Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2016, Vol. 3 Issue (4) : 321-329    https://doi.org/10.15302/J-FASE-2016124
RESEARCH ARTICLE
A bacterial artificial chromosome-based physical map of Manihot esculenta ssp. flabellifolia
Yuhua FU1,2, Zhiqiang XIA1, Shujuan WANG1, Xin CHEN1, Cheng LU1, Mingcheng LUO3, Hongbin ZHANG4, Wenquan WANG1()
1. Institute of tropical Biosciences & Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
2. Guizhou Institute of Subtropical Crops, Guizhou Academy of Agricultural Sciences, Xinyi 562400, China
3. Department of Plant Sciences, UC Davis, Davis, CA 95616, USA
4. Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA
 Download: PDF(469 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Cassava ( Manihot esculenta ) is known as the third most important food crop in the tropics and also used for industrial feedstock for biofuels. Two new bacterial artificial chromosome (BAC) libraries were constructed for W14 ( M. Esculenta ssp. flabellifolia ), a wild ancestor of domesticated cassava. The libraries were constructed with Eco RI and Hin dIII insertion vectors, respectively. The Eco RI library has 29952 clones with an average insert size of 115 kb, while the Hin dIII library consists of 29952 clones with an average insert of 129 kb. The combined libraries contain a total of 59904 clones with an average insert size of 125 kb, representing approximately 10 × haploid genome equivalents. A total of 29952 clones were fingerprinted and resulted in a cassava physical map composed of 2485 contigs with an average physical length of 336 kb and 2909 singletons, representing approximately 762 Mb of the cassava genome. 5000 clones located at the ends of BAC contigs were selected and sequenced. A total of 6077 SNPs and 231 indels were identified, that covered 459 gene sequences, of which 6 genes were associated with starch and sucrose metabolism. This BAC-based physical map provides valuable tools to understand the genetics and evolution of cassava.

Keywords cassava      BAC library      physical map     
Corresponding Author(s): Wenquan WANG   
Just Accepted Date: 23 December 2016   Online First Date: 10 January 2017    Issue Date: 22 January 2017
 Cite this article:   
Yuhua FU,Zhiqiang XIA,Shujuan WANG, et al. A bacterial artificial chromosome-based physical map of Manihot esculenta ssp. flabellifolia [J]. Front. Agr. Sci. Eng. , 2016, 3(4): 321-329.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2016124
https://academic.hep.com.cn/fase/EN/Y2016/V3/I4/321
Fig.1  A random sample of bacterial artificial chromosomes (BAC) selected from the Eco RІ library and analyzed on a pulsed-field gel. BAC DNA was digested with Not І to release the entire insert from the BAC vector. M indicates lambda ladder pulsed-field gel electrophoresis marker.
Fig.2  Insert size distribution of the bacterial artificial chromosome libraries with 80 clones from the Eco RI library and 85 clones from Hin dIII library
Description Index
Number of BAC clones fingerprinted 29952
Number of high quality fingerprints used for assembly 24784
Number of contigs 2485
Number of singletons 2909
N50 contig length/kb 336
Average number of clones per contig 9
Longest contig/kb 1867
Total physical length of the contig/Mb 762
Tab.1  Statistics of the bacterial artificial chromosome (BAC)-based physical map of the wild cassava genome
Category Span/bp Numbers
Total 5831315 10000
Mean 699.0308 6703
Median 701 5978
Max 1231 1
Min 19 8335
N50 701 3700
GC/% 38.54
Tab.2   The index statistics of bacterial artificial chromosome-end sequence and assembly
W14 all contigs/scaffolds Physic map assembly/mega scaffolds
Fold genome coverage 136 8361 BES
Total number of contigs/scaffolds 33166 359
Total span/Mb 426 65
N50/kb 33 202
Number of scaffolds 7393 357
Largest scaffold/kb 277 431
Average scaffold length/kb 35 183
Scaffolds N50/kb 51 203
GC/% 35.98 34.30
Tab.3  Integrated draft genome of W14 based on the physic map and 5000 bacterial artificial chromosome-end sequences
Fig.3  Statistics of single-nucleotide polymorphisms and indels developed from bacterial artificial chromosome-end sequences
Fig.4  Gene ontology analysis of 459 genes involving single-nucleotide polymorphisms and indels
1 F Awoleye , M van Duren , J Dolezel , F J Novak . Nuclear DNA content and in vitro induced somatic polyploidization cassava ( Manihot esculenta Crantz) breeding. Euphytica , 1994 , 76 ( 3 ): 195 – 202
https://doi.org/10.1007/BF00022164
2 B B Mohammed , A B Isah , M A Ibrahim . Influence of compaction pressures on modified cassava starch as a binder in paracetamol tablet formulations. Nigerian Journal of Pharmaceutical Sciences , 2009 , 8 ( 1 ): 80 – 88
3 A G O Dixon , R Bandyopadhyay , D Coyne , M Ferguson , R S B Ferris , R Hanna , J Hughes , I I Ugent , J Legg , N Mahungu , V Manyong , D Mowbray , P Neuenschwander , J Whyte , P Hartmann , R Ortiz . Cassava: from poor farmer’s crop to pacesetter of African rural development. Chronica Horticulturae , 2003 , 43 ( 4 ): 8 – 15
4 N J Tonukari . Cassava and the future of starch. Electronic Journal of Biotechnology , 2004 , 7 ( 1 ): 5 – 8
https://doi.org/10.2225/vol7-issue1-fulltext-9
5 C Rettinassababady , N, Ramadoss S Thirumeni . Present situation and future potential of cassava in Thailand . Ifad Stakeholder Consultation Meeting ,  2007 ,  19 ( 1 ): 392 – 415
6 FAO . Food and agriculture organization of the United Nations: cassava . Available at FAO Website on June 23, 2016
7 H Ceballos , C A Iglesias , J C Perez , A G O Dixon . Cassava breeding: opportunities and challenges. Plant Molecular Biology , 2004 , 56 ( 4 ): 503 – 516
https://doi.org/10.1007/s11103-004-5010-5
8 A O Akano , A G O Dixon , C Mba , E Barrera , M Fregene . Genetic mapping of a dominant gene conferring resistance to cassava mosaic disease. Theoretical and Applied Genetics , 2002 , 105 ( 4 ): 521 – 525
https://doi.org/10.1007/s00122-002-0891-7
9 C E López , L M Quesada-Ocampo , A Bohórquez , M C Duque , J Vargas , J Tohme , V Verdier . Mapping EST-derived SSRs and ESTs involved in resistance to bacterial blight in Manihotesculenta. Genome , 2007 , 50 ( 12 ): 1078 – 1088
https://doi.org/10.1139/G07-087
10 K Wydra , V Zinsou , V Jorge , V Verdier . Identification of pathotypes of Xanthomonas axonopodis pv. manihotis in Africa and detection of quantitative trait loci and markers for resistance to bacterial blight of cassava. Phytopathology , 2004 , 94 ( 10 ): 1084 – 1093
https://doi.org/10.1094/PHYTO.2004.94.10.1084
11 E Okogbenin , J Marin , M Fregene . QTL analysis for early yield in a pseudo F2 population of cassava. African Journal of Biotechnology , 2008 , 7 ( 2 ): 131 – 138
12 E Okogbenin , M Fregene . Genetic mapping of QTLs affecting productivity and plant architecture in a full-sib cross from non-inbred parents in Cassava ( Manihot esculenta Crantz). Theoretical and Applied Genetics , 2003 , 107 ( 8 ): 1452 – 1462
https://doi.org/10.1007/s00122-003-1383-0
13 X Chen , Y Fu , Z Xia , L Jie , H Wang , C Lu , W Wang . Analysis of QTL for yield-related traits in cassava using an F1 population from non-inbred parents. Euphytica , 2012 , 187 ( 2 ): 227 – 234
https://doi.org/10.1007/s10681-012-0662-8
14 S Whankaew , S Poopear , S Kanjanawattanawong , S Tangphatsornruang , O Boonseng , D A Lightfoot , K Triwitayakorn . A genome scan for quantitative trait loci affecting cyanogenic potential of cassava root in an outbred population. BMC Genomics , 2011 , 12 ( 1 ): 266
https://doi.org/10.1186/1471-2164-12-266
15 E B Kizito . RÖnnberg-Wästljung A C, Egwang T G, Gullberg U, Fregene M, Westerbergh A. Quantitative trait loci controlling cyanogenic glucoside and dry matter content in cassava ( Manihot esculenta Crantz) roots. Hereditas , 2007 , 144 ( 4 ): 129 – 136
https://doi.org/10.1111/j.2007.0018-0661.01975.x
16 P Chavarriagea-Aguirre , M M Maya , M W Bonierbale , S Kresovich , M A Fregene , J Tohme , G Kochert . Microsatellites in cassava ( Manihot esculenta Crantz): discovery, inheritance and variability. Theoretical and Applied Genetics , 1998 , 97 ( 3 ): 493 – 501
https://doi.org/10.1007/s001220050922
17 M Fregene , F Angel , R Gomez , F Rodriguez , P Chavarriaga , W M Roca , J Tohme , M Bonierbale . A molecular genetic map of cassava ( Manihot esculenta Crantz). Theoretical and Applied Genetics , 1997 , 95 ( 3 ): 431 – 441
https://doi.org/10.1007/s001220050580
18 E Okogbenin , J Marin , M A Fregene . An SSR-based molecular genetic map of cassava. Euphytica , 2006 , 147 ( 3 ): 433 – 440
https://doi.org/10.1007/s10681-005-9042-y
19 X Chen , Z Xia , Y Fu , C Lu , W Wang . Constructing a genetic linkage map using an F 1 population of non-inbred parents in cassava ( Manihot esculenta Crantz). Plant Molecular Biology Reporter , 2010 , 28 ( 4 ): 676 – 683
https://doi.org/10.1007/s11105-010-0198-9
20 S Kunkeaw , S Tangphatsornruang , D R Smith , K Triwiayakorn . Genetic linkage map of cassava ( Manihot esculenta Crantz) based on AFLP and SSR markers. Plant Breeding , 2010 , 129 ( 1 ): 112 – 115
https://doi.org/10.1111/j.1439-0523.2009.01623.x
21 R E C Mba , P Stephensen , K Edwards , S Melzer , J Nkumbira , U Gullberg , K Apel , M Gale , J Tohme , M Fregene . Simple sequence repeat (SSR) markers survey of the cassava ( Manihot esculenta Crantz) genome: towards and SSR-based molecular genetic map of cassava. Theoretical and Applied Genetics , 2001 , 102 ( 1 ): 21 – 31
https://doi.org/10.1007/s001220051614
22 S Sraphet , A Boonchanawiwat , T Thanyasiriwat , O Boonseng , S Tabata , S Sasamoto , K Shirasawa , S Isobe , D A Lightfoot , S Tangphatsornruang , K Triwitayakorn . SSR and EST-SSR-based genetic linkage map of cassava ( Manihot esculenta Crantz). Theoretical and Applied Genetics , 2011 , 122 ( 6 ): 1161 – 1170
https://doi.org/10.1007/s00122-010-1520-5
23 C Lopez , V Jorge , B Piégu , C Mba , D Cortes , S Restrepo , M Soto , M Laudié , C Berger , R Cooke , M Delseny , J Tohme , V Verdier . A unigene catalogue of 5700 expressed genes in cassava. Plant Molecular Biology , 2004 , 56 ( 4 ): 541 – 554
https://doi.org/10.1007/s11103-004-0123-4
24 Y Lokko , J V Anderson , S Rudd , A Raji , D P Horvath , M A Mikel , R Kim , L Liu , A G Hernandez , A G O Dixon , I Ingelbrecht . Characterization of an 18,166 EST dataset for cassava ( Manihot esculenta Crantz) enriched for drought-responsive genes. Plant Cell Reports , 2007 , 26 ( 9 ): 1605 – 1618
https://doi.org/10.1007/s00299-007-0378-8
25 T Sakurai , G Plata , F Rodrígue-Zapata , M Seki , A Salcedo , A Toyoda , A Ishiwata , J Tohme , Y Sakaki , K Shinozaki , M Ishitani . Sequencing analysis of 20,000 full-length cDNA clones from cassava reveals lineage specific expansions in gene families related to stress response. BMC Plant Biology , 2007 , 7 ( 1 ): 66 – 72
https://doi.org/10.1186/1471-2229-7-66
26 M Ferguson , S J Hearne , T J Close , C S Wanamaker , W A Moskal , C D Town , J D Young , P R Marri , I Y Rabbi , E P D Villiers . Identification, validation and high-throughput genotyping of transcribed gene SNPs in cassava. Theoretical and Applied Genetics , 2012a , 124 ( 4 ): 685 – 695
https://doi.org/10.1007/s00122-011-1739-9
27 Y Utsumi , T Sakurai , Y Umemura , S Ayling , M Ishitani , J Narangajavana , P Sojikul , K Triwitayakorn , M Matsui , R Manabe , K Shinozaki , M Seki . RIKEN cassava initiative: establishment of a cassava functional genomics platform. Tropical Plant Biology , 2012 , 5 ( 1 ): 110 – 116
https://doi.org/10.1007/s12042-011-9089-y
28 C Lopez , M Soto , S Restrepo , B Piegu , R Cooke , M Delseny , J Tohme , V Verdier . Gene expression profile in response to Xanthomonas axonopodis pv. Manihotis infection in cassava using a cDNA microarray. Plant Molecular Biology , 2005 , 57 ( 3 ): 393 – 410
https://doi.org/10.1007/s11103-004-7819-3
29 J Yang , D An , P Zhang . Expression profiling of cassava storage roots reveals an active process of glycolysis/gluconeogenesis. Journal of Integrative Plant Biology , 2011 , 53 ( 3 ): 193 – 211
https://doi.org/10.1111/j.1744-7909.2010.01018.x
30 M Ferguson , I Y Rabbi , D Kim , M Gedil , L A B Lopez-Lavalle , E Okogbenin . Molecular markers and their application to cassava breeding: past, present and future. Tropical Plant Biology , 2012b , 5 ( 1 ): 95 – 109
https://doi.org/10.1007/s12042-011-9087-0
31 J P Tomkins , M Fregene , D Main , H Kim , R A Wing , J Tohme . Bacterial artificial chromosome (BAC) library resource for positional cloning of pest and disease resistance genes in cassava ( Manihot esculenta Crantz). Plant Molecular Biology , 2004 , 56 ( 4 ): 555 – 561
https://doi.org/10.1007/s11103-004-5045-7
32 E Okogbenin , T L Setter , M Ferguson , R Mutegi , H Ceballos , B Olasanmi , M Fregene . Phenotypic approaches to drought in cassava . Frontiers in Physiology , 2013 , 4 : 93
https://doi.org/10.3389/fphys.2013.00093
33 A F Adam-Blondon , A Bernole , G Faes , D Lamoureux , S Pateyron , M S Grando , M Caboche , R Velasco , B Chalhoub . Construction and characterization of BAC libraries from major grapevine cultivars. Theoretical and Applied Genetics , 2005 , 110 ( 8 ): 1363 – 1371
https://doi.org/10.1007/s00122-005-1924-9
34 Y Yim , G L Davis , N A Duru , T A Musket , E W Linton , J W Messing , M D McMullen , C A Soderlund , M L Polacco , J M Gardiner , E H Coe . Characterization of three maize bacterial artificial chromosome libraries toward anchoring of the physical map to the genetic map using high-density bacterial artificial chromosome filter hybridization. Plant Physiology , 2002 , 130 ( 4 ): 1686 – 1696
https://doi.org/10.1104/pp.013474
35 B C Meyers , S Scalabrin , M Morgante . Mapping and sequencing complex genomes: let’s get physical! Nature Reviews Genetics , 2004 , 5 ( 8 ): 578 – 589
https://doi.org/10.1038/nrg1404
36 L Lin , G J Pierce , J E Bowers , J C Estill , R O Compton , L K Rainville , C Kim , C Lemke , J Rong , H Tang , X Wang , M Braidotti , A H Chen , K Chicola , K Collura , E Epps , W Golser , C E Grover , J Ingles , S Karunakaran , D Kudrna , J Olive , N Tabassum , E Um , M Wissotski , Y Yu , A Zuccolo , M Rahman , D G Peterson , R A Wing , J F Wendel , A H Paterson . A draft physical map of a D-genome cotton species ( Gossypium raimondii ). BMC Genomics , 2010 , 11 ( 1 ): 395
https://doi.org/10.1186/1471-2164-11-395
37 D Schulte , R Ariyadasa , B Shi , D Fleury , C Saski , M Atkins , P Dejong , C Wu , A Graner , P Langridge , N Stein . BAC library resources for map-based cloning and physical map construction in barley (Hordeum vulgare L.). BMC Genomics , 2011 , 12 ( 1 ): 247
https://doi.org/10.1186/1471-2164-12-247
38 H Shinozuka , N O I Cogan , K F Smith , G C Spangenberg , J W Forster . Fine-scale comparative genetic and physical mapping supports map-based cloning strategies for the self-incompatibility loci of perennial ryegrass ( Lolium perenne L.). Plant Molecular Biology , 2010 , 72 ( 3 ): 343 – 355
https://doi.org/10.1007/s11103-009-9574-y
39 H Kucuktas , S Wang , P Li , C He , P Xu , Z Sha , H Liu , Y Jiang , P Baoprasertkul , B Somridhivej , Y Wang , J Abernathy , X Guo , L Liu , W M Muir , Z Liu . Construction of genetic linkage maps and comparative genome analysis of catfish using gene-associated markers. Genetics , 2009 , 181 ( 4 ): 1649 – 16660
https://doi.org/10.1534/genetics.108.098855
40 R Philippe , E Paux , I Bertin , P Sourdille , F Choulet , C Laugier , H Simkova , J Safař , A Bellec , S Vautrin , Z Frenkel , F Cattonaro , F Magni , S Scalabrin , M M Martis , K F X Mayer , A B Korol , H Berges , J Doležel , C Feuillet . A high density physical map of chromosome 1BL supports evolutionary studies, map-based cloning and sequencing in wheat. Genome Biology , 2013 , 14 ( 6 ): 1 – 22
https://doi.org/10.1186/gb-2013-14-6-r64
41 G A Tuskan , S P Difazio , S Jansson , J Bohlmann , I V Grigoriev , U Hellsten , N H Putnam , S Ralph , S Rombauts , A Salsmov , J E Schein , L Sterck , A Aerts , R R Bhalerao , R P Bhalerao , D Blaudez , W Boerjan , A Brun , A M Brunner , V Busov , M M Campbell , J E Carlson , M Chalot , J Chapman , G Chen , D M L Cooper , P M Coutinho , J Couturier , S F Covert , Q C B Cronk , R Cunningham , J M Davis , S Degroeve , A Dejardin , C W Depamphilis , J C Detter , B Dirks , I Dubchak , S Duplessis , J Ehlting , B E Ellis , K Gendler , D Goodsterin , M Gribskov , J Grimwood , A Groover , L E Gunter , B Hamberger , B Heinze , Y Helariutta , B Henrisssat , D Holligan , R A Holt , W Huang , N Islamfaridi , S Jones , J K Jonesrhoades , R Jorgensen , C P Joshi , J Kangasjarvi , J Karlsson , C T Kelleher , R Kirkpatrick , M Kirst , A Kohler , U C Kalluri , F W Larimer , J Leebensmack , J C Leple , P Locascio , Y Lou , S Lucas , F Martin , B Montanini , C Napoli , D R Nelson , C D Nelson , K Nieminen , O Nilsson , V Pereda , G Peter , R Philippe , G Pilate , A Poliakov , J Razumovskaya , P M Richardson , C Rinaldi , K Ritland , P Rouze , D Ryaboy , J Schmutz , J Schrader , B Segerman , H Shin , A Siddiqui , F Sterky , A Terry , C Tsai , E Uberbacher , P Unneberg , J Vahala , K Wall , S R Wessler , G Yang , T Yin , C J Douglas , M A Marra , G Sandberg , Y V D Peer , D S Rokhsar . The genome of black cottonwood, Populus trichocapa (Torr. & Gray). Science , 2006 , 313 ( 5793 ): 1596 – 1604
https://doi.org/10.1126/science.1128691
42 P S Schnable , D Ware , R S Fulton , J C Stein , F Wei , S Pasternak , C Liang , J Zhang , L Fulton , T Graves , P J Minx , A D Reily , L Courtney , S S Kruchowski , C Tomlinson , C Strong , K D Delehaunty , C Fronick , B Courtney , S M Rock , E A Belter , F Du , K Kim , R Abbott , M Cotton , A Levy , P Marchetto , K Ochoa , S M Jackson , B Gillam , W Chen , L Yan , J Higginbotham , M Cardenas , J Waligorski , E Applebaum , L Phelps , J Falcone , K L Kanchi , T Thane , A Scimone , N Thane , J Henke , T Wang , J Ruppert , N Shah , K Rotter , J Hodges , E Ingenthron , M Cordes , S Kohlberg , J Sgro , B Delgado , K Mead , A T Chinwalla , S Leonard , K Crouse , K Collura , D Kudrna , J Currie , R He , A Angelova , S Rajasekar , T Mueller , R Lomeli , G Scara , A Ko , K Delaney , M Wissotski , G Lopez , D Campos , M Braidotti , E Ashley , W Golser , H Kim , S Lee , J Lin , Z Dujmic , W Kim , J Talag , A Zuccolo , C Fan , A Sebastian , M Kramer , L Spiegel , L Nascimento , T Zutavern , B Miller , C Ambroise , S M Muller , W Spooner , A Narechania , L Ren , S Wei , S Kumari , B Faga , M J Levy , L Mcmahan , P V Buren , M W Vaughn , Y Kai , C Yeh , S J Emrich , Y Jia , A Kalyanaraman , A Hsia , W B Barbazuk , R S Baucom , T P Brutnell , N C Carpita , C Chaparro , J Chia , J Deragon , J C Estill , Y Fu , J A Jeddeloh , Y han , H Lee , P Li , D Lisch , S Liu , Z Liu , D H Nagel , C M Mccann , P Sanmiguel , A M Myers , D Nettleton , J Nguyen , B W Penning , L Ponnala , K L Schneider , D C Schwartz , A Sharma , C Soderlund , N M Springer , Q Sun , H Wang , M S Waterman , R Westerman , T K Wolfgruber , L Yang , Y Yu , L Zhang , S Zhou , Q Zhu , J L Bennetzen , R K Dawe , J Jiang , N Jiang , G G Presting , S R Wessler , S Aluru , R A Martienssen , S W Clifton , W R Mccombie , R A Wing , R K Wilson . The B73 maize genome: complexity, diversity, and dynamics. Science , 2009 , 326 ( 5956 ): 1112 – 1115
https://doi.org/10.1126/science.1178534
43 M W Bevan , C Uauy . Genomics reveals new landscapes for crop improvement. Genome Biology , 2013 , 14 ( 6 ): 206
https://doi.org/10.1186/gb-2013-14-6-206
44 R Ariyadasa , N Stein . Advances in BAC-based physical mapping and map integration strategies in plants. Journal of Biomedicine & Biotechnology , 2012 , 2012 : 1 – 11
https://doi.org/10.1155/2012/184854
45 J Ha , B Abernathy , W Nelson , D Grant , X Wu , H T Nguyen , G Stacey , Y Yu , R A Wing , R C Shoemaker , S A Jackson . Integration of the draft sequence and physical map as a framework for genomic research in soybean (Glycine max (L.) Merr.) and wild soybean (Glycine soja Sieb. and Zucc.). G3: Genes, Genomes, Genetics , 2012 , 2 ( 3 ): 321 – 329
46 Z Xu , S Sun , L Covaleda , K Ding , A Zhang , C Wu , C F Scheuring , H Zhang . Genome physical mapping with large-insert bacterial clones by fingerprint analysis: methodologies, source clone genome coverage, and contig map quality. Genomics , 2004 , 84 ( 6 ): 941 – 951
https://doi.org/10.1016/j.ygeno.2004.08.014
47 M Luo , C Thomas , F M You , J Hsiao , S Ouyang , C R Buell , M E Malandro , P E Mcguire , O D Anderson , J Dvorak . High-throughput fingerprinting of bacterial artificial chromosomes using the SNaPshot labeling kit and sizing of restrictin fragments by capillary electrophoresis. Genomics , 2003 , 82 ( 3 ): 378 – 389
https://doi.org/10.1016/S0888-7543(03)00128-9
48 W M Nelson , A K Bharti , E Butler , F Wei , G Fuks , H Kim , R A Wing , J Messing , C Soderlund . Whole-genome validation of high-information-content fingerprinting. Plant Physiology , 2005 , 139 ( 1 ): 27 – 38
https://doi.org/10.1104/pp.105.061978
49 H Zhang , X Zhao , X Ding , A H Paterson , R A Wing . Preparation of megabase-size DNA from plant nuclei. Plant Journal , 1995 , 7 ( 1 ): 175 – 184
https://doi.org/10.1046/j.1365-313X.1995.07010175.x
50 C Wu , Z Xu , H Zhang . DNA libraries. In: Encyclopedia of Molecular Cell Biology and Molecular Medicine. Meyers RA (ed.). Vol. 3 (2nd Edition). Weinheim : Wiley-VCH Verlag GmbH , 2004 , 385 – 425
51 C Ren , Z Xu , S Sun , M Lee , C Wu , C F Scheuring , H Zhang . Genomic DNA Libraries and Physical Mapping. In: The Handbook of Plant Genome Mapping: Genetic and Physical Mapping. Meksem K and Kahl G (eds.). Weinheim : Wiley-VCH Verlag GmbH , 2005 , 173 – 213
52 M Zhang , Y Li , H Zhang . Isolation of megabase-sized DNA fragments from plants. In: Handbook of Nucleic Acid Purification. D. Liu (ed.) . Florida : Taylor & Francis Group, LLC , 2008 , 513 – 524
53 J Sambrook , D W Russell . Molecular cloning: a laboratory manual (3rd ed.) New York : Cold Spring Harbor Laboratory Press , 2001 , 1 – 68
54 S M Quiniou , G C Waldbieser , M V Duke . A first generation BAC-based physical map of the channel catfish genome. BMC Genomics , 2007 , 8 ( 1 ): 40
https://doi.org/10.1186/1471-2164-8-40
55 B Ewing , L Hillier , M C Wendl , P Green . Base-calling of automated sequencer traces using Phred.I. Accuracy assessment. Genome Research , 1998 , 8 ( 3 ): 175 – 185
https://doi.org/10.1101/gr.8.3.175
56 H Chou , M H Holmes . DNA sequence quality trimming and vector removal. Bioinformatics , 2001 , 17 ( 12 ): 1093 – 1104
https://doi.org/10.1093/bioinformatics/17.12.1093
57 B Langmead , S L Salzberg . Fast gapped-read alignment with Bowtie 2. Nature Methods , 2012 , 9 ( 4 ): 357 – 359
https://doi.org/10.1038/nmeth.1923
58 H Li , B Handsaker , A Wysoker , T Fennell , J Ruan , N Homer , G T Marth , G R Abecasis , R Durbin . The Sequence Alignment/Map format and SAMtools. Bioinformatics) , 2009 , 25 ( 16 ): 2078 – 2079
https://doi.org/10.1093/bioinformatics/btp352
59 A Conesa , S Götz . Blast2GO: a comprehensive suite for functional analysis in plant genomics. International Journal of Plant Genomics , 2008 , 2008 : 1 – 12
https://doi.org/10.1155/2008/619832
60 C Wu , S Sun , P Nimmakayala , F A Santos , K Meksem , R Springman , K Ding , D A Lightfoot , H A Zhang . BAC and BIBAC-based physical map of the soybean genome. Genome Research , 2004 , 14 ( 2 ): 319 – 326
https://doi.org/10.1101/gr.1405004
61 J Mun , S Kwon , T Yang , H Kim , B Choi , S Baek , J S Kim , M Jin , J A Kim , M Lim , S I Lee , H Kim , H Kim , Y P Lim , B Park . The first generation of a BAC-based physical map of Brassica rapa. BMC Genomics , 2008 , 9 ( 1 ): 280
https://doi.org/10.1186/1471-2164-9-280
62 E Coe , K Cone , M McMullen , S S Chen , G Davis , J Gardiner , E Liscum , M Polacco , A Paterson , H Sanchez-Villeda , C Soderlund , R Wing . Access to the maize genome: an integrated physical and genetic map. Plant Physiology , 2002 , 128 ( 1 ): 9 – 12
https://doi.org/10.1104/pp.010953
63 C T Kelleher , R Chiu , H Shin , I E Bosdet , M I Krzywinski , C D Fjell , J Wilkin , T Yin , S P DiFazio , J Ali , J K Asano , S Chan , A Cloutier , N Girn , S Leach , D Lee , C A Mathewson , T Olson , K O’connor , A L Prabhu , D E Smailus , J M Stott , M Tsai , N H Wye , G S Yang , J Zhuang , R A Holt , N H Putnam , J Vrebalov , J J Giovannoni , J Grimwood , J Schmutz , D Rokhsar , S J Jones , M A Marra , G A Tuskan , J Bohlmann , B E Ellis , K Ritland , C J Douglas , J E Schein . A physical map of the highly heterozygous Populus genome: integration with genome sequence and genetic map and analysis of haplotype variation. Plant Journal , 2007 , 50 ( 6 ): 1063 – 1078
https://doi.org/10.1111/j.1365-313X.2007.03112.x
64 Y Han , K Gasic , B M Marron , J E Beever , S S Korban . A BAC-based physical map of the apple genome. Genomics , 2007 , 89 ( 5 ): 630 – 637
https://doi.org/10.1016/j.ygeno.2006.12.010
65 J M Córdoba , C Chavarro , F Rojas , C Muñoz , M W Blair . Identification and mapping of simple sequence repeat markers from Common Bean ( Phaseolus vulgaris L.) bacterial artificial chromosome end sequences for genome characterization and genetic-physical map integration. Plant Genome , 2010 , 3 ( 3 ): 154 – 165
https://doi.org/10.3835/plantgenome2010.06.0013
66 Y Han , D Chagné , K Gasic , E H A Rikkerink , J E Beever , S E Gardiner , S S Korban . BAC-end sequence-based SNPs and Bin mapping for rapid integration of physical and genetic maps in apple. Genomics , 2009 , 93 ( 3 ): 282 – 288
https://doi.org/10.1016/j.ygeno.2008.11.005
67 P Ollitrault , J Terol , A Garcia-Lor , A Bérard , A Chauveau , Y Froelicher , C Belzile , R Morillon , L Navarro , D Brunel , M Talson . SNP mining in C.clementina BAC end sequences; transferability in the Citrus genus (Rutaceae), phylogenetic inferences and perspectives for genetic mapping. BMC Genomics , 2012 , 13 ( 1 ): 13
https://doi.org/10.1186/1471-2164-13-13
68 J L Shultz , S Kazi , R Bashir , J A Afzal , D A Lightfoot . The development of BAC-end sequenced-based microsatellite markers and placement in the physical and genetic maps of soybean. Theoretical and Applied Genetics , 2007 , 114 ( 6 ): 1081 – 1090
https://doi.org/10.1007/s00122-007-0501-9
[1] Zhiqiang XIA,Xin CHEN,Cheng LU,Meiling ZOU,Shujuan WANG,Yang ZHANG,Kun PAN,Xincheng ZHOU,Haiyan WANG,Wenquan WANG. Comparative transcriptomics revealed enhanced light responses, energy transport and storage in domestication of cassava (Manihot esculenta)[J]. Front. Agr. Sci. Eng. , 2016, 3(4): 295-307.
[2] Shengkui ZHANG,Ping’an MA,Haiyan WANG,Cheng LU,Xin CHEN,Zhiqiang XIA,Meiling ZOU,Xinchen ZHOU,Wenquan WANG. Genomics approaches to unlock the high yield potential of cassava, a tropical model plant[J]. Front. Agr. Sci. Eng. , 2014, 1(4): 259-266.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed