| 
					
						|  |  
    					|  |  
    					| Cellulose aerogels decorated with multi-walled carbon nanotubes: preparation, characterization, and application for electromagnetic interference shielding |  
						| Jian LI(  ),Caichao WAN |  
						| Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China |  
						|  |  
					
						| 
								
									|  
          
          
            
              
				
								                
													
													    |  |  
														| 
													
													    | Abstract Electromagnetic wave pollution has attracted extensive attention because of its ability to affect the operation of electronic machinery and endanger human health. In this work, the environmentally-friendly hybrid aerogels consisting of cellulose and multi-walled carbon nanotubes (MWCNTs) were fabricated. The aerogels have a low bulk density of 58.17 mg·cm−3. The incorporation of MWCNTs leads to an improvement in the thermal stability. In addition, the aerogels show a high electromagnetic interference (EMI) SEtotal value of 19.4 dB. Meanwhile, the absorption-dominant shielding mechanism helps a lot to reduce secondary radiation, which is beneficial to develop novel eco-friendly EMI shielding materials. |  
															| Keywords 
																																																				cellulose aerogels  
																		  																																				carbon nanotubes  
																		  																																				electromagnetic interference shielding  
																		  																																				composites |  
															| Corresponding Author(s):
																Jian LI |  
															| Just Accepted Date: 21 December 2015  
																																														Online First Date: 11 January 2016   
																																														Issue Date: 19 January 2016 |  |  
								            
								                
																																												
															| 1 | Liebner  F, Potthast  A, Rosenau  T, Haimer  E, Wendland  M. Cellulose aerogels: highly porous, ultra-lightweight materials. Holzforschung, 2008, 62(2): 129–135 https://doi.org/10.1515/HF.2008.051
 |  
															| 2 | Sescousse  R, Gavillon  R, Budtova  T. Aerocellulose from cellulose–ionic liquid solutions: preparation, properties and comparison with cellulose–NaOH and cellulose–NMMO routes. Carbohydrate Polymers, 2011, 83(4): 1766–1774 https://doi.org/10.1016/j.carbpol.2010.10.043
 |  
															| 3 | Pääkkö  M, Vapaavuori  J, Silvennoinen  R, Kosonen  H, Ankerfors  M, Lindström  T, Berglund  L A, Ikkala  O. Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter, 2008, 4(12): 2492–2499 https://doi.org/10.1039/b810371b
 |  
															| 4 | Wan  C, Li  J. Facile synthesis of well-dispersed superparamagnetic g-Fe2O3 nanoparticles encapsulated in three-dimensional architectures of cellulose aerogels and their applications for Cr (VI) removal from contaminated water. ACS Sustainable Chemistry & Engineering, 2015, 3(9): 2142–2152 https://doi.org/10.1021/acssuschemeng.5b00384
 |  
															| 5 | Wan  C, Li  J. Synthesis of well-dispersed magnetic CoFe2O4 nanoparticles in cellulose aerogels via a facile oxidative co-precipitation method. Carbohydrate Polymers, 2015, 134: 144–150 https://doi.org/10.1016/j.carbpol.2015.07.083
 |  
															| 6 | Wan  C, Lu  Y, Jin  C, Sun  Q, Li  J. A facile low-temperature hydrothermal method to prepare anatase titania/cellulose aerogels with strong photocatalytic activities for rhodamine B and methyl orange degradations. Journal of Nanomaterials, 2015, 2015: 717016 |  
															| 7 | Wan  C, Li  J. Embedding ZnO nanorods into porous cellulose aerogels via a facile one-step low-temperature hydrothermal method. Materials & Design, 2015, 83: 620–625 https://doi.org/10.1016/j.matdes.2015.06.043
 |  
															| 8 | Baughman  R H, Zakhidov  A A, de Heer  W A. Carbon nanotubes-the route toward applications. Science, 2002, 297(5582): 787–792 https://doi.org/10.1126/science.1060928
 |  
															| 9 | Berber  S, Kwon  Y K, Tománek  D. Unusually high thermal conductivity of carbon nanotubes. Physical Review Letters, 2000, 84(20): 4613–4616 https://doi.org/10.1103/PhysRevLett.84.4613
 |  
															| 10 | Li  Q, Li  Y, Zhang  X, Chikkannanavar  S B, Zhao  Y, Dangelewicz  A M, Zheng  L, Doorn  S K, Jia  Q, Peterson  D E, Arendt  P N, Zhu  Y. Structure-dependent electrical properties of carbon nanotube fibers. Advanced Materials, 2007, 19(20): 3358–3363 https://doi.org/10.1002/adma.200602966
 |  
															| 11 | Zhang  H, Wang  Z, Zhang  Z, Wu  J, Zhang  J, He  J. Regenerated-cellulose/multiwalled-carbon nanotube composite fibers with enhanced mechanical properties prepared with the ionic liquid 1–allyl–3–methylimidazolium chloride. Advanced Materials, 2007, 19(5): 698–704 https://doi.org/10.1002/adma.200600442
 |  
															| 12 | Hsieh  T, Kinloch  A, Taylor  A, Kinloch  I. The effect of carbon nanotubes on the fracture toughness and fatigue performance of a thermosetting epoxy polymer. Journal of Materials Science, 2011, 46(23): 7525–7535 https://doi.org/10.1007/s10853-011-5724-0
 |  
															| 13 | Haggenmueller  R, Fischer  J E, Winey  K I. Single wall carbon nanotube/polyethylene nanocomposites: nucleating and templating polyethylene crystallites. Macromolecules, 2006, 39(8): 2964–2971 https://doi.org/10.1021/ma0527698
 |  
															| 14 | Muñoz  E, Suh  D S, Collins  S, Selvidge  M, Dalton  A B, Kim  B G, Razal  J M, Ussery  G, Rinzler  A G, Martínez  M T, Baughman  R H. Highly conducting carbon nanotube/polyethyleneimine composite fibers. Advanced Materials, 2005, 17(8): 1064–1067 https://doi.org/10.1002/adma.200401648
 |  
															| 15 | Chatterjee  T, Yurekli  K, Hadjiev  V G, Krishnamoorti  R. Single-walled carbon nanotube dispersions in poly(ethylene oxide). Advanced Functional Materials, 2005, 15(11): 1832–1838 https://doi.org/10.1002/adfm.200500290
 |  
															| 16 | Jin  Z, Pramoda  K, Xu  G, Goh  S H. Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly(methyl methacrylate) composites. Chemical Physics Letters, 2001, 337(1): 43–47 https://doi.org/10.1016/S0009-2614(01)00186-5
 |  
															| 17 | Chang  T, Jensen  L R, Kisliuk  A, Pipes  R, Pyrz  R, Sokolov  A. Microscopic mechanism of reinforcement in single-wall carbon nanotube/polypropylene nanocomposite. Polymer, 2005, 46(2): 439–444 https://doi.org/10.1016/j.polymer.2004.11.030
 |  
															| 18 | Shaffer  M S, Windle  A H. Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites. Advanced Materials, 1999, 11(11): 937–941 https://doi.org/10.1002/(SICI)1521-4095(199908)11:11<937::AID-ADMA937>3.0.CO;2-9
 |  
															| 19 | Li  J, Wan  C, Lu  Y, Sun  Q. Fabrication of cellulose aerogel from wheat straw with strong absorptive capacity. Frontiers of Agricultural Science and Engineering, 2014, 1(1): 46–52 https://doi.org/10.15302/J-FASE-2014004
 |  
															| 20 | Wan  C, Lu  Y, Jiao  Y, Jin  C, Sun  Q, Li  J. Fabrication of hydrophobic, electrically conductive and flame-resistant carbon aerogels by pyrolysis of regenerated cellulose aerogels. Carbohydrate Polymers, 2015, 118: 115–118 https://doi.org/10.1016/j.carbpol.2014.11.010
 |  
															| 21 | Nishiyama  Y, Langan  P, Chanzy  H. Crystal structure and hydrogen-bonding system in cellulose Ib from synchrotron X-ray and neutron fiber diffraction. Journal of the American Chemical Society, 2002, 124(31): 9074–9082 https://doi.org/10.1021/ja0257319
 |  
															| 22 | Bele  M, Kodre  A, Arčon  I, Grdadolnik  J, Pejovnik  S, Besenhard  J O. Adsorption of cetyltrimethylammonium bromide on carbon black from aqueous solution. Carbon, 1998, 36(7): 1207–1212 https://doi.org/10.1016/S0008-6223(98)00099-2
 |  
															| 23 | Chetty  R, Kundu  S, Xia  W, Bron  M, Schuhmann  W, Chirila  V, Brandld  W, Reineckec  T, Muhlera  M. PtRu nanoparticles supported on nitrogen-doped multiwalled carbon nanotubes as catalyst for methanol electrooxidation. Electrochimica Acta, 2009, 54(17): 4208–4215 https://doi.org/10.1016/j.electacta.2009.02.073
 |  
															| 24 | Wan  J, Yan  X, Ding  J, Ren  R. A simple method for preparing biocompatible composite of cellulose and carbon nanotubes for the cell sensor. Sensors and Actuators. B, Chemical, 2010, 146(1): 221–225 https://doi.org/10.1016/j.snb.2010.02.037
 |  
															| 25 | Geetha  S, Satheesh Kumar  K, Rao  C R, Vijayan  M, Trivedi  D. EMI shielding: Methods and materials–A review. Journal of Applied Polymer Science, 2009, 112(4): 2073–2086 https://doi.org/10.1002/app.29812
 |  
															| 26 | Al-Saleh  M H, Saadeh  W H, Sundararaj  U. EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study. Carbon, 2013, 60: 146–156 https://doi.org/10.1016/j.carbon.2013.04.008
 |  
															| 27 | Liu  X, Yin  X, Kong  L, Li  Q, Liu  Y, Duan  W, Zhang  L, Cheng  L. Fabrication and electromagnetic interference shielding effectiveness of carbon nanotube reinforced carbon fiber/pyrolytic carbon composites. Carbon, 2014, 68: 501–510 https://doi.org/10.1016/j.carbon.2013.11.027
 |  
															| 28 | Hao  X, Yin  X, Zhang  L, Cheng  L. Dielectric, electromagnetic interference shielding and absorption properties of Si3N4–PyC composite ceramics. Journal of Materials Science and Technology, 2013, 29(3): 249–254 https://doi.org/10.1016/j.jmst.2013.01.011
 |  
															| 29 | Alimohammadi  F, Gashti  M P, Shamei  A. Functional cellulose fibers via polycarboxylic acid/carbon nanotube composite coating. Journal of Coatings Technology and Research, 2013, 10(1): 123–132 https://doi.org/10.1007/s11998-012-9429-3
 |  
															| 30 | Song  W L, Fan  L Z, Cao  M S, Lu  M M, Wang  C Y, Wang  J, Chen  T T, Li  Y, Hou  Z L, Liu  J, Sun  Y P. Facile fabrication of ultrathin graphene papers for effective electromagnetic shielding. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2014, 2(25): 5057–5064 https://doi.org/10.1039/c4tc00517a
 |  
															| 31 | Chung  D. Materials for electromagnetic interference shielding. Journal of Materials Engineering and Performance, 2000, 9(3): 350–354 https://doi.org/10.1361/105994900770346042
 |  
															| 32 | Zhang  H B, Zheng  W G, Yan  Q, Jiang  Z G, Yu  Z Z. The effect of surface chemistry of graphene on rheological and electrical properties of polymethylmethacrylate composites. Carbon, 2012, 50(14): 5117–5125 https://doi.org/10.1016/j.carbon.2012.06.052
 |  
								            
												
											    	
											        	|  | Viewed |  
											        	|  |  |  
												        |  | Full text 
 | 
 
 |  
												        |  |  |  
												        |  | Abstract 
 | 
 |  
												        |  |  |  
												        |  | Cited |  |  
												        |  |  |  |  
													    |  | Shared |  |  
													    |  |  |  |  
													    |  | Discussed |  |  |  |  |