Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2014, Vol. 1 Issue (1) : 37-45    https://doi.org/10.15302/J-FASE-2014008
RESEARCH ARTICLE
Comparative proteomic analysis of cold responsive proteins in two wheat cultivars with different tolerance to spring radiation frost
Shujuan ZHANG,Guoqi SONG,Yulian LI,Jie GAO,Jiao WANG,Guiju CHEN,Haosheng LI,Genying LI(),Zhendong ZHAO()
Crop Research Institute, Shandong Academy of Agricultural Sciences; Key Laboratory of Wheat Biology & Genetic Improvement on North Yellow & Huai River Valley, Ministry of Agriculture of the People Republic of China; National Engineering Laboratory for Wheat & Maize, Jinan 250100, China
 Download: PDF(491 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Spring radiation frost (SRF) is a severe environmental stress which impairs wheat yield and productivity worldwide. To better understand the mechanism of wheat (Triticum aestivum) responding to SRF, a comparative proteomic analysis was performed to analyze the changes of the key proteins in two wheat cultivars Jimai22 and Luyuan301 with high and low tolerance to SRF respectively. A total of 43 differentially expressed proteins (DEPs) which mainly involved in carbohydrate metabolism, amino acid metabolism, resistance proteins and antioxidant enzymes, photosynthesis and cellular respiration proteins, cell-wall related proteins, protein translation/processing/degradation and signal transduction were isolated and identified by two-dimensional electrophoresis and MALDI-TOF-TOF MS. The results revealed that of the 21 DEPs in Jimai22 responding to the SRF, 13 DEPs were upregulated and 8 DEPs were downregulated, and that of the 22 DEPs in Luyuan301, 9 DEPs were upregulated and 13 DEPs were downregulated. These DEPs might be responsible for the stronger cold resistance of Jimai22 compared to Luyuan301. The expression pattern and function analysis of these DEPs were very significant to understanding the mechanism of the SRF responses in wheat.

Keywords common wheat      spring radiation frost      proteomic analysis      2-DE      MALDI-TOF-TOF MS     
Corresponding Author(s): Genying LI   
Issue Date: 22 May 2014
 Cite this article:   
Shujuan ZHANG,Guoqi SONG,Yulian LI, et al. Comparative proteomic analysis of cold responsive proteins in two wheat cultivars with different tolerance to spring radiation frost[J]. Front. Agr. Sci. Eng. , 2014, 1(1): 37-45.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2014008
https://academic.hep.com.cn/fase/EN/Y2014/V1/I1/37
Fig.1  Physiologic responses induced by cold treatment. (a) Effect of cold treatment on relative water content (RWC); (b) soluble sugar content of cold-treated and untreated plants. Values are the means ± SD of three differences from each cultivar. * significant differences from the corresponding untreated plants at P<0.05 under the cold treatment
Fig.2  Comparison of 2-DE gel maps proteins in cold-treated plants with untreated plants. Forty-three of the spots at least a 2-fold change under cold treatment with P<0.05 were analyzed. (a) 2D-images of proteins from untreated Jimai22 plants; (b) 2D-images from Jimai22 plants after cold-treatment for 48 h; (c) 2D-images of proteins from untreated Luyuan301 plants; (d) 2D-images from Luyuan301 plants after cold-treatment for 48 h. Proteins that increased under cold stress are numbered on the 2-D map
SpotProtein nameTheoretical pITheoretical Mw/kDaScoreSequence coverage /%PeptidesmatchedFoldchangeAccession No.Species
682chloroplast fructose-bisphosphate aldolase5.94422176002662.08ACM78035Triticum aestivum
220predicted protein6.45328548751-2.73BAK01718Hordeum vulgare
571victorin binding protein6.48112298141352.00AAA63798Avena sativa
692PREDICTED:quinone oxidoreductase-like protein At1g237408.2939840196822.55XP_003574429Brachypodium distachyon
127light-harvesting complex I, partial (chloroplast)8.11244392771042.61AAB29485H. vulgare
76RecName: Ribulose bisphosphate carboxylase small chain PW9, chloroplastic;8.5219784566415-3.27P26667T. aestivum
369predicted protein6.3647882145113-4.54BAJ95933H. vulgare
148predicted protein7.6729.70502337-2.42BAJ97959H. vulgare
441unnamed protein product6.32475172481254.52CAA25265H. vulgare
218hypothetical protein SORBIDRAFT_09 g0011306.9931865343113-4.34XP_002439133Sorghum bicolor
455ATP synthase beta subunit5.2952213339166-2.78ABR67209Pseudosasa japonica
432predicted protein6.005203850722.12BAJ89632H. vulgare
113predicted protein5.63259266833553.32BAK01399H. vulgare
142rbcL,ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit6.604760021593-3.94CAA44027T. aestivum
689Fructose-bisphosphate aldolase7.63419243791544.27ACG36798Zea mays
306Predicted protein5.0835439168135-2.13BAJ86516H. vulgare
316putative mitochondrial cysteine synthase precursor5.36225852852433.09ACJ54643Aegilops speltoides
366ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit9.42789599182-2.54ACI22694Secale cereale
444ribulose 1,5-bisphosphate carboxylase activase isoform 18.6247341293134-2.89AAA63163H. vulgare
97Predicted protein4.751618589715.51BAK07537H. vulgare
447ATP synthase beta subunit5.1350859234114-2.89ABH02606Festuca rubra
Tab.1  Proteins of Jimai22 responsive to cold stress identified by MALDI-TOF-MS
SpotProtein nameTheoretical pITheoretical Mw/kDaScoreSequence coverage /%PeptidesmatchedFoldchangeAccession No.Species
149Cold shock protein-15.7421884601545-2.70BAB78536Triticum aestivum
123Germin-like protein 16.0122017173152-2.27BAA74702Oryza sativa
138Pentatricopeptide repeat-containing protein8.19713866111-6.98NP_190408Arabidopsis thaliana
66Predicted:low quality protein:50S ribosomal protein L12-2,6.7722351370193-3.67XP_003566962Brachypodium distachyon
667Ribulosebisphosphate carboxylase, partial (chloroplast)6.345211144422.88AAA68039Pandanus tectorius
345Predicted: probable pyridoxal biosynthesis protein PDX1.1-like6.1133676179114-2.02XP_003558759B.distachyon
347Predicted protein6.734020210272-4.93BAK02219Hordeum vulgare
145Predicted protein4.75161856971-2.33BAK07537H. vulgare
261Predicted protein6.453285414393-3.24BAK01718H. vulgare
455ATPase subunit I (chloroplast)5.474726152622.65CAB88710Spinacia oleracea
394Ribulose-bisphosphate carboxylase activase5.0126084186183-5.30S25484Nicotiana tabacum
640Ribulose 1,5-bisphosphate carboxylase activase isoform 18.62473411301132.24AAA63163H. vulgare
84Eukaryotic translation initiation factor 5A; Short= eIF-5A.5.6017483951722.75Q9SC12Senecio vernalis
428Predicted: fructose-bisphosphate aldolase6.8637977154102-2.13XP_003563638B.distachyon
109Putative glycine-rich protein5.63195564734132.97BAD06324T. aestivum
167Predicted protein9.2527800232203-2.26BAJ85545H. vulgare
112EM_EST:AJ602339 AJ602339.15.7813731941712.97AJ602339T. aestivum
57Predicted: low quality protein: 50S ribosomal protein L12-2,6.77223512571933.85XP_003566962B.distachyon
653Predicted: ras GTPase-activating protein binding protein 1-like5.305177751832.26XP_003581124B.distachyon
49Heat shock protein 17.35.5817399230365-3.17CAA41218T. aestivum
375Malate dehydrogenase8.2336347701122.17AAD56659Glycine max
242Predicted protein6.453285413051-2.21BAK01718H. vulgare
Tab.2  Proteins of Luyuan301 responsive to low-temperature stress identified by MALDI-TOF-MS
1 James PS, Morrel EM, Gary MP. Spring Freeze Injury to Kansas Wheat. Manhattan: Kansas state University, 1995.
2 Slafer G A, Rawson H M. Base and optimum temperatures vary with genotype and stage of development in wheat. Plant, Cell & Environment, 1995, 18(6): 671-679
https://doi.org/10.1111/j.1365-3040.1995.tb00568.x
3 Mahfoozi S, Limin A E, Fowler D B. Influence of vernalization and photoperiod responses on cold hardiness in winter cereals. Crop Science, 2001, 41(4): 1006-1011
https://doi.org/10.2135/cropsci2001.4141006x
4 Fowler D B, Limin A E. Interactions among factors regulating phonological development and acclimation rate determine low-temperature tolerance in wheat. Annals of Botany, 2004, 94(5): 717-724
https://doi.org/10.1093/aob/mch196
5 Single W V. Variation in resistance to spring radiation frost in Triticum aestivum L. Australian Academy of Science, 1974, 282-287.
6 Gusta L V, Chen T H H. The physiology of water and temperature stress. In wheat and wheat improvement E.G. Heyne (ed.). 2nd edition, ASA, CSSA, SSSA, Madison, WI, USA. 1987: 15-150.
7 Single W V, Marcellos H. Studies on frost injury to wheat. Freezing of ears after emergence from the leaf sheath. Australian Journal of Agricultural Research, 1974, 25(5): 679
https://doi.org/10.1071/AR9740679
8 Galiba G, Quarrie S A, Sutka J, Morgounov A, Snape J W. RFLP mapping of the vernalization (Vrn1) and frost resistance (Fr1) genes on chromosome 5A of wheat. Theoretical and Applied Genetics, 1995, 90(7-8): 1174-1179
https://doi.org/10.1007/BF00222940
9 Galiba G, Vágújfalvi A, Li C, Soltész A, Dubcovsky J. Regulatory genes involved in the determination of frost tolerance in temperate cereals. Plant Science, 2009, 176(1): 12-19
https://doi.org/10.1016/j.plantsci.2008.09.016
10 Sutka J, Galiba G, Vagujfalvi A, Gill B S, Snape J W. Physical mapping of the Vrn-A1 and Fr1 genes on chromosome 5A of wheat using deletion lines. Theoretical and Applied Genetics, 1999, 99(1-2): 199-202
https://doi.org/10.1007/s001220051225
11 Tóth B, Galiba G, Fehér E. sutka J, snape JW. Mapping genes affecting flowering time and frost resistance on chromosome 5B of wheat. Theoretical and Applied Genetics, 2003, 107: 509-514
https://doi.org/10.1007/s00122-003-1275-3
12 Stockinger E J, Skinner J S, Gardner K G, Francia E, Pecchioni N. Expression levels of barley CBF genes at the frost resistance-H2 locus are dependent upon alleles at Fr-H1 and Fr-H2. Plant Journal, 2007, 51(2): 308-321
https://doi.org/10.1111/j.1365-313X.2007.0141.x
13 Steponkus P L. Role of plasma membrane in cold acclimation and freezing injury in plants. Annual Review of Plant Physiology, 1984, 35: 543-584
https://doi.org/10.1146/annurev.pp.35.060184.002551
14 Campbell S A, Close T J. Dehydrins: genes, proteins, and association with phenotypic traits. New Phytologist, 1997, 137(1): 61-74
https://doi.org/10.1046/j.1469-8137.1997.00831.x
15 S?ulescu N N, Braun H J. Breeding wheat for cold tolerance. In: Plant breeding for water-limited environments. Springer Publishers, Germany. 2001, 111-123.
16 Gao L Y, Wang A L, Li X H, Dong K, Wang K, Appels R, Ma W J, Yan Y M. Wheat quality related differential expressions of albumins and globulins revealed by two-dimensional difference gel electrophoresis (2-D DIGE). Proteomics, 2009, 73(2): 279-296
https://doi.org/10.1016/j.jprot.2009.09.014
17 Nadaud I, Girousse C, Debiton C, Chambon C, Bouzidi M F, Martre P, Branlard G. Proteomic and morphological analysis of early stages of wheat grain development. Proteomics, 2010, 10(16): 2901-2910
https://doi.org/10.1002/pmic.200900792
18 Tasleem-Tahir A, Nadaud I, Girousse C, Martre P, Marion D, Branlard G. Proteomic analysis of peripheral layers during wheat (Triticum aestivum L.) grain development. Proteomics, 2011, 11(3): 371-379
https://doi.org/10.1002/pmic.201000333
19 Laino P, Shelton D, Finnie C, De Leonardis A M, Mastrangelo A M, Svensson B, Lafiandra D, Masci S. Comparative proteome analysis of metabolic proteins from seeds of durum wheat (cv. Svevo) subjected to heat stress. Proteomics, 2010, 10(12): 2359-2368
https://doi.org/10.1002/pmic.200900803
20 Wang Y, Qian Y, Hu H, Xu Y, Zhang H. Comparative proteomic analysis of Cd-responsive proteins in wheat roots. Acta Physiologiae Plantarum, 2011, 33(2): 349-357
https://doi.org/10.1007/s11738-010-0554-2
21 Peng Z Y, Wang M C, Li F, Lv H J, Li C L, Xia G M. A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat. Molecular & Cellular Proteomics, 2009, 8(12): 2676-2686
https://doi.org/10.1074/mcp.M900052-MCP200
22 Demirevska K, Zasheva D, Dimitrov R, Simova-Stoilova L, Stamenova M, Feller U. Drought stress effects on Rubisco in wheat: changes in the Rubisco large subunit. Acta Physiologiae Plantarum, 2009, 31(6): 1129-1138
https://doi.org/10.1007/s11738-009-0331-2
23 Irar S, Brini F, Goday A, Masmoudi K, Pagès M. Proteomic analysis of wheat embryos with 2-DE and liquid-phase chromatography (ProteomeLab PF-2D)-A wider perspective of the proteome. Proteomics, 2010, 73(9): 1707-1721
https://doi.org/10.1016/j.jprot.2010.05.003
24 Danyluk J, Rassart E, Sarhan F. Gene expression during cold and heat shock in wheat. Biochemistry and Cell Biology, 1991, 69(5-6): 383-391
https://doi.org/10.1139/o91-058
25 Rinalducci S, Egidi M G, Karimzadeh G, Jazii F R, Zolla L. Proteomic analysis of a spring wheat cultivar in response to prolonged cold stress. Electrophoresis, 2011, 32(14): 1807-1818
https://doi.org/10.1002/elps.201000663
26 Schonfeld M A, Johnson R C, Carver B F, Mornhinweg D W. Water relations in winter wheat as drought resistance indicator. Crop Science, 1988, 28(3): 526-531
https://doi.org/10.2135/cropsci1988.0011183X002800030021x
27 Yemm E W, Willis A J. The estimation of carbohydrates in plant extracts by the anthrone. Biochemistry, 1954, 57: 508-514
28 Fan W, Zhang Z L, Zhang Y L. Cloning and molecular characterization of fructose-1.6-bisphosphate aldolase gene regulated by high-salinity and drought in Sesuvium portulacastrum. Plant Cell Reports, 2009, 28 (6): 975-984
https://doi.org/10.1007/s00299-009-0702-6
29 Liang L Q, Chang Y M, Zou Q W, Lei Q Q. Cloning and correlation analysis of cold adaptation of NADH-Quinone Oxidoreductase 3 Subunit Gene from common Carp (Cyprinus Carpio). Journal of Jishou University (Natural Sciences Edition), 2009, 30(5): 77-81
30 Geisler D A, Papke C, Obata T, Nunes-Nesi A, Matthes A, Schneitz K, Maximova E, Araujo W L, Fernie A R, Persson S. Down regulation of the delta-subunit reduces mitochondrial ATP synthase levels, alters respiration, and restricts growth and gametophyte development in Arabidopsis. Plant Cell, 2012, 24(7): 2792-2811
https://doi.org/10.1105/tpc.112.099424
31 Vallelian-Bindschedler L, M?siger E, Métraux J P, Schweizer P. Structure expression and localization of a germin-like protein in barley (Hordeum vulgare L.) that is insolubilized in stressed leaves. Plant Molecular Biology, 1998, 37(2): 297-308
https://doi.org/10.1023/A:1005982715972
32 Mousavi A, Hotta Y. Glycine-rich proteins: a class of novel proteins. Applied Biochemistry and Biotechnology,2005, 120(3): 169-174
https://doi.org/10.1385/ABAB:120:3:169
33 Gallie D R. Post-transcriptional regulation of gene expression in plants.Annual Review of Plant Physiology and Plant Molecular Biology, 1993, 44(1): 77-105
https://doi.org/10.1146/annurev.pp.44.060193.000453
34 Yang Z.Small GTPases: versatile signaling switches in plants. The plant cell (Suppl), 2002, 14, S375–S388
[1] Supplementary Material Download
[1] Yonggui XIAO,Jianjun LIU,Haosheng LI,Xinyou CAO,Xianchun XIA,Zhonghu HE. Lodging resistance and yield potential of winter wheat: effect of planting density and genotype[J]. Front. Agr. Sci. Eng. , 2015, 2(2): 168-178.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed