Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2015, Vol. 2 Issue (4) : 341-346    https://doi.org/10.15302/J-FASE-2015082
RESEARCH ARTICLE
Cellulose aerogels decorated with multi-walled carbon nanotubes: preparation, characterization, and application for electromagnetic interference shielding
Jian LI(),Caichao WAN
Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
 Download: PDF(634 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Electromagnetic wave pollution has attracted extensive attention because of its ability to affect the operation of electronic machinery and endanger human health. In this work, the environmentally-friendly hybrid aerogels consisting of cellulose and multi-walled carbon nanotubes (MWCNTs) were fabricated. The aerogels have a low bulk density of 58.17 mg·cm3. The incorporation of MWCNTs leads to an improvement in the thermal stability. In addition, the aerogels show a high electromagnetic interference (EMI) SEtotal value of 19.4 dB. Meanwhile, the absorption-dominant shielding mechanism helps a lot to reduce secondary radiation, which is beneficial to develop novel eco-friendly EMI shielding materials.

Keywords cellulose aerogels      carbon nanotubes      electromagnetic interference shielding      composites     
Corresponding Author(s): Jian LI   
Just Accepted Date: 21 December 2015   Online First Date: 11 January 2016    Issue Date: 19 January 2016
 Cite this article:   
Jian LI,Caichao WAN. Cellulose aerogels decorated with multi-walled carbon nanotubes: preparation, characterization, and application for electromagnetic interference shielding[J]. Front. Agr. Sci. Eng. , 2015, 2(4): 341-346.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2015082
https://academic.hep.com.cn/fase/EN/Y2015/V2/I4/341
Fig.1  Low-magnification (a) and high-magnification (b) SEM images of MWCNT/CA, respectively
Fig.2   XRD patterns of MWCNT/CA and PCA
Fig.3   TG (a) and derivative TG (b) curves of MWCNT/CA and PCA, respectively
Fig.4   Schematic diagram of major mechanisms for EMI shielding
Fig.5   SEtotal of MWCNT/CA and PCA as a function of frequency
Fig.6   SEA (a) and SER (b) of MWCNT/CA and PCA as a function of frequency
1 Liebner  F, Potthast  A, Rosenau  T, Haimer  E, Wendland  M. Cellulose aerogels: highly porous, ultra-lightweight materials. Holzforschung, 2008, 62(2): 129–135
https://doi.org/10.1515/HF.2008.051
2 Sescousse  R, Gavillon  R, Budtova  T. Aerocellulose from cellulose–ionic liquid solutions: preparation, properties and comparison with cellulose–NaOH and cellulose–NMMO routes. Carbohydrate Polymers, 2011, 83(4): 1766–1774
https://doi.org/10.1016/j.carbpol.2010.10.043
3 Pääkkö  M, Vapaavuori  J, Silvennoinen  R, Kosonen  H, Ankerfors  M, Lindström  T, Berglund  L A, Ikkala  O. Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter, 2008, 4(12): 2492–2499
https://doi.org/10.1039/b810371b
4 Wan  C, Li  J. Facile synthesis of well-dispersed superparamagnetic g-Fe2O3 nanoparticles encapsulated in three-dimensional architectures of cellulose aerogels and their applications for Cr (VI) removal from contaminated water. ACS Sustainable Chemistry & Engineering, 2015, 3(9): 2142–2152
https://doi.org/10.1021/acssuschemeng.5b00384
5 Wan  C, Li  J. Synthesis of well-dispersed magnetic CoFe2O4 nanoparticles in cellulose aerogels via a facile oxidative co-precipitation method. Carbohydrate Polymers, 2015, 134: 144–150
https://doi.org/10.1016/j.carbpol.2015.07.083
6 Wan  C, Lu  Y, Jin  C, Sun  Q, Li  J. A facile low-temperature hydrothermal method to prepare anatase titania/cellulose aerogels with strong photocatalytic activities for rhodamine B and methyl orange degradations. Journal of Nanomaterials, 2015, 2015: 717016
7 Wan  C, Li  J. Embedding ZnO nanorods into porous cellulose aerogels via a facile one-step low-temperature hydrothermal method. Materials & Design, 2015, 83: 620–625
https://doi.org/10.1016/j.matdes.2015.06.043
8 Baughman  R H, Zakhidov  A A, de Heer  W A. Carbon nanotubes-the route toward applications. Science, 2002, 297(5582): 787–792
https://doi.org/10.1126/science.1060928
9 Berber  S, Kwon  Y K, Tománek  D. Unusually high thermal conductivity of carbon nanotubes. Physical Review Letters, 2000, 84(20): 4613–4616
https://doi.org/10.1103/PhysRevLett.84.4613
10 Li  Q, Li  Y, Zhang  X, Chikkannanavar  S B, Zhao  Y, Dangelewicz  A M, Zheng  L, Doorn  S K, Jia  Q, Peterson  D E, Arendt  P N, Zhu  Y. Structure-dependent electrical properties of carbon nanotube fibers. Advanced Materials, 2007, 19(20): 3358–3363
https://doi.org/10.1002/adma.200602966
11 Zhang  H, Wang  Z, Zhang  Z, Wu  J, Zhang  J, He  J. Regenerated-cellulose/multiwalled-carbon nanotube composite fibers with enhanced mechanical properties prepared with the ionic liquid 1–allyl–3–methylimidazolium chloride. Advanced Materials, 2007, 19(5): 698–704
https://doi.org/10.1002/adma.200600442
12 Hsieh  T, Kinloch  A, Taylor  A, Kinloch  I. The effect of carbon nanotubes on the fracture toughness and fatigue performance of a thermosetting epoxy polymer. Journal of Materials Science, 2011, 46(23): 7525–7535
https://doi.org/10.1007/s10853-011-5724-0
13 Haggenmueller  R, Fischer  J E, Winey  K I. Single wall carbon nanotube/polyethylene nanocomposites: nucleating and templating polyethylene crystallites. Macromolecules, 2006, 39(8): 2964–2971
https://doi.org/10.1021/ma0527698
14 Muñoz  E, Suh  D S, Collins  S, Selvidge  M, Dalton  A B, Kim  B G, Razal  J M, Ussery  G, Rinzler  A G, Martínez  M T, Baughman  R H. Highly conducting carbon nanotube/polyethyleneimine composite fibers. Advanced Materials, 2005, 17(8): 1064–1067
https://doi.org/10.1002/adma.200401648
15 Chatterjee  T, Yurekli  K, Hadjiev  V G, Krishnamoorti  R. Single-walled carbon nanotube dispersions in poly(ethylene oxide). Advanced Functional Materials, 2005, 15(11): 1832–1838
https://doi.org/10.1002/adfm.200500290
16 Jin  Z, Pramoda  K, Xu  G, Goh  S H. Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly(methyl methacrylate) composites. Chemical Physics Letters, 2001, 337(1): 43–47
https://doi.org/10.1016/S0009-2614(01)00186-5
17 Chang  T, Jensen  L R, Kisliuk  A, Pipes  R, Pyrz  R, Sokolov  A. Microscopic mechanism of reinforcement in single-wall carbon nanotube/polypropylene nanocomposite. Polymer, 2005, 46(2): 439–444
https://doi.org/10.1016/j.polymer.2004.11.030
18 Shaffer  M S, Windle  A H. Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites. Advanced Materials, 1999, 11(11): 937–941
https://doi.org/10.1002/(SICI)1521-4095(199908)11:11<937::AID-ADMA937>3.0.CO;2-9
19 Li  J, Wan  C, Lu  Y, Sun  Q. Fabrication of cellulose aerogel from wheat straw with strong absorptive capacity. Frontiers of Agricultural Science and Engineering, 2014, 1(1): 46–52
https://doi.org/10.15302/J-FASE-2014004
20 Wan  C, Lu  Y, Jiao  Y, Jin  C, Sun  Q, Li  J. Fabrication of hydrophobic, electrically conductive and flame-resistant carbon aerogels by pyrolysis of regenerated cellulose aerogels. Carbohydrate Polymers, 2015, 118: 115–118
https://doi.org/10.1016/j.carbpol.2014.11.010
21 Nishiyama  Y, Langan  P, Chanzy  H. Crystal structure and hydrogen-bonding system in cellulose Ib from synchrotron X-ray and neutron fiber diffraction. Journal of the American Chemical Society, 2002, 124(31): 9074–9082
https://doi.org/10.1021/ja0257319
22 Bele  M, Kodre  A, Arčon  I, Grdadolnik  J, Pejovnik  S, Besenhard  J O. Adsorption of cetyltrimethylammonium bromide on carbon black from aqueous solution. Carbon, 1998, 36(7): 1207–1212
https://doi.org/10.1016/S0008-6223(98)00099-2
23 Chetty  R, Kundu  S, Xia  W, Bron  M, Schuhmann  W, Chirila  V, Brandld  W, Reineckec  T, Muhlera  M. PtRu nanoparticles supported on nitrogen-doped multiwalled carbon nanotubes as catalyst for methanol electrooxidation. Electrochimica Acta, 2009, 54(17): 4208–4215
https://doi.org/10.1016/j.electacta.2009.02.073
24 Wan  J, Yan  X, Ding  J, Ren  R. A simple method for preparing biocompatible composite of cellulose and carbon nanotubes for the cell sensor. Sensors and Actuators. B, Chemical, 2010, 146(1): 221–225
https://doi.org/10.1016/j.snb.2010.02.037
25 Geetha  S, Satheesh Kumar  K, Rao  C R, Vijayan  M, Trivedi  D. EMI shielding: Methods and materials–A review. Journal of Applied Polymer Science, 2009, 112(4): 2073–2086
https://doi.org/10.1002/app.29812
26 Al-Saleh  M H, Saadeh  W H, Sundararaj  U. EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study. Carbon, 2013, 60: 146–156
https://doi.org/10.1016/j.carbon.2013.04.008
27 Liu  X, Yin  X, Kong  L, Li  Q, Liu  Y, Duan  W, Zhang  L, Cheng  L. Fabrication and electromagnetic interference shielding effectiveness of carbon nanotube reinforced carbon fiber/pyrolytic carbon composites. Carbon, 2014, 68: 501–510
https://doi.org/10.1016/j.carbon.2013.11.027
28 Hao  X, Yin  X, Zhang  L, Cheng  L. Dielectric, electromagnetic interference shielding and absorption properties of Si3N4–PyC composite ceramics. Journal of Materials Science and Technology, 2013, 29(3): 249–254
https://doi.org/10.1016/j.jmst.2013.01.011
29 Alimohammadi  F, Gashti  M P, Shamei  A. Functional cellulose fibers via polycarboxylic acid/carbon nanotube composite coating. Journal of Coatings Technology and Research, 2013, 10(1): 123–132 
https://doi.org/10.1007/s11998-012-9429-3
30 Song  W L, Fan  L Z, Cao  M S, Lu  M M, Wang  C Y, Wang  J, Chen  T T, Li  Y, Hou  Z L, Liu  J, Sun  Y P. Facile fabrication of ultrathin graphene papers for effective electromagnetic shielding. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2014, 2(25): 5057–5064
https://doi.org/10.1039/c4tc00517a
31 Chung  D. Materials for electromagnetic interference shielding. Journal of Materials Engineering and Performance, 2000, 9(3): 350–354
https://doi.org/10.1361/105994900770346042
32 Zhang  H B, Zheng  W G, Yan  Q, Jiang  Z G, Yu  Z Z. The effect of surface chemistry of graphene on rheological and electrical properties of polymethylmethacrylate composites. Carbon, 2012, 50(14): 5117–5125
https://doi.org/10.1016/j.carbon.2012.06.052
[1] Jian LI, Yue JIAO. Polyaniline–polypyrrole nanocomposites using a green and porous wood as support for supercapacitors[J]. Front. Agr. Sci. Eng. , 2019, 6(2): 137-143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed