Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2014, Vol. 1 Issue (1) : 46-52    https://doi.org/10.15302/J-FASE-2014004
RESEARCH ARTICLE
Fabrication of cellulose aerogel from wheat straw with strong absorptive capacity
Jian LI(),Caichao WAN,Yun LU,Qingfeng SUN
Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
 Download: PDF(1242 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

An effectively mild solvent solution containing NaOH/PEG was employed to dissolve the cellulose extracted from the wheat straw. With further combined regeneration process and freeze-drying, the cellulose aerogel was successfully obtained. Scanning electron microscope, X-ray diffraction technique, Fourier transform infrared spectroscopy, and Brunauer-Emmett-Teller were used to characterize this cellulose aerogel of low density (about 40 mg·cm-3) and three-dimensional network with large specific surface area (about 101 m2·g-1). Additionally, with a hydrophobic modification by trimethylchlorosilane, the cellulose aerogel showed a strong absorptive capacity for oil and dye solutions.

Keywords cellulose aerogel      absorptive capacity      waste wheat straw      freeze-drying     
Corresponding Author(s): Jian LI   
Issue Date: 22 May 2014
 Cite this article:   
Jian LI,Caichao WAN,Yun LU, et al. Fabrication of cellulose aerogel from wheat straw with strong absorptive capacity[J]. Front. Agr. Sci. Eng. , 2014, 1(1): 46-52.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2014004
https://academic.hep.com.cn/fase/EN/Y2014/V1/I1/46
SpeciesOriginal cellFactorMorphologyKaryotypePluripotent markerDifferentiationChimeraReference
pigPorcineFetalfibroblastsHumanOSKCHuman ESC-likeNormalOct4/Sox2/Klf4/c-Myc/Nanog /TERT/AP/SSEA-1Embryoid bodies/ TeratomasNo[51]
Porcinefetal fibroblastsHuman/MouseOSKCHuman ESC-likeNormalOct4/Sox2/TERT/Lin28/AP/Rex1/SSEA-4Embryoid bodies/ TeratomasNo[50]
Primaryear fibroblasts/bone-marrow cellsHuman OSKC/OSKCNLHuman ESC-likeNormalOct4/Nanog/Sox2/Lin28/CDH1/AP/SSEA-3/SSEA-4/TRA1-60/TRA1-81/Rex1Embryoid bodies/ TeratomasNo[59]
Porcine mesenchymal stem cellsHumanOSKCNLHuman ESC-likeNormalOct4/Sox2/SSEA-4Embryoid bodiesYes[58,60]
Porcineadult fibroblastsOSKCHuman ESC-likeNormalNanog/SSEA-4/TRA1-60Embryoid bodies/ TeratomasNo[61]
Porcineadult fibroblastsMouse SKCHuman ESC-likeNormalOct4/Sox2/Nanog/AP/SSEA-4/TRA1-60/TRA1-81Embryoid bodies/ TeratomasNo[56]
Minipigfetal fibroblastsHumanOSKCMouse ESC-likeNot mentionedOct4/Sox2/Klf4/c-Myc/Nanog/SSEA-1/SSEA-4Embryoid bodiesNo[62]
Porcine mesenchymal stem cellsPigOct4/Klf4Mouse ESC-like70% normalOct4/Nanog/Klf4/c-Myc/Bmp4/bFGF/APEmbryoid bodies/ TeratomasNo[55]
Porcine embryonic fibroblastsMouse OSKCMouse ESC-likeNomalOct4/Nanog/Eras/Sox2/Lin28/Stella/SSEA-1/SSEA-3/SSEA-4Embryoid bodies/ TeratomasNo[63]
PFX/ NM/SWF/LFF/PEF/ HH/ PEFLMouse /Human/PorcineOSKCMouse ESC-likeNormalOct4/Nanog/SSEA-3/SSEA-4/APEmbryoid bodies/ TeratomasNo[64]
Porcinefetal fibroblastsHuman OSKCNLHuman ESC-likeNormalOct4/Sox2/Nanog/AP/SSEA-1Embryoid bodies/ TeratomasNo[65]
Porcinefetal fibroblastsOSKC/miR-302a/miR-302b/miR-200cHuman ESC-likeNormalOct4/Sox2/Klf4/c-Myc/ REX1/NANOG/SSEA-4Embryoid bodies/ TeratomasNo[66]
porcine adipose-derivedstem cellsHuman OSKCMouse ESC-likeNormalOct4/Sox2/ NANOG/AP/SSEA-3/SSEA-4/TRA1-60/TRA1-81Embryoid bodies/ TeratomasNo[67]
Tab.1  Generation of piPSCs
SpeciesOriginal cellFactorMorphologyKaryotypePluripotent geneDifferentiationChimeraReference
cattleBovinefetal fibroblastsBovine OSKCMouse/HumanESC-likeNormalOct4/Sox2/Nanog/CDH1/Dppa3/Stat3/Zfp42/Rex1/AP/SSEA-3/SSEA4/TRA1-60/TRA1-81Embryoid bodies/ TeratomasNo[68]
Bovinefetal fibroblastsBovine OSKCMouseESC-likeNormalSox2/Nanog/ CDH1/Dppa-3/Dppa-4/Sall4/TERT/AP/SSEA-1/SSEA-4Embryoid bodies/ TeratomasNo[69]
Bovineadult fibroblastsHuman OSKCNMouseESC-likeNormalOct4/Sox2/Nanog/Klf4/c-Myc/Rex1 /AP/SSEA-1/SSEA-4Embryoid bodies/ TeratomasNo[70]
Bovinefetal fibroblastsHuman Oct4Porcine SKHuman ESC-likeNormalOct4/Nanog AP/SSEA-1Embryoid bodies/ TeratomasNo[71]
Tab.2  Generation of bovine iPS cells
SpeciesOriginal cellFactorMorphologyKaryotypePluripotent genesDifferentiationChimeraReference
sheepOvineprimaryear fibroblastOSKCL/SV40 large T/ hTERTMouseESC-likeNormalOct4/Sox2/Nanog/CDH1/ Rex1/ AP/Dppa-4/SSEA-1/TRA1-60/TRA1-81Embryoid bodies/ TeratomasNo[72]
Ovinefetal fibroblastsMouse OSKCHumanESC-likeNormalOct4/Sox2/Nanog AP/SSEA-4Embryoid bodies/ TeratomasNo[73]
Ovinefetal fibroblastsHumanOSKCMouseESC-likeNormalOct4/Sox2/Nanog/APEmbryoid bodies/ TeratomasNo[74]
Ovinefetal fibroblastsMouse OSKCNanog/AP/SSEA-1/SSEA-4Embryoid bodies/ TeratomasYes(PCR test)[75]
goatCaprine primaryear fibroblastMouseOSKCL/SV40 large T/ hTERTMouseESC-likeNormalOct4/Sox2/Nanog/CDH1/Rex1/ AP/Sall4/SSEA1/TRA1-60/TRA1-81Embryoid bodies/ TeratomasNo[76]
fetalprimaryear fibroblastsHuman OSKCHumanESC-likeNormalOct4/Sox2/Klf4/AP/NanogEmbryoid bodies/ TeratomasNo[77]
Tab.3  Generation of ovine and caprine iPS cells
Fig.1  Attempts to derive authentic piPSCs in the na?ve state. Chemicals, cytokines, fatty acids and other additives can be supplemented into the basic medium during the course of iPSC generation from somatic cells and ESC derivation from embryos. Various standards can be used to evaluate pluripotency of na?ve porcine PSCs. Then, these na?ve cells can be used in different applications such as animal breeding as well as basic research and clinical medicine
1 Evans M J, Kaufman M H. Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981, 292(5819): 154-156
https://doi.org/10.1038/292154a0
2 Martin G R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences of the United States of America, 1981, 78(12): 7634-7638
https://doi.org/10.1073/pnas.78.12.7634
3 Wang Z Q, Kiefer F, Urbánek P, Wagner E F. Generation of completely embryonic stem cell-derived mutant mice using tetraploid blastocyst injection. Mechanisms of Development, 1997, 62(2): 137-145
https://doi.org/10.1016/S0925-4773(97)00655-2
4 Eakin G S, Behringer R R. Tetraploid development in the mouse. Developmental Dynamics, 2003, 228(4): 751-766
https://doi.org/10.1002/dvdy.10363
5 Nagy A, Gócza E, Diaz E M, Prideaux V R, Iványi E, Markkula M, Rossant J. Embryonic stem cells alone are able to support fetal development in the mouse. Development, 1990, 110(3): 815-821
6 Thomson J A. Embryonic Stem Cell Lines Derived from Human Blastocysts. Science, 1998, 282(5391): 1145-1147
https://doi.org/10.1126/science.282.5391.1145
7 Evans M J, Notarianni E, Laurie S, Moor R M. Derivation and preliminary characterization of pluripotent cell lines from porcine and bovine blastocysts. Theriogenology, 1990, 33(1): 125-128
https://doi.org/10.1016/0093-691X(90)90603-Q
8 Notarianni E, Laurie S, Moor R M, Evans M J. Maintenance and differentiation in culture of pluripotential embryonic cell lines from pig blastocysts. Journal of Reproduction and Fertility. Supplement, 1990, 41: 51-56
9 Strojek R M, Reed M A, Hoover J L, Wagner T E. A method for cultivating morphologically undifferentiated embryonic stem cells from porcine blastocysts. Theriogenology, 1990, 33(4): 901-913
https://doi.org/10.1016/0093-691X(90)90825-E
10 Saito S, Strelchenko N, Niemann H. Bovine embryonic stem cell-like cell lines cultured over several passages. Roux's Archives of Developmental Biology, 1992, 201(3): 134-141
https://doi.org/10.1007/BF00188711
11 Talbot N C, Powell A M, Rexroad C E Jr. In vitro pluripotency of epiblasts derived from bovine blastocysts. Molecular Reproduction and Development, 1995, 42(1): 35-52
https://doi.org/10.1002/mrd.1080420106
12 Van Stekelenburg-Hamers A E, Van Achterberg T A, Rebel H G, Fléchon J E, Campbell K H, Weima S M, Mummery C L. Isolation and characterization of permanent cell lines from inner cell mass cells of bovine blastocysts. Molecular Reproduction and Development, 1995, 40(4): 444-454
https://doi.org/10.1002/mrd.1080400408
13 Cibelli J B, Stice S L, Golueke P J, Kane J J, Jerry J, Blackwell C, de León F A P, Robl J M. Transgenic bovine chimeric offspring produced from somatic cell-derived stem-like cells. Nature Biotechnology, 1998, 16(7): 642-646
https://doi.org/10.1038/nbt0798-642
14 Notarianni E, Galli C, Laurie S, Moor R M, Evans M J. Derivation of pluripotent, embryonic cell lines from the pig and sheep. Journal of Reproduction and Fertility. Supplement, 1991, 43: 255-260
15 Meinecke-Tillmann S, Meinecke B. Isolation of ES-like cell lines from ovine and caprine pre-implantation embryos. Journal of Animal Breeding and Genetics, 1996, 113(1-6):413-426
16 Wang S, Tang X, Niu Y, Chen H, Li B, Li T, Zhang X, Hu Z, Zhou Q, Ji W. Generation and characterization of rabbit embryonic stem cells. Stem Cells, 2007, 25(2): 481-489
https://doi.org/10.1634/stemcells.2006-0226
17 Saito S, Sawai K, Minamihashi A, Ugai H, Murata T, Yokoyama K K. Derivation, maintenance, and induction of the differentiation in vitro of equine embryonic stem cells. Methods in Molecular Biology, 2006, 329: 59-79
18 Hatoya S, Torii R, Kondo Y, Okuno T, Kobayashi K, Wijewardana V, Kawate N, Tamada H, Sawada T, Kumagai D, Sugiura K, Inaba T. Isolation and characterization of embryonic stem-like cells from canine blastocysts. Molecular Reproduction and Development, 2006, 73(3): 298-305
https://doi.org/10.1002/mrd.20392
19 Yu X, Jin G, Yin X, Cho S, Jeon J, Lee S, Kong I. Isolation and characterization of embryonic stem-like cells derived from in vivo-produced cat blastocysts. Molecular Reproduction and Development, 2008, 75(9): 1426-1432
https://doi.org/10.1002/mrd.20867
20 Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4): 663-676
https://doi.org/10.1016/j.cell.2006.07.024
21 Park J K, Kim H S, Uh K J, Choi K H, Kim H M, Lee T, Yang B C, Kim H J, Ka H H, Kim H, Lee C K. Primed pluripotent cell lines derived from various embryonic origins and somatic cells in pig. PLoS ONE, 2013, 8(1): e52481
https://doi.org/10.1371/journal.pone.0052481
22 Tan G, Ren L, Huang Y, Tang X, Zhou Y, Zhou Y, Li D, Song H, Ouyang H, Pang D. Isolation and culture of embryonic stem-like cells from pig nuclear transfer blastocysts of different days. Zygote, 2012, 20(4): 347-352
https://doi.org/10.1017/S096719941100030X
23 Vackova I, Ungrova A, Lopes F. Putative embryonic stem cell lines from pig embryos. Journal of Reproduction and Development, 2007, 53(6): 1137-1149
https://doi.org/10.1262/jrd.19108
24 Kim H S, Son H Y, Kim S, Lee G S, Park C H, Kang S K, Lee B C, Hwang W S, Lee C K. Isolation and initial culture of porcine inner cell masses derived from in vitro-produced blastocysts. Zygote, 2007, 15(01): 55
https://doi.org/10.1017/S0967199406003972
25 Li M, Ma W, Hou Y, Sun X F, Sun Q Y, Wang W H. Improved isolation and culture of embryonic stem cells from Chinese miniature pig. Journal of Reproduction and Development, 2004, 50(2): 237-244
https://doi.org/10.1262/jrd.50.237
26 Li M, Li Y H, Hou Y, Sun X F, Sun Q, Wang W H. Isolation and culture of pluripotent cells from in vitro produced porcine embryos. Zygote, 2004, 12(1): 43-48
https://doi.org/10.1017/S0967199404002679
27 Brevini T A L, Cillo F, Gandolfi F. 168 Establishment and molecular characterization of pig parthenogenetic embryonic stem cells. Reproduction, Fertility, and Development, 2004, 17(2): 235
https://doi.org/10.1071/RDv17n2Ab168
28 Li M, Zhang D, Hou Y, Jiao L, Zheng X, Wang W H. Isolation and culture of embryonic stem cells from porcine blastocysts. Molecular Reproduction and Development, 2003, 65(4): 429-434
https://doi.org/10.1002/mrd.10301
29 Miyoshi K, Taguchi Y, Sendai Y, Hoshi H, Sato E. Establishment of a porcine cell line from in vitro-produced blastocysts and transfer of the cells into enucleated oocytes. Biology of Reproduction, 2000, 62(6): 1640-1646
https://doi.org/10.1095/biolreprod62.6.1640
30 Anderson G B, Choi S J, Bondurant R H. Survival of porcine inner cell masses in culture and after injection into blastocysts. Theriogenology, 1994, 42(1): 204-212
https://doi.org/10.1016/0093-691X(94)90676-A
31 Hochereau-de Reviers M T, Perreau C. P.C., In vitro culture of embryonic disc cells from porcine blastocysts. Reproduction, Nutrition, Development, 1993, 33(5): 475-483
https://doi.org/10.1051/rnd:19930508
32 Piedrahita J A, Anderson G B, Bondurant R H. On the isolation of embryonic stem cells: Comparative behavior of murine, porcine and ovine embryos. Theriogenology, 1990, 34(5): 879-901
https://doi.org/10.1016/0093-691X(90)90559-C
33 Chen L R, Shiue Y L, Bertolini L, Medrano J F, BonDurant R H, Anderson G B. Establishment of pluripotent cell lines from porcine preimplantation embryos. Theriogenology, 1999, 52(2): 195-212
https://doi.org/10.1016/S0093-691X(99)00122-3
34 Iwasaki S, Campbell K H, Galli C, Akiyama K. Production of live calves derived from embryonic stem-like cells aggregated with tetraploid embryos. Biology of Reproduction, 2000, 62(2): 470-475
https://doi.org/10.1095/biolreprod62.2.470
35 Alberio R, Croxall N, Allegrucci C. Pig epiblast stem cells depend on activin/nodal signaling for pluripotency and self-renewal. Stem Cells and Development, 2010, 19(10): 1627-1636
https://doi.org/10.1089/scd.2010.0012
36 Kim S, Kim J H, Lee E, Jeong Y W, Hossein M S, Park S M, Park S W, Lee J Y, Jeong Y I, Kim H S, Kim Y W, Hyun S H, Hwang W S. Establishment and characterization of embryonic stem-like cells from porcine somatic cell nuclear transfer blastocysts. Zygote, 2010, 18(2): 93-101
https://doi.org/10.1017/S0967199409990372
37 Vassiliev I, Vassilieva S, Beebe L F S, Harrison S J, McIlfatrick S M, Nottle M B. In vitro and in vivo characterization of putative porcine embryonic stem cells. Cell Reprogram, 2010, 12(2): 223-230
https://doi.org/10.1089/cell.2009.0053
38 Vassiliev I, Vassilieva S, Truong K P, Beebe L F S, McIlfatrick S M, Harrison S J, Nottle M B. Isolation and in vitro characterization of putative porcine embryonic stem cells from cloned embryos treated with trichostatin A. Cell Reprogram, 2011, 13(3): 205-213
https://doi.org/10.1089/cell.2010.0102
39 Telugu B P, Ezashi T, Roberts R M. The promise of stem cell research in pigs and other ungulate species. Stem Cell Reviews, 2010, 6(1): 31-41
https://doi.org/10.1007/s12015-009-9101-1
40 Moore K, Piedrahita J A. The effects of human leukemia inhibitory factor (hLIF) and culture medium on in vitro differentiation of cultured porcine inner cell mass (pICM). In Vitro Cellular & Developmental Biology-Animal, 1997, 33(1): 62-71
https://doi.org/10.1007/s11626-997-0023-4
41 Ma T, Xie M, Laurent T, Ding S. Progress in the reprogramming of somatic cells. Circulation Research, 2013, 112(3): 562-574
https://doi.org/10.1161/CIRCRESAHA.111.249235
42 Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, Zhao T, Ye J, Yang W, Liu K, Ge J, Xu J, Zhang Q, Zhao Y, Deng H. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science, 2013, 341(6146): 651-654
https://doi.org/10.1126/science.1239278
43 Lin S L, Chang D C, Chang-Lin S, Lin C H, Wu D T S, Chen D T, Ying S Y. Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA, 2008, 14(10): 2115-2124
https://doi.org/10.1261/rna.1162708
44 Judson R L, Babiarz J E, Venere M, Blelloch R. Embryonic stem cell-specific microRNAs promote induced pluripotency. Nature Biotechnology, 2009, 27(5): 459-461
https://doi.org/10.1038/nbt.1535
45 Melton C, Judson R L, Blelloch R. Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature, 2010, 463(7281): 621-626
https://doi.org/10.1038/nature08725
46 Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007, 131(5): 861-872
https://doi.org/10.1016/j.cell.2007.11.019
47 Blelloch R, Venere M, Yen J, Ramalho-Santos M. Generation of induced pluripotent stem cells in the absence of drug selection. Cell Stem Cell, 2007, 1(3): 245-247
https://doi.org/10.1016/j.stem.2007.08.008
48 Yu J, Vodyanik M A, Smuga-Otto K, Antosiewicz-Bourget J, Frane J L, Tian S, Nie J, Jonsdottir G A, Ruotti V, Stewart R, Slukvin I I, Thomson J A. Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007, 318(5858): 1917-1920
https://doi.org/10.1126/science.1151526
49 Stadtfeld M, Maherali N, Breault D T, Hochedlinger K. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell, 2008, 2(3): 230-240
https://doi.org/10.1016/j.stem.2008.02.001
50 Esteban M A, Xu J, Yang J, Peng M, Qin D, Li W, Jiang Z, Chen J, Deng K, Zhong M, Cai J, Lai L, Pei D. Generation of induced pluripotent stem cell lines from Tibetan miniature pig. Journal of Biological Chemistry, 2009, 284(26): 17634-17640
https://doi.org/10.1074/jbc.M109.008938
51 Ezashi T, Telugu B P V L, Alexenko A P, Sachdev S, Sinha S, Roberts R M. Derivation of induced pluripotent stem cells from pig somatic cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(27): 10993-10998
https://doi.org/10.1073/pnas.0905284106
52 Nayernia K, Lee J H, Lako M, Armstrong L, Herbert M, Li M, Engel W, Elliott D, Stojkovic M, Parrington J, Murdoch A, Strachan T, Zhang X. In Vitro Derivation of Human Sperm from Embryonic Stem Cells. Stem Cells and Development, 2009,(Epub ahead of print)
https://doi.org/10.1089/scd.2009.0063
53 Telugu B P, Ezashi T, Sinha S, Alexenko A P, Spate L, Prather R S, Roberts R M. Leukemia inhibitory factor (LIF)-dependent, pluripotent stem cells established from inner cell mass of porcine embryos. Journal of Biological Chemistry, 2011, 286(33): 28948-28953
https://doi.org/10.1074/jbc.M111.229468
54 Brevini T, Pennarossa G, Maffei S, Gandolfi F. Pluripotency network in porcine embryos and derived cell lines. Reproduction in Domestic Animals, 2012, 47(Suppl 4): 86-91
https://doi.org/10.1111/j.1439-0531.2012.02060.x
55 Liu K, Ji G, Mao J, Liu M, Wang L, Chen C, Liu L. Generation of porcine-induced pluripotent stem cells by using OCT4 and KLF4 porcine factors. Cell Reprogram, 2012, 14(6): 505-513
56 Montserrat N, de O?ate L, Garreta E, González F, Adamo A, Eguizábal C, H?fner S, Vassena R, Belmonte J C I. Generation of feeder-free pig induced pluripotent stem cells without Pou5f1. Cell Transplantation, 2012, 21(5): 815-825
https://doi.org/10.3727/096368911X601019
57 Gao Y, Guo Y, Duan A, Cheng D, Zhang S, Wang H. Optimization of culture conditions for maintaining porcine induced pluripotent stem cells. DNA and Cell Biology, 2014, 33(1): 1-11
https://doi.org/10.1089/dna.2013.2095
58 West F D, Terlouw S L, Kwon D J, Mumaw J L, Dhara S K, Hasneen K, Dobrinsky J R, Stice S L. Porcine induced pluripotent stem cells produce chimeric offspring. Stem Cells and Development, 2010, 19(8): 1211-1220
https://doi.org/10.1089/scd.2009.0458
59 Wu Z, Chen J, Ren J, Bao L, Liao J, Cui C, Rao L, Li H, Gu Y, Dai H, Zhu H, Teng X, Cheng L, Xiao L. Generation of pig induced pluripotent stem cells with a drug-inducible system. Journal of Molecular Cell Biology, 2009, 1(1): 46-54
https://doi.org/10.1093/jmcb/mjp003
60 West F D, Uhl E W, Liu Y, Stowe H, Lu Y, Yu P, Gallegos-Cardenas A, Pratt S L, Stice S L. Brief Report: Chimeric Pigs Produced from Induced Pluripotent Stem Cells Demonstrate Germline Transmission and No Evidence of Tumor Formation in Young Pigs. Stem Cells, 2011, 29(10): 1640-1643
https://doi.org/10.1002/stem.713
61 Montserrat N, Bahima E G, Batlle L, H?fner S, Rodrigues A M C, González F, Belmonte J C I. Generation of pig iPS cells: a model for cell therapy. Journal of Cardiovascular Translational Research, 2011, 4(2): 121-130
https://doi.org/10.1007/s12265-010-9233-3
62 Hall V J, Kristensen M, Rasmussen M A, Ujhelly O, Dinnyés A, Hyttel P. Temporal repression of endogenous pluripotency genes during reprogramming of porcine induced pluripotent stem cells. Cell Reprogram, 2012, 14(3): 204-216
63 Fujishiro S H, Nakano K, Mizukami Y, Azami T, Arai Y, Matsunari H, Ishino R, Nishimura T, Watanabe M, Abe T, Furukawa Y, Umeyama K, Yamanaka S, Ema M, Nagashima H, Hanazono Y. Generation of naive-like porcine-induced pluripotent stem cells capable of contributing to embryonic and fetal development. Stem Cells and Development, 2013, 22(3): 473-482
https://doi.org/10.1089/scd.2012.0173
64 Ji G, Ruan W, Liu K, Wang F, Sakellariou D, Chen J, Yang Y, Okuka M, Han J, Liu Z, Lai L, Gagos S, Xiao L, Deng H, Li N, Liu L. Telomere reprogramming and maintenance in porcine iPS cells. PLoS ONE, 2013, 8(9): e74202
https://doi.org/10.1371/journal.pone.0074202
65 Kwon D J, Jeon H, Oh K B, Ock S A, Im G S, Lee S S, Im S K, Lee J W, Oh S J, Park J K, Hwang S. Generation of leukemia inhibitory factor-dependent induced pluripotent stem cells from the Massachusetts General Hospital miniature pig. BioMed Research International, 2013, 2013: 1-11
https://doi.org/10.1155/2013/140639
66 Ma K, Song G, An X, Fan A, Tan W, Tang B, Zhang X, Li Z. miRNAs promote generation of porcine-induced pluripotent stem cells. Molecular and Cellular Biochemistry, 2014, 389(1-2): 209-218
https://doi.org/10.1007/s11010-013-1942-x
67 Zhang Y, Wei C, Zhang P, Li X, Liu T, Pu Y, Li Y, Cao Z, Cao H, Liu Y, Zhang X, Zhang Y. Efficient reprogramming of naive-like induced pluripotent stem cells from porcine adipose-derived stem cells with a feeder-independent and serum-free system. PLoS ONE, 2014, 9(1): e85089
https://doi.org/10.1371/journal.pone.0085089
68 Huang B, Li T, Alonso-Gonzalez L, Gorre R, Keatley S, Green A, Turner P, Kallingappa P K, Verma V, Oback B. A virus-free poly-promoter vector induces pluripotency in quiescent bovine cells under chemically defined conditions of dual kinase inhibition. PLoS ONE, 2011, 6(9): e24501
https://doi.org/10.1371/journal.pone.0024501
69 Han X, Han J, Ding F, Cao S, Lim S S, Dai Y, Zhang R, Zhang Y, Lim B, Li N. Generation of induced pluripotent stem cells from bovine embryonic fibroblast cells. Cell Research, 2011, 21(10): 1509-1512
https://doi.org/10.1038/cr.2011.125
70 Sumer H, Liu J, Malaver-Ortega L F, Lim M L, Khodadadi K, Verma P J. NANOG is a key factor for induction of pluripotency in bovine adult fibroblasts. Journal of Animal Science, 2011, 89(9): 2708-2716
https://doi.org/10.2527/jas.2010-3666
71 Cao H, Yang P, Pu Y, Sun X, Yin H, Zhang Y, Zhang Y, Li Y, Liu Y, Fang F, Zhang Z, Tao Y, Zhang X. Characterization of bovine induced pluripotent stem cells by lentiviral transduction of reprogramming factor fusion proteins. International Journal of Biological Sciences, 2012, 8(4): 498-511
https://doi.org/10.7150/ijbs.3723
72 Bao L, He L, Chen J, Wu Z, Liao J, Rao L, Ren J, Li H, Zhu H, Qian L, Gu Y, Dai H, Xu X, Zhou J, Wang W, Cui C, Xiao L. Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors. Cell Research, 2011, 21(4): 600-608
https://doi.org/10.1038/cr.2011.6
73 Yang Li M C. Andrew Stephen Lee, Kehua Zhang, Dongjun Liu, Reprogramming of Sheep Fibroblasts into Pluripotency under a Drug-Inducible Expression of Mouse-Derived Defined Factors. PLoS ONE, 2011, 6(1): e15947
74 Liu, J., Balehosur D, Murray B, Kelly JM, Sumer H, Verma PJ. Generation and characterization of reprogrammed sheep induced pluripotent stem cells. Theriogenology, 2012. 77(2): p. 338-346.
75 Sartori C, DiDomenico A I, Thomson A J, Milne E, Lillico S G, Burdon T G, Whitelaw C B. Ovine-induced pluripotent stem cells can contribute to chimeric lambs. Cell Reprogram, 2012, 14(1): 8-19
76 Ren J, Pak Y, He L, Qian L, Gu Y, Li H, Rao L, Liao J, Cui C, Xu X, Zhou J, Ri H, Xiao L. Generation of hircine-induced pluripotent stem cells by somatic cell reprogramming. Cell Research, 2011, 21(5): 849-853
https://doi.org/10.1038/cr.2011.37
77 Song H, Li H, Huang M, Xu D, Gu C, Wang Z, Dong F, Wang F. Induced pluripotent stem cells from goat fibroblasts. Molecular Reproduction and Development, 2013, 80(12): 1009-1017
https://doi.org/10.1002/mrd.22266
78 Nichols J, Smith A. Naive and primed pluripotent states. Cell Stem Cell, 2009, 4(6): 487-492
https://doi.org/10.1016/j.stem.2009.05.015
79 Ying Q L, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A. The ground state of embryonic stem cell self-renewal. Nature, 2008, 453(7194): 519-523
https://doi.org/10.1038/nature06968
80 Horiuchi H, Tategaki A, Yamashita Y, Hisamatsu H, Ogawa M, Noguchi T, Aosasa M, Kawashima T, Akita S, Nishimichi N, Mitsui N, Furusawa S, Matsuda H. Chicken leukemia inhibitory factor maintains chicken embryonic stem cells in the undifferentiated state. Journal of Biological Chemistry, 2004, 279(23): 24514-24520
https://doi.org/10.1074/jbc.M313231200
81 Brevini T A L, Cillo F, Gandolfi F. Establishment and molecular characterizition of pig parthenogenetic embryonic stem cells. Reproduction,Fertility and Development, 2005, 17(2): 235
82 Hochereau-de Reviers M T, Perreau C. In vitro culture of embryonic disc cells from porcine blastocysts. Reproduction, Nutrition, Development, 1993, 33(5): 475-483
https://doi.org/10.1051/rnd:19930508
83 Prigione A, Rohwer N, Hoffmann S, Mlody B, Drews K, Bukowiecki R, Blümlein K, Wanker E E, Ralser M, Cramer T, Adjaye J. HIF1alpha modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1-3 and PKM2. Stem Cells, 2014, 32(2): 364-376
https://doi.org/10.1002/stem.1552
84 Sanna D, Sanna A, Mara L, Pilichi S, Mastinu A, Chessa F, Pani L, Dattena M. Oct4 expression in in-vitro-produced sheep blastocysts and embryonic-stem-like cells. Cell Biology International, 2010, 34(1): 53-60
85 Yadav P S, Kues W A, Herrmann D, Carnwath J W, Niemann H. Bovine ICM derived cells express the Oct4 ortholog. Molecular Reproduction and Development, 2005, 72(2): 182-190
https://doi.org/10.1002/mrd.20343
86 Saito S, Sawai K, Ugai H, Moriyasu S, Minamihashi A, Yamamoto Y, Hirayama H, Kageyama S, Pan J, Murata T, Kobayashi Y, Obata Y, Yokoyama K K. Generation of cloned calves and transgenic chimeric embryos from bovine embryonic stem-like cells. Biochemical and Biophysical Research Communications, 2003, 309(1): 104-113
https://doi.org/10.1016/S0006-291X(03)01536-5
87 Brevini T A, Antonini S, Pennarossa G, Gandolfi F. Recent progress in embryonic stem cell research and its application in domestic species. Reproduction in Domestic Animals, 2008, 43(Suppl 2): 193-199
https://doi.org/10.1111/j.1439-0531.2008.01161.x
88 Hanna J, Cheng A W, Saha K, Kim J, Lengner C J, Soldner F, Cassady J P, Muffat J, Carey B W, Jaenisch R. Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(20): 9222-9227
https://doi.org/10.1073/pnas.1004584107
89 Blomberg L A, Telugu B P. Twenty years of embryonic stem cell research in farm animals. Reproduction in Domestic Animals, 2012, 47(Suppl 4): 80-85
https://doi.org/10.1111/j.1439-0531.2012.02059.x
90 Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, Chen A E, Melton D A. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nature Biotechnology, 2008, 26(7): 795-797
https://doi.org/10.1038/nbt1418
91 Shi Y, Desponts C, Do J T, Hahm H S, Sch?ler H R, Ding S. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell, 2008, 3(5): 568-574
https://doi.org/10.1016/j.stem.2008.10.004
92 Shi Y, Tae Do J, Desponts C, Hahm H S, Sch?ler H R, Ding S. A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell, 2008, 2(6): 525-528
https://doi.org/10.1016/j.stem.2008.05.011
93 Ezashi T, Telugu B P, Roberts R M. Induced pluripotent stem cells from pigs and other ungulate species: an alternative to embryonic stem cells? Reproduction in Domestic Animals, 2012, 47(Suppl 4): 92-97
https://doi.org/10.1111/j.1439-0531.2012.02061.x
94 Liu Y, Ma Y, Yang JY, Cheng D, Liu X, Ma X, West F D, Wang H. Comparative Gene Expression Signature of Pig, Human and Mouse Induced Pluripotent Stem Cell Lines Reveals Insight into Pig Pluripotency Gene Networks. Stem Cell Reviews, 2014, 10(2): 162-176
95 Hall V J, Christensen J, Gao Y, Schmidt M H, Hyttel P. Porcine pluripotency cell signaling develops from the inner cell mass to the epiblast during early development. Developmental Dynamics, 2009, 238(8): 2014-2024
https://doi.org/10.1002/dvdy.22027
96 Hall V J. Early development of the porcine embryo: the importance of cell signalling in development of pluripotent cell lines. Reproduction, Fertility, and Development, 2012, 25(1): 94-102
https://doi.org/10.1071/RD12264
97 Cao S, Han J, Wu J, Li Q, Liu S, Zhang W, Pei Y, Ruan X, Liu Z, Wang X, Lim B, Li N. Specific gene-regulation networks during the pre-implantation development of the pig embryo as revealed by deep sequencing. BMC Genomics, 2014, 15(1): 4
https://doi.org/10.1186/1471-2164-15-4
98 Vander Heiden M G, Cantley L C, Thompson C B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 2009, 324(5930): 1029-1033
https://doi.org/10.1126/science.1160809
99 Zhang J, Nuebel E, Daley G Q, Koehler C M, Teitell M A. Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell, 2012, 11(5): 589-595
https://doi.org/10.1016/j.stem.2012.10.005
100 Chen X, Xu H, Yuan P, Fang F, Huss M, Vega V B, Wong E, Orlov Y L, Zhang W, Jiang J, Loh Y H, Yeo H C, Yeo Z X, Narang V, Govindarajan K R, Leong B, Shahab A, Ruan Y, Bourque G, Sung W K, Clarke N D, Wei C L, Ng H H. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell, 2008, 133(6): 1106-1117
https://doi.org/10.1016/j.cell.2008.04.043
101 Demaria M, Giorgi C, Lebiedzinska M, Esposito G, D'Angeli L, Bartoli A, Gough D J, Turkson J, Levy D, Watson C J, Wieckowski M R, Provero P, Pinton P, Poli V. A STAT3-mediated metabolic switch is involved in tumour transformation and STAT3 addiction. Aging, 2010, 2(11): 823-842
102 Wang J, Alexander P, Wu L, Hammer R, Cleaver O, McKnight S L. Dependence of mouse embryonic stem cells on threonine catabolism. Science, 2009, 325(5939): 435-439
https://doi.org/10.1126/science.1173288
103 Yanes O, Clark J, Wong D M, Patti G J, Sánchez-Ruiz A, Benton H P, Trauger S A, Desponts C, Ding S, Siuzdak G. Metabolic oxidation regulates embryonic stem cell differentiation. Nature Chemical Biology, 2010, 6(6): 411-417
https://doi.org/10.1038/nchembio.364
104 Panopoulos A D, Yanes O, Ruiz S, Kida Y S, Diep D, Tautenhahn R, Herrerías A, Batchelder E M, Plongthongkum N, Lutz M, Berggren W T, Zhang K, Evans R M, Siuzdak G, Belmonte J C I. The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Research, 2012, 22(1): 168-177
https://doi.org/10.1038/cr.2011.177
105 Ware C B, Wang L, Mecham B H, Shen L, Nelson A M, Bar M, Lamba D A, Dauphin D S, Buckingham B, Askari B, Lim R, Tewari M, Gartler S M, Issa J P, Pavlidis P, Duan Z, Blau C A. Histone deacetylase inhibition elicits an evolutionarily conserved self-renewal program in embryonic stem cells. Cell Stem Cell, 2009, 4(4): 359-369
https://doi.org/10.1016/j.stem.2009.03.001
106 Liang G, Taranova O, Xia K, Zhang Y. Butyrate promotes induced pluripotent stem cell generation. Journal of Biological Chemistry, 2010, 285(33): 25516-25521
https://doi.org/10.1074/jbc.M110.142059
107 Mali P, Chou B K, Yen J, Ye Z, Zou J, Dowey S, Brodsky R A, Ohm J E, Yu W, Baylin S B, Yusa K, Bradley A, Meyers D J, Mukherjee C, Cole P A, Cheng L. Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes. Stem Cells, 2010, 28(4): 713-720
https://doi.org/10.1002/stem.402
108 Ware C B, Nelsona A M, Mechamc B, Hesson J, Zhou W Y, Jonlin E C, Jimenez-Caliani A J, Deng X X, Cavanaugh C, Cook S, Tesarh P, Okada J, Margaretha L, Sperber H, Choi M, Blau C A, Treuting P M, Hawkins R D, Cirulli V, Ruohola-Bakera H. Derivation of na?ve human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2014(first published online)
https://doi.org/10.1073/pnas.1319738111
109 Gandolfi F, Pennarossa G, Maffei S, Brevini T A L. Why is it so difficult to derive pluripotent stem cells in domestic ungulates? Reproduction in Domestic Animals, 2012, 47(Suppl 5): 11-17
https://doi.org/10.1111/j.1439-0531.2012.02106.x
110 Loh Y H, Wu Q, Chew J L, Vega V B, Zhang W, Chen X, Bourque G, George J, Leong B, Liu J, Wong K Y, Sung K W, Lee C W H, Zhao X D, Chiu K P, Lipovich L, Kuznetsov V A, Robson P, Stanton L W, Wei C L, Ruan Y, Lim B, Ng H H. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genetics, 2006, 38(4): 431-440
https://doi.org/10.1038/ng1760
111 Bonnet A, Dalbies-Tran R, Sirard M A. Opportunities and challenges in applying genomics to the study of oogenesis and folliculogenesis in farm animals. Reproduction, 2008, 135(2): 119-128
https://doi.org/10.1530/REP-07-0331
112 Teo A K, Wagers A J, Kulkarni R N. New opportunities: harnessing induced pluripotency for discovery in diabetes and metabolism. Cell Metabolism, 2013, 18(6): 775-791
https://doi.org/10.1016/j.cmet.2013.08.010
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed