puonti-Kaerlas J. Transfer and expression of an artificial storage protein (ASP1) gene in cassava (Manihot esculenta Crantz). Transgenic Research, 2003, 12(2): 243–250
https://doi.org/10.1023/A:1022918925882
38 Zhang P, Bohl-Zenger S, Puonti-Kaerlas J, Potrykus I, Gruissem W. Two cassava promoters related to vascular expression and storage root formation. Planta, 2003, 218(2): 192–203
https://doi.org/10.1007/s00425-003-1098-0
39 Welsch R, Arango J, B?r C, Salazar B, Al-Babili S, Beltrán J, Chavarriaga P, Ceballos H, Tohme J, Beyer P. Provitamin A accumulation in cassava (Manihot esculenta) roots driven by a single nucleotide polymorphism in a phytoene synthase gene. Plant Cell, 2010, 22(10): 3348–3356
https://doi.org/10.1105/tpc.110.077560
40 Legg J P, Thresh J M. Cassava virus diseases in Africa. In: Hughes J d’A, Odu B O, eds. Plant Virology in Sub-Saharan Africa, Ibadan, Nigeria. International Institute of Tropical Agriculture, 2004, 517–552
41 Legg J P, Thresh J M. Cassava mosaic virus disease in East Africa: a dynamic disease in a changing environment. Virus Research, 2000, 71(1–2): 135–149
https://doi.org/10.1016/S0168-1702(00)00194-5
42 Monger W A, Seal S, Isaac A M, Foster G D. Molecular characterization of the cassava brownstreak virus coat protein. Plant Pathology, 2001, 50(4): 527–534
https://doi.org/10.1046/j.1365-3059.2001.00589.x
43 Maruthi M N, Hillocks R J, Mtunda K, Raya M D, Muhanna M, Kiozia H, Rekha A R, Colvin J, Thresh J M. Transmission of Cassava brown streak virus by Bemisia tabaci (Gennadius). Journal of Phytopathology, 2005, 153(5): 307–312
https://doi.org/10.1111/j.1439-0434.2005.00974.x
44 Ogwok E, Odipio J, Halsey M, Gaitán-Solís E, Bua A, Taylor N J, Fauquet C M, Alicai T. Transgenic RNA interference (RNAi)-derived field resistance to cassava brown streak disease. Molecular Plant Pathology, 2012, 13(9): 1019–1031
https://doi.org/10.1111/j.1364-3703.2012.00812.x
45 Vanderschuren H, Moreno I, Anjanappa R B, Zainuddin I M, Gruissem W. Exploiting the combination of natural and genetically engineered resistance to cassava mosaic and cassava Brown streak viruses impacting cassava production in Africa. PLoS ONE, 2012, 7(9): e45277
https://doi.org/10.1371/journal.pone.0045277
46 Pineda B, Jayasinghe U, Lozano J C. La enfermedad “cuero de sapo” en yuca (Manihot esculenta Crantz). Asiava, 1983, 4: 10–12
47 Carvajal-Yepes M, Olaya C, Lozano I, Cuervo M, Casta?o M, Cuellar W J. Unraveling complex viral infections in cassava (Manihot esculenta Crantz) from Colombia. Virus Research, 2014, 186: 76–86
https://doi.org/10.1016/j.virusres.2013.12.011
48 Lozano J C. Cassava bacterial blight: a manageable disease. Plant Disease, 1986, 70(12): 1089–1093
https://doi.org/10.1094/PD-70-1089
49 Maraite H. Xanthomonas campestris pathovars on cassava: cause of bacterial blight and bacterial necrosis. In: Swings J G, Civerolo E L, eds. Xanthomonas. Chapman and Hall, 1993, 18–24
50 Arrieta-Ortiz M L, Rodríguez-R L M, Pérez-Quintero á, Poulin L, Díaz A C, Arias Rojas N, Trujillo C, Restrepo Benavides M, Bart R, Boch J, Boureau T, Darrasse A, David P, Dugé de Bernonville T, Fontanilla P, Gagnevin L, Guérin F, Jacques M A, Lauber E, Lefeuvre P, Medina C, Medina E, Montenegro N, Mu?oz Bodnar A, No?l L D, Ortiz Qui?ones J F, Osorio D, Pardo C, Patil P B, Poussier S, Pruvost O, Robène-Soustrade I, Ryan R P, Tabima J, Urrego Morales O G, Vernière C, Carrere S, Verdier V, Szurek B, Restrepo S, López C, Koebnik R, Bernal A. Genomic survey of pathogenicity determinants and VNTR markers in the cassava bacterial pathogen Xanthomonas axonopodis pv. Manihotis strain CIO151. PLoS ONE, 2013, 8(11): e79704
https://doi.org/10.1371/journal.pone.0079704
51 Reilly K, Gómez-Vásquez R, Buschmann H, Tohme J, Beeching J R. Oxidative stress responses during cassava post-harvest physiological deterioration. Plant Molecular Biology, 2004, 56(4): 625–641
https://doi.org/10.1007/s11103-005-2271-6
52 Owiti J, Grossmann J, Gehrig P, Dessimoz C, Laloi C, Hansen M B, Gruissem W, Vanderschuren H. iTRAQ-based analysis of changes in the cassava root proteome reveals pathways associated with post-harvest physiological deterioration. Plant Journal, 2011, 67(1): 145–156
https://doi.org/10.1111/j.1365-313X.2011.04582.x
53 Reilly K, Bernal D, Cortés D F, Gómez-Vásquez R, Tohme J, Beeching J R. Towards identifying the full set of genes expressed during cassava post-harvest physiological deterioration. Plant Molecular Biology, 2007, 64(1–2): 187–203
https://doi.org/10.1007/s11103-007-9144-0
54 Vanderschuren H, Nyaboga E, Poon J S, Baerenfaller K, Grossmann J, Hirsch-Hoffmann M, Kirchgessner N, Nanni P, Gruissem W. Large-scale proteomics of the cassava storage root and identification of a target gene to reduce postharvest deterioration. Plant Cell, 2014, 26(5): 1913–1924
https://doi.org/10.1105/tpc.114.123927
55 Zidenga T, Leyva-Guerrero E, Moon H, Siritunga D, Sayre R. Extending cassava root shelf life via reduction of reactive oxygen species production. Plant Physiology, 2012, 159(4): 1396–1407
https://doi.org/10.1104/pp.112.200345
56 Xu J, Duan X, Yang J, Beeching J R, Zhang P. Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays postharvest physiological deterioration of cassava storage roots. Plant Physiology, 2013, 161(3): 1517–1528
https://doi.org/10.1104/pp.112.212803
57 Nassar N, Ortiz R. Breeding cassava to feed the poor. Scientific American, 2010, 302(5): 78–84
https://doi.org/10.1038/scientificamerican0510-78
58 Gbadegesin M, Olaiya C O, Beeching J R. African cassava: biotechnology and molecular breeding to the rescue. British Biotechnology Journal, 2013, 3(3): 305–317
https://doi.org/10.9734/BBJ/2013/3449
59 Marris E. Agronomy: five crop researchers who could change the world. Nature, 2008, 456(7222): 563–568
https://doi.org/10.1038/456563a
[1] Wenteng XU, Songlin CHEN. Genomics and genetic breeding in aquatic animals: progress and prospects[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 305-318.
[2] Yuhua FU,Zhiqiang XIA,Shujuan WANG,Xin CHEN,Cheng LU,Mingcheng LUO,Hongbin ZHANG,Wenquan WANG. A bacterial artificial chromosome-based physical map of Manihot esculenta ssp. flabellifolia[J]. Front. Agr. Sci. Eng. , 2016, 3(4): 321-329.
[3] Zhiqiang XIA,Xin CHEN,Cheng LU,Meiling ZOU,Shujuan WANG,Yang ZHANG,Kun PAN,Xincheng ZHOU,Haiyan WANG,Wenquan WANG. Comparative transcriptomics revealed enhanced light responses, energy transport and storage in domestication of cassava (Manihot esculenta)[J]. Front. Agr. Sci. Eng. , 2016, 3(4): 295-307.
[4] Shihua CHENG,Xiaodeng ZHAN,Liyong CAO. Breeding strategies for increasing yield potential in super hybrid rice[J]. Front. Agr. Sci. Eng. , 2015, 2(4): 277-282.
[5] Yonggui XIAO,Jianjun LIU,Haosheng LI,Xinyou CAO,Xianchun XIA,Zhonghu HE. Lodging resistance and yield potential of winter wheat: effect of planting density and genotype[J]. Front. Agr. Sci. Eng. , 2015, 2(2): 168-178.
[6] Qiang XU,Chaoyang LIU,Manosh Kumar BISWAS,Zhiyong PAN,Xiuxin DENG. Recent advances in fruit crop genomics[J]. Front. Agr. Sci. Eng. , 2014, 1(1): 21-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed