Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2015, Vol. 2 Issue (2) : 168-178    https://doi.org/10.15302/J-FASE-2015061
RESEARCH ARTICLE
Lodging resistance and yield potential of winter wheat: effect of planting density and genotype
Yonggui XIAO1,Jianjun LIU2,Haosheng LI2,Xinyou CAO2,Xianchun XIA1,Zhonghu HE1,3,*()
1. Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
2. Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
3. International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, Beijing 100081, China
 Download: PDF(627 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Improved lodging resistance is important for achieving high yield in irrigated environments. This study was conducted to determine genotypic variation in lodging resistance and related morphological traits among winter wheat cultivars planted at two densities, and to identify key traits associated with lodging resistance. Lodging performance of 28 genotypes, including 24 released cultivars and four advanced lines, was evaluated at 250 plants per square meter and 500 plants per square meter in Shandong province during the 2008&ndash;2009 and 2009&ndash;2010 crop seasons. At the higher density, the average grain yield was 2.6% higher, even though lodging score rose by as much as 136%. The higher planting density increased lodging through increased leaf area index (LAI), plant height, center of gravity and length of basal internodes, and reduced grain weight per spike and diameter of the lower two stem internodes. LAI, center of gravity and diameter of first internodes, as the important indicators for lodging resistance, were significantly correlated with lodging score, with R= 0.62, 0.59 and &minus;0.52 (P<0.01), respectively. Plant pushing resistance was significantly associated with diameter and length of the first internodes (R = 0.71&ndash;0.77, P<0.01), indicating it could be used to assess the strength of the lower stem. Higher planting density could be used to select genotypes with lodging resistance in irrigated environments. Cultivars carrying high plant density tolerance and high yield potential, such as Jimai 22 and Liangxing 66, were recommended as leading cultivars for production as well as elite crossing parents for further increasing yield potential in the Yellow and Huai Valleys Winter Wheat Zone in China.

Keywords common wheat      yield potential      lodging performance      pushing resistance      leaf area index     
Corresponding Author(s): Zhonghu HE   
Online First Date: 20 July 2015    Issue Date: 25 September 2015
 Cite this article:   
Yonggui XIAO,Jianjun LIU,Haosheng LI, et al. Lodging resistance and yield potential of winter wheat: effect of planting density and genotype[J]. Front. Agr. Sci. Eng. , 2015, 2(2): 168-178.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2015061
https://academic.hep.com.cn/fase/EN/Y2015/V2/I2/168
Fig.1  Daily temperature and rainfall regimes during growing season at the experimental site in 2008-2009 (a) and 2009-2010 (b). Arrows indicate lodging events during the grain-filling stages.
Genotype Year released Pedigree Dwarfing gene Lodging performance
Lumai 21 1996 F4T 144/Yumai 2 Rht-D1b, Rht8c 3
Lumai 23 1996 Lumai 8/Dali’ai Rht-D1b, Rht8c 0
Jinan 17 1999 Linfen 5064/Lumai 13 Rht-D1b 1
Jimai 19 1999 Linfen 5064/Lumai 13 Rht-D1b 2
Jining 13 2000 Yan 1934/84(4)046//Liao 83-1/2114 Rht-D1b 0
Taishan 21 2000 Lu 26744/Taishan 10//Lumai 7/3/Lumai 18 Rht-D1b 1
Yannong 19 2001 Yan 1934/Shan 82-29 Rht-D1b 3-4
Zimai 12 2001 Zi 917065/Zi 010292 Rht-D1b 0
Jimai 20 2003 Lumai 14/Ji 884187 Rht-D1b 2
Weimai 8 2003 88-3149/Aus 621108 Rht-D1b 0
Yannong 23 2003 Yan 1061/Lumai 14 Rht-D1b 1-2
Jining 16 2004 Yan 1934/84(4)046//Liao 83-1/2114 Rht-D1b 0
Linmai 2 2004 Lumai 23/Lin 90-15 Rht-D1b, Rht8c 0
Taishan 23 2004 Tai 881414/Tai 876161 Rht-D1b 3
Yannong 24 2004 Shan 229/Anmai 1 Rht-D1b 1-2
Taishan 24 2005 Tai 904017/Zhengzhou 8329 Rht-D1b 1
Jimai 22 2006 Ji 935024/Ji 935106 Rht-D1b, Rht8c 0
Linmai 4 2006 Lumai 23/Lin 90-15 Rht-D1b 0
Shannong 15 2006 Jinan 17/Jihe 916 Rht-D1b 0
Wennong 6 2006 Lu 915021//Lumai 18/Tai 876161 Rht-D1b 0
Liangxing 66 2008 Ji 91102/Ji 935031 Rht-D1b, Rht8c 0
Tainong 18 2008 Laizhou 137/Yan 369-7 Rht-D1b, Rht8c 0
Taishan 223 2008 Ji 5018/Lumai 21 Rht-D1b, Rht8c 2
Zhongmai 155 2008 Jimai 19/Lumai 21 Rht-D1b, Rht8c 1-2
Ji 035037 2009 Laizhou 95021/Yunfengzao 18 Rht-D1b, Rht8c -
Ji 046402 2009 Ji 90(4)015/Han 5136 Rht-D1b, Rht8c -
Ji 065504 2009 Annong 91168/Gaocheng 8901 Rht-D1b -
Ji 066324 2009 Ji 965261/Yannong 19 Rht-D1b, Rht8c -
Tab.1  Pedigree, year released, dwarfing genes and lodging performance of 28 wheat genotypes grown at Jinan, Shandong, 2008 to 2010
Fig.2  Diagram illustrating the measurement of pushing resistance of 15 culms in the center of plant gravity
Source G Y T R G×Y G×T G×Y×T Error
of 27 1 1 2 27 27 28 222
YLD/ (t·hm-2) 43.3c 1.7a 3.3c 1.2 27.4c 5.8 10.7 57.5
TKW/g 5552.5c 407.5c 91.9c 10.4 248.5a 243.6a 80.4 1137.6
SPSM 1845544.3c 6961531.4c 164187.1c 3504.8 349204.9c 134903.3 134684.2 824933.5
GPS 3482.5c 12.6 970.7c 1478.3c 366.1 146.5 166.8 3833.5
GPSM (× 103) 1110.0c 8967.9c 0.5 244.4c 314.7 282.3 202.9 1819.8
GWPS /g 19.7c 0.7c 2.7c 2.7c 0.7 0.7 0.3 8.2
LS/% 6125.2c 3138.8c 1265.0c 64.8 6125.2c 2138.4c 3403.4c 3196.4
PR/N 2375.3c 141.4c 326.3c 1.5 192.3a 185.1a 80.4 908.3
BM/ (t·hm-2) 474.1c 376.8c 5.5 0.3 773.7c 101.1 105.4 694.5
HI 0.1c 0.04c 0.0001 0.002 0.03c 0.01 0.02b 0.07
LAI (A+ 15) 97.2c 75.7c 1.6a 2.1 19.8b 12.4 9.2 77.6
WSC/(mg·g-1) 155195.5c 80475.3c 16252.9c 1743.6 42266.4c 9712.9 56755.0c 100634.7
PH/cm 2280.8c 4973.1c 221.3c 19.1 263.8c 179.8a 213.6b 872.6
CG/cm 688.4c 4730.3c 108.6c 7.9 150.6c 35.2 45.9 402.8
DFI /mm 62.9c 26.7c 3.7c 0.06 3.1c 1.0 2.0a 8.9
DSI/mm 81.4c 8.7c 4.8c 0.4a 2.7b 1.1 1.5 11.1
LFI/cm 199.3c 28.9c 0.02 0.7 24.1 35.9a 21.9 191.4
LSI/cm 441.3c 13.5c 3.7c 2.5 8.8 21.6b 12.0 93.9
Tab.2  Summaries of analyses of variance for yield traits, morphological parameters and lodging performance in the 2008-09 and 2009-10 crop seasons
Source YLDa/(t·hm-2) TKW/g GPSM(× 103) PH/cm LAI LS/% PR/N DFI/mm DSI/mm
250b 500 250 500 250 500 250 500
Lumai 21 7.3 36.8 17.5 82.6 5.8 1.1 17.2 2.7 1.4 4.0 3.6 4.3 4.1
Lumai 23 7.3 48.2 13.3 82.2 5.4 0.0 0.0 7.7 6.1 5.5 5.3 6.3 5.9
Jinan 17 7.6 38.4 16.2 78.4 6.1 1.7 6.3 1.1 0.8 3.4 3.2 3.8 3.5
Jimai 19 7.5 42.0 15.2 78.1 6.1 0.0 12.6 3.1 1.6 4.0 3.9 4.3 4.3
Jining 13 7.7 44.5 14.0 77.3 5.9 0.0 0.0 7.7 4.2 4.3 3.7 4.9 4.4
Taishan 21 8.2 39.6 16.3 77.5 5.6 0.0 4.3 3.0 1.0 3.7 3.6 3.9 3.9
Yannong 19 7.7 37.3 16.1 80.8 6.8 10.7 18.3 2.4 0.8 3.8 3.6 4.2 3.7
Zimai 12 7.8 45.0 14.6 77.3 5.3 0.0 0.0 6.8 3.9 4.7 4.6 5.2 5.0
Jimai 20 7.0 35.8 19.3 78.0 6.3 1.5 13.5 2.1 0.8 3.5 3.2 3.8 3.5
Weimai 8 7.5 49.7 14.0 82.4 4.9 0.0 0.0 12.0 8.1 4.5 4.1 4.9 4.7
Yannong 23 7.4 33.5 19.1 76.2 5.3 0.0 3.7 3.9 1.1 4.0 3.7 4.4 4.2
Jining 16 7.4 48.3 13.4 77.3 4.7 0.0 0.0 14.9 7.1 4.4 4.4 5.0 4.8
Linmai 2 8.5 39.9 16.7 75.4 6.0 0.0 0.6 3.1 2.1 4.0 3.7 4.4 4.3
Taishan 23 8.2 43.6 15.7 76.4 6.4 3.3 11.7 2.1 1.3 3.4 3.3 4.2 3.9
Yannong 24 7.8 39.2 17.9 79.8 5.7 0.0 0.9 4.0 1.3 4.1 3.9 4.4 4.2
Taishan 24 7.5 37.7 15.1 76.9 6.3 0.0 0.0 2.8 1.7 4.0 3.8 4.4 4.1
Jimai 22 8.1 41.8 17.1 74.9 5.9 0.0 0.0 4.0 2.3 4.4 4.2 4.5 4.4
Linmai 4 8.0 44.7 14.1 78.7 5.3 0.0 0.0 10.4 7.4 4.7 4.4 5.1 4.9
Shannong 15 7.9 45.1 14.1 75.6 5.9 0.0 0.0 1.6 1.2 4.0 3.7 4.3 4.1
Wennong 6 7.6 41.5 14.5 75.8 4.8 0.0 0.0 5.7 2.7 4.3 4.2 4.8 4.4
Liangxing 66 8.5 41.1 16.4 76.8 5.5 0.0 0.0 3.2 1.6 4.2 3.9 4.5 4.2
Tainong 18 7.7 40.0 16.5 70.9 4.8 0.0 0.0 5.8 3.8 4.6 4.4 4.9 4.7
Taishan 223 7.1 35.5 16.8 78.6 5.7 6.6 15.9 1.8 1.6 4.1 3.9 4.6 4.3
Zhongmai 155 7.8 36.3 18.0 79.1 5.5 0.0 1.1 3.3 1.3 4.2 4.0 4.4 4.2
Ji 035037 7.5 38.6 17.3 77.4 6.0 3.7 16.2 2.4 1.4 3.7 3.5 4.1 3.9
Ji 046402 8.1 41.7 15.5 73.9 6.3 0.0 1.1 4.2 1.6 3.9 3.7 4.5 4.2
Ji 065504 7.8 37.5 18.1 81.2 6.8 2.6 14.4 2.2 1.1 3.9 3.7 4.2 4.0
Ji 066324 7.8 43.2 16.2 75.3 5.7 0.0 2.0 2.1 1.8 3.8 3.7 4.2 4.0
Mean 7.7 41.0 16.0 77.7 5.7 1.1 5.0 4.5 2.5 4.1 3.9 4.5 4.3
CV/% 7.4 11.8 37.6 6.7 16.3 4.8 11.2 2.7 2.2 0.4 0.4 0.3 0.4
Tab.3  Different traits for 28 genotypes in the 2008-2009 and 2009-2010 crop seasons
Morphological character (n = 28) Lodging score Pushing resistance
Lodging score/% 1.00 -0.48a
Grain yield/(t·hm-2) -0.53b 0.12
Thousand kernel weight/g -0.48a 0.73c
Spikes per square meter, 0.42a -0.82c
Grains per spike -0.29 0.71c
Grains per square meter 0.35 -0.47a
Grain weight per spike/g -0.45a 0.89c
Biomass/(t·hm-2) -0.13 0.61c
Harvest index -0.30 0.41a
Leaf area index (DC75) 0.62c -0.67c
Carbohydrates content of stem/(mg·g-1) -0.36 0.31
Plant height/cm 0.25 0.25
Center of gravity/cm 0.59c -0.32
Diameter of first internodes/mm -0.52b 0.71c
Diameter of second internodes/mm -0.49b 0.77c
Length of first internodes/cm 0.26 -0.65c
Length of second internodes/cm 0.08 -0.06
Tab.4  Pearson correlation coefficients (R) of yield components, physiological and morphological traits with lodging score and pushing resistance based on average values of 500 plants per square meter from the 2008-2009 and 2009-2010 crop seasons
Fig.3  Principal component analysis (PCA) of 18 parameters for 28 genotypes under high plant densities. (a) ?; (b) ?. YLD, grain yield; TKW, thousand kernel weight; SPSM, spikes per square meter; GPS, grains per spike; GPSM, grains per square meter; GWPS, grain weight per spike; LS, lodging score; PR, pushing resistance; BM, biomass; HI, harvest index; LAI, leaf area index; WSC, water solute carbohydrate; PH, plant height; CG, center of gravity; DFI, diameter of first internode; DSI, diameter of second internode; LFI, length of first internode; LSI, length of second internode.
Type No. YLD/(t·hm-2) TKW/g GPSM (× 103) LS/% PR/N (A+ 15) LAI WSC/(mg·g-1) PH/cm CG/cm DFI/mm DSI/mm
I 7 7.4c 37.7b 17.2a 9.6a 1.8c 6.2a 142.3c 79.5a 41.6a 3.7c 4.1c
II 8 7.6b 40.1a 16.5b 0.0c 7.1a 5.2c 165.8a 77.7 b 39.5c 4.5a 5.0a
III 13 7.9a 45.2b 14.3c 1.4b 2.2b 5.9b 151.5b 76.6 c 40.0b 3.8b 4.3b
Tab.5  Phenotypic values based on average values of 500 plants per square meter in three types identified by principal component analysis
1 Fischer R A,&nbsp;Stapper M.&nbsp;Lodging effects on high-yielding crops of irrigated semidwarf wheat.&nbsp;Field Crops Research,&nbsp;1987,&nbsp;17(3-4):&nbsp;245&ndash;258
https://doi.org/10.1016/0378-4290(87)90038-4
2 Pumphrey F V,&nbsp;Rubenthaler G L.&nbsp;Lodging effects on yield and quality of soft white wheat.&nbsp;Cereal Chemistry,&nbsp;1983,&nbsp;60(4):&nbsp;268&ndash;270
3 Foulkes M J,&nbsp;Slafer G A,&nbsp;Davies W J,&nbsp;Berry P M,&nbsp;Sylvester-Bradley R,&nbsp;Martre P,&nbsp;Calderini D F,&nbsp;Griffiths S,&nbsp;Reynolds M P.&nbsp;Raising yield potential of wheat. III. Optimizing partitioning to grain while maintaining lodging resistance.&nbsp;Journal of Experimental Botany,&nbsp;2011,&nbsp;62(2):&nbsp;469&ndash;486
https://doi.org/10.1093/jxb/erq300 pmid: 20952627
4 Berry P M,&nbsp;Sylvester-Bradley R,&nbsp;Berry S.&nbsp;Ideotype design for lodging-resistant wheat.&nbsp;Euphytica,&nbsp;2007,&nbsp;154(1-2):&nbsp;165&ndash;179
https://doi.org/10.1007/s10681-006-9284-3
5 He Z H,&nbsp;Xia X C,&nbsp;Peng S B,&nbsp;Thomas A L.&nbsp;Meeting demands for increased cereal production in China.&nbsp;Journal of Cereal Science,&nbsp;2014,&nbsp;59(3):&nbsp;235&ndash;244
https://doi.org/10.1016/j.jcs.2013.07.012
6 Xiao Y G,&nbsp;Qian Z G,&nbsp;Wu K,&nbsp;Liu J J,&nbsp;Xia X C,&nbsp;Ji W Q,&nbsp;He Z H.&nbsp;Genetic gains in grain yield and physiological traits of winter wheat in Shandong Province, China, from 1969 to 2006.&nbsp;Crop Science,&nbsp;2012,&nbsp;52(1):&nbsp;44&ndash;56
https://doi.org/10.2135/cropsci2011.05.0246
7 Wang C Y,&nbsp;Dai X L,&nbsp;Shi Y H,&nbsp;Wang Z L,&nbsp;Chen X G,&nbsp;He M R.&nbsp;Effects of nitrogen application rate and plant density on lodging resistance in winter wheat.&nbsp;Acta Agronomica Sinica,&nbsp;2012,&nbsp;38(1):&nbsp;121&ndash;128&nbsp;(in Chinese)&nbsp;
https://doi.org/10.3724/SP.J.1006.2012.00121
8 Liu X,&nbsp;Ju X,&nbsp;Zhang F,&nbsp;Pan J,&nbsp;Christie P.&nbsp;Nitrogen dynamics and budgets in a winter wheat-maize cropping system in the North China Plain.&nbsp;Field Crops Research,&nbsp;2003,&nbsp;83(2):&nbsp;111&ndash;124
https://doi.org/10.1016/S0378-4290(03)00068-6
9 Berry P M,&nbsp;Spink J H,&nbsp;Gay A P,&nbsp;Craigon J.&nbsp;A comparison of root and stem lodging risks among winter wheat cultivars.&nbsp;Journal of Agricultural Science,&nbsp;2003,&nbsp;141(2):&nbsp;191&ndash;202
https://doi.org/10.1017/S002185960300354X
10 Berry P M,&nbsp;Griffin J M,&nbsp;Sylvester-Bradley R,&nbsp;Scott R K,&nbsp;Spink J H,&nbsp;Baker C J,&nbsp;Clare R W.&nbsp;Controlling plant form through husbandry to minimize lodging in wheat.&nbsp;Field Crops Research,&nbsp;2000,&nbsp;67(1):&nbsp;59&ndash;81
https://doi.org/10.1016/S0378-4290(00)00084-8
11 Berry P M,&nbsp;Sterling M,&nbsp;Baker C J,&nbsp;Spink J,&nbsp;Sparkes D L.&nbsp;A calibrated model of wheat lodging compared with field measurements.&nbsp;Agricultural and Forest Meteorology,&nbsp;2003b,&nbsp;119(3-4):&nbsp;167&ndash;180
https://doi.org/10.1016/S0168-1923(03)00139-4
12 Tripathi S C,&nbsp;Sayre K D,&nbsp;Kaul J N.&nbsp;Planting systems on lodging behavior, yield components, and yield of irrigated spring bread wheat.&nbsp;Crop Science,&nbsp;2005,&nbsp;45(4):&nbsp;1448&ndash;1455
https://doi.org/10.2135/cropsci2003-714
13 Kong E Y,&nbsp;Liu D C,&nbsp;Guo X L,&nbsp;Yang W L,&nbsp;Sun J Z,&nbsp;Li X,&nbsp;Zhan K H,&nbsp;Cui D G,&nbsp;Lin J X,&nbsp;Zhang A M.&nbsp;Anatomical and chemical characteristics associated with lodging resistance in wheat.&nbsp;Crop Journal,&nbsp;2013,&nbsp;1(1):&nbsp;43&ndash;49
https://doi.org/10.1016/j.cj.2013.07.012
14 Verma V,&nbsp;Worland A J,&nbsp;Sayers E J,&nbsp;Fish L,&nbsp;Caligari P D S,&nbsp;Snape J W.&nbsp;Identification and characterization of quantitative trait loci related to lodging resistance and associated traits in bread wheat.&nbsp;Plant Breeding,&nbsp;2005,&nbsp;124(3):&nbsp;234&ndash;241
https://doi.org/10.1111/j.1439-0523.2005.01070.x
15 Keller M,&nbsp;Karutz Ch,&nbsp;Schmid J E,&nbsp;Stamp P,&nbsp;Winzeler M,&nbsp;Keller B,&nbsp;Messmer M M.&nbsp;Quantitative trait loci for lodging resistance in a segregating wheat × spelt population.&nbsp;Theoretical and Applied Genetics,&nbsp;1999,&nbsp;98(6-7):&nbsp;1171&ndash;1182
https://doi.org/10.1007/s001220051182
16 Rebetzke G J,&nbsp;van Herwaarden A F,&nbsp;Jenkins C,&nbsp;Weiss M,&nbsp;Lewis D,&nbsp;Ruuska S,&nbsp;Tabe L,&nbsp;Fettell N A,&nbsp;Richards R A.&nbsp;Quantitative trait loci for water-soluble carbohydrates and associations with agronomic traits in wheat.&nbsp;Australian Journal of Agricultural Research,&nbsp;2008,&nbsp;59(10):&nbsp;891&ndash;905
https://doi.org/10.1071/AR08067
17 McIntyre C L,&nbsp;Casu R E,&nbsp;Rattey A,&nbsp;Dreccer M F,&nbsp;Kam J W,&nbsp;van Herwaarden A F,&nbsp;Shorter R,&nbsp;Xue G P.&nbsp;Linked gene networks involved in nitrogen and carbon metabolism and levels of water-soluble carbohydrate accumulation in wheat stems.&nbsp;Functional & Integrative Genomics,&nbsp;2011,&nbsp;11(4):&nbsp;585&ndash;597
https://doi.org/10.1007/s10142-011-0232-5 pmid: 21789636
18 Hamada A,&nbsp;Nitta M,&nbsp;Nasuda S,&nbsp;Kato K,&nbsp;Fujita M,&nbsp;Matsunaka H,&nbsp;Okumoto Y.&nbsp;Novel QTLs for growth angle of seminal roots in wheat (Triticum aestivum L.).&nbsp;Plant and Soil,&nbsp;2012,&nbsp;354(1-2):&nbsp;395&ndash;405
https://doi.org/10.1007/s11104-011-1075-5
19 Reynolds M,&nbsp;Bonnett D,&nbsp;Chapman S C,&nbsp;Furbank R T,&nbsp;Manès Y,&nbsp;Mather D E,&nbsp;Parry M A J.&nbsp;Raising yield potential of wheat. I. Overview of a consortium approach and breeding strategies.&nbsp;Journal of Experimental Botany,&nbsp;2011,&nbsp;62(2):&nbsp;439&ndash;452
https://doi.org/10.1093/jxb/erq311 pmid: 20952629
20 Rivera-Amado C,&nbsp;Trujillo-Negrellos E,&nbsp;Reynolds M,&nbsp;Sylvester-Bradley R,&nbsp;Molero G,&nbsp;Foulkes J.&nbsp;Genetic variation in total, soluble and structural DM partitioning among plant organs and association with harvest index in elite spring wheat lines.&nbsp;In:&nbsp;Reynolds M,&nbsp;Molero G,&nbsp;Quilligan E,&nbsp;Listman M,&nbsp;Braun H,&nbsp;eds.&nbsp;Proceedings of the 4th International Workshop of the Wheat Yield Consortium, Sonora: CENEB, CIMMYT, Cd.,&nbsp;2014,&nbsp;35&ndash;72
21 Zadoks J C,&nbsp;Chang T T,&nbsp;Konzak C F.&nbsp;A decimal code for growth stages of cereals.&nbsp;Weed Research,&nbsp;1974,&nbsp;14(6):&nbsp;415&ndash;421
https://doi.org/10.1111/j.1365-3180.1974.tb01084.x
22 Xiao S H,&nbsp;Zhang X Y,&nbsp;Yan C S,&nbsp;Zhang W X,&nbsp;Hai L,&nbsp;Guo H J.&nbsp;Determination of resistance to lodging by stem strength in wheat.&nbsp;Scientia Agricultura Sinica,&nbsp;2002,&nbsp;35(1):&nbsp;7&ndash;11&nbsp;(in Chinese)
23 AccuPAR.&nbsp;Accupar-80 user’s manual, v3.4.&nbsp;Decagon Devices, Inc., Pullman, WA.,&nbsp;2001
24 Xue G P,&nbsp;McIntyre C L,&nbsp;Rattey A R,&nbsp;van Herwaarden A F,&nbsp;Shorter R.&nbsp;Use of dry matter content as a rapid and low-cost estimate for ranking genotypic differences in water-soluble carbohydrate concentrations in the stem and leaf sheath of Triticum aestivum.&nbsp;Crop and Pasture Science,&nbsp;2009,&nbsp;60(1):&nbsp;51&ndash;59
https://doi.org/10.1071/CP08073
25 SAS Institute.&nbsp;SAS user’s guide: statistics.&nbsp;SAS Inst., Cary, NC,&nbsp;2000
26 Spink J H,&nbsp;Semere T,&nbsp;Sparkes D L,&nbsp;Whaley J M,&nbsp;Foulkes M J,&nbsp;Clare R W,&nbsp;Scott R K.&nbsp;Effect of sowing date on the optimum plant density of winter wheat.&nbsp;Annals of Applied Biology,&nbsp;2000,&nbsp;137(2):&nbsp;179&ndash;188
https://doi.org/10.1111/j.1744-7348.2000.tb00049.x
27 Tripathi S C,&nbsp;Sayre K D,&nbsp;Kaul J N,&nbsp;Narang R S.&nbsp;Lodging behavior and yield potential of spring wheat (Triticum aestivum L.): effects of ethephon and genotypes.&nbsp;Field Crops Research,&nbsp;2004,&nbsp;87(2-3):&nbsp;207&ndash;220
https://doi.org/10.1016/j.fcr.2003.11.003
28 Bassu S,&nbsp;Asseng S,&nbsp;Giunta F,&nbsp;Motzo R.&nbsp;Optimizing triticale sowing densities across the Mediterranean basin.&nbsp;Field Crops Research,&nbsp;2013,&nbsp;144(20):&nbsp;167&ndash;178
https://doi.org/10.1016/j.fcr.2013.01.014
29 Tripathi S C,&nbsp;Sayre K D,&nbsp;Kaul J N,&nbsp;Narang R S.&nbsp;Growth and morphology of spring wheat (Triticum aestivum L.) culms and their association with lodging: effects of genotypes, N levels and ethephon.&nbsp;Field Crops Research,&nbsp;2003,&nbsp;84(3):&nbsp;271&ndash;290
https://doi.org/10.1016/S0378-4290(03)00095-9
30 Knapp J S,&nbsp;Harms C L,&nbsp;Volenec J J.&nbsp;Growth regulator effects on wheat culm nonstructural and structural carbohydrates and lignin.&nbsp;Crop Science,&nbsp;1987,&nbsp;27(6):&nbsp;1201&ndash;1205
https://doi.org/10.2135/cropsci1987.0011183X002700060022x
31 Acreche M M,&nbsp;Slafer G A.&nbsp;Lodging yield penalties as affected by breeding in Mediterranean wheats.&nbsp;Field Crops Research,&nbsp;2011,&nbsp;122(1):&nbsp;40&ndash;48
https://doi.org/10.1016/j.fcr.2011.02.004
32 Niu L Y,&nbsp;Feng S W,&nbsp;Ru Z G,&nbsp;Li G,&nbsp;Zhang Z P,&nbsp;Wang Z W.&nbsp;Rapid determination of single-stalk and population lodging resistance strengths and an assessment of the stem lodging wind speeds for winter wheat.&nbsp;Field Crops Research,&nbsp;2012,&nbsp;139:&nbsp;1&ndash;8
https://doi.org/10.1016/j.fcr.2012.10.014
33 Siddique K H M,&nbsp;Belford R K,&nbsp;Tennant D.&nbsp;Root: shoot ratios of old and modern, tall and semi-dwarf wheats in a Mediterranean environment.&nbsp;Plant and Soil,&nbsp;1990,&nbsp;121(1):&nbsp;89&ndash;98
https://doi.org/10.1007/BF00013101
34 Kelbert A J,&nbsp;Spaner D,&nbsp;Briggs K G,&nbsp;King J R.&nbsp;Screening for lodging resistance in spring wheat breeding programmes.&nbsp;Plant Breeding,&nbsp;2004,&nbsp;123(4):&nbsp;349&ndash;354
https://doi.org/10.1111/j.1439-0523.2004.00976.x
[1] Meng DUAN, Jin XIE, Xiaomin MAO. Modeling water and heat transfer in soil-plant-atmosphere continuum applied to maize growth under plastic film mulching[J]. Front. Agr. Sci. Eng. , 2019, 6(2): 144-161.
[2] Shihua CHENG,Xiaodeng ZHAN,Liyong CAO. Breeding strategies for increasing yield potential in super hybrid rice[J]. Front. Agr. Sci. Eng. , 2015, 2(4): 277-282.
[3] Shengkui ZHANG,Ping’an MA,Haiyan WANG,Cheng LU,Xin CHEN,Zhiqiang XIA,Meiling ZOU,Xinchen ZHOU,Wenquan WANG. Genomics approaches to unlock the high yield potential of cassava, a tropical model plant[J]. Front. Agr. Sci. Eng. , 2014, 1(4): 259-266.
[4] Shujuan ZHANG,Guoqi SONG,Yulian LI,Jie GAO,Jiao WANG,Guiju CHEN,Haosheng LI,Genying LI,Zhendong ZHAO. Comparative proteomic analysis of cold responsive proteins in two wheat cultivars with different tolerance to spring radiation frost[J]. Front. Agr. Sci. Eng. , 2014, 1(1): 37-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed