|
|
Cellulose aerogels decorated with multi-walled carbon nanotubes: preparation, characterization, and application for electromagnetic interference shielding |
Jian LI( ),Caichao WAN |
Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China |
|
|
Abstract Electromagnetic wave pollution has attracted extensive attention because of its ability to affect the operation of electronic machinery and endanger human health. In this work, the environmentally-friendly hybrid aerogels consisting of cellulose and multi-walled carbon nanotubes (MWCNTs) were fabricated. The aerogels have a low bulk density of 58.17 mg·cm−3. The incorporation of MWCNTs leads to an improvement in the thermal stability. In addition, the aerogels show a high electromagnetic interference (EMI) SEtotal value of 19.4 dB. Meanwhile, the absorption-dominant shielding mechanism helps a lot to reduce secondary radiation, which is beneficial to develop novel eco-friendly EMI shielding materials.
|
Keywords
cellulose aerogels
carbon nanotubes
electromagnetic interference shielding
composites
|
Corresponding Author(s):
Jian LI
|
Just Accepted Date: 21 December 2015
Online First Date: 11 January 2016
Issue Date: 19 January 2016
|
|
1 |
Liebner F, Potthast A, Rosenau T, Haimer E, Wendland M. Cellulose aerogels: highly porous, ultra-lightweight materials. Holzforschung, 2008, 62(2): 129–135
https://doi.org/10.1515/HF.2008.051
|
2 |
Sescousse R, Gavillon R, Budtova T. Aerocellulose from cellulose–ionic liquid solutions: preparation, properties and comparison with cellulose–NaOH and cellulose–NMMO routes. Carbohydrate Polymers, 2011, 83(4): 1766–1774
https://doi.org/10.1016/j.carbpol.2010.10.043
|
3 |
Pääkkö M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindström T, Berglund L A, Ikkala O. Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter, 2008, 4(12): 2492–2499
https://doi.org/10.1039/b810371b
|
4 |
Wan C, Li J. Facile synthesis of well-dispersed superparamagnetic g-Fe2O3 nanoparticles encapsulated in three-dimensional architectures of cellulose aerogels and their applications for Cr (VI) removal from contaminated water. ACS Sustainable Chemistry & Engineering, 2015, 3(9): 2142–2152
https://doi.org/10.1021/acssuschemeng.5b00384
|
5 |
Wan C, Li J. Synthesis of well-dispersed magnetic CoFe2O4 nanoparticles in cellulose aerogels via a facile oxidative co-precipitation method. Carbohydrate Polymers, 2015, 134: 144–150
https://doi.org/10.1016/j.carbpol.2015.07.083
|
6 |
Wan C, Lu Y, Jin C, Sun Q, Li J. A facile low-temperature hydrothermal method to prepare anatase titania/cellulose aerogels with strong photocatalytic activities for rhodamine B and methyl orange degradations. Journal of Nanomaterials, 2015, 2015: 717016
|
7 |
Wan C, Li J. Embedding ZnO nanorods into porous cellulose aerogels via a facile one-step low-temperature hydrothermal method. Materials & Design, 2015, 83: 620–625
https://doi.org/10.1016/j.matdes.2015.06.043
|
8 |
Baughman R H, Zakhidov A A, de Heer W A. Carbon nanotubes-the route toward applications. Science, 2002, 297(5582): 787–792
https://doi.org/10.1126/science.1060928
|
9 |
Berber S, Kwon Y K, Tománek D. Unusually high thermal conductivity of carbon nanotubes. Physical Review Letters, 2000, 84(20): 4613–4616
https://doi.org/10.1103/PhysRevLett.84.4613
|
10 |
Li Q, Li Y, Zhang X, Chikkannanavar S B, Zhao Y, Dangelewicz A M, Zheng L, Doorn S K, Jia Q, Peterson D E, Arendt P N, Zhu Y. Structure-dependent electrical properties of carbon nanotube fibers. Advanced Materials, 2007, 19(20): 3358–3363
https://doi.org/10.1002/adma.200602966
|
11 |
Zhang H, Wang Z, Zhang Z, Wu J, Zhang J, He J. Regenerated-cellulose/multiwalled-carbon nanotube composite fibers with enhanced mechanical properties prepared with the ionic liquid 1–allyl–3–methylimidazolium chloride. Advanced Materials, 2007, 19(5): 698–704
https://doi.org/10.1002/adma.200600442
|
12 |
Hsieh T, Kinloch A, Taylor A, Kinloch I. The effect of carbon nanotubes on the fracture toughness and fatigue performance of a thermosetting epoxy polymer. Journal of Materials Science, 2011, 46(23): 7525–7535
https://doi.org/10.1007/s10853-011-5724-0
|
13 |
Haggenmueller R, Fischer J E, Winey K I. Single wall carbon nanotube/polyethylene nanocomposites: nucleating and templating polyethylene crystallites. Macromolecules, 2006, 39(8): 2964–2971
https://doi.org/10.1021/ma0527698
|
14 |
Muñoz E, Suh D S, Collins S, Selvidge M, Dalton A B, Kim B G, Razal J M, Ussery G, Rinzler A G, Martínez M T, Baughman R H. Highly conducting carbon nanotube/polyethyleneimine composite fibers. Advanced Materials, 2005, 17(8): 1064–1067
https://doi.org/10.1002/adma.200401648
|
15 |
Chatterjee T, Yurekli K, Hadjiev V G, Krishnamoorti R. Single-walled carbon nanotube dispersions in poly(ethylene oxide). Advanced Functional Materials, 2005, 15(11): 1832–1838
https://doi.org/10.1002/adfm.200500290
|
16 |
Jin Z, Pramoda K, Xu G, Goh S H. Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly(methyl methacrylate) composites. Chemical Physics Letters, 2001, 337(1): 43–47
https://doi.org/10.1016/S0009-2614(01)00186-5
|
17 |
Chang T, Jensen L R, Kisliuk A, Pipes R, Pyrz R, Sokolov A. Microscopic mechanism of reinforcement in single-wall carbon nanotube/polypropylene nanocomposite. Polymer, 2005, 46(2): 439–444
https://doi.org/10.1016/j.polymer.2004.11.030
|
18 |
Shaffer M S, Windle A H. Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites. Advanced Materials, 1999, 11(11): 937–941
https://doi.org/10.1002/(SICI)1521-4095(199908)11:11<937::AID-ADMA937>3.0.CO;2-9
|
19 |
Li J, Wan C, Lu Y, Sun Q. Fabrication of cellulose aerogel from wheat straw with strong absorptive capacity. Frontiers of Agricultural Science and Engineering, 2014, 1(1): 46–52
https://doi.org/10.15302/J-FASE-2014004
|
20 |
Wan C, Lu Y, Jiao Y, Jin C, Sun Q, Li J. Fabrication of hydrophobic, electrically conductive and flame-resistant carbon aerogels by pyrolysis of regenerated cellulose aerogels. Carbohydrate Polymers, 2015, 118: 115–118
https://doi.org/10.1016/j.carbpol.2014.11.010
|
21 |
Nishiyama Y, Langan P, Chanzy H. Crystal structure and hydrogen-bonding system in cellulose Ib from synchrotron X-ray and neutron fiber diffraction. Journal of the American Chemical Society, 2002, 124(31): 9074–9082
https://doi.org/10.1021/ja0257319
|
22 |
Bele M, Kodre A, Arčon I, Grdadolnik J, Pejovnik S, Besenhard J O. Adsorption of cetyltrimethylammonium bromide on carbon black from aqueous solution. Carbon, 1998, 36(7): 1207–1212
https://doi.org/10.1016/S0008-6223(98)00099-2
|
23 |
Chetty R, Kundu S, Xia W, Bron M, Schuhmann W, Chirila V, Brandld W, Reineckec T, Muhlera M. PtRu nanoparticles supported on nitrogen-doped multiwalled carbon nanotubes as catalyst for methanol electrooxidation. Electrochimica Acta, 2009, 54(17): 4208–4215
https://doi.org/10.1016/j.electacta.2009.02.073
|
24 |
Wan J, Yan X, Ding J, Ren R. A simple method for preparing biocompatible composite of cellulose and carbon nanotubes for the cell sensor. Sensors and Actuators. B, Chemical, 2010, 146(1): 221–225
https://doi.org/10.1016/j.snb.2010.02.037
|
25 |
Geetha S, Satheesh Kumar K, Rao C R, Vijayan M, Trivedi D. EMI shielding: Methods and materials–A review. Journal of Applied Polymer Science, 2009, 112(4): 2073–2086
https://doi.org/10.1002/app.29812
|
26 |
Al-Saleh M H, Saadeh W H, Sundararaj U. EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study. Carbon, 2013, 60: 146–156
https://doi.org/10.1016/j.carbon.2013.04.008
|
27 |
Liu X, Yin X, Kong L, Li Q, Liu Y, Duan W, Zhang L, Cheng L. Fabrication and electromagnetic interference shielding effectiveness of carbon nanotube reinforced carbon fiber/pyrolytic carbon composites. Carbon, 2014, 68: 501–510
https://doi.org/10.1016/j.carbon.2013.11.027
|
28 |
Hao X, Yin X, Zhang L, Cheng L. Dielectric, electromagnetic interference shielding and absorption properties of Si3N4–PyC composite ceramics. Journal of Materials Science and Technology, 2013, 29(3): 249–254
https://doi.org/10.1016/j.jmst.2013.01.011
|
29 |
Alimohammadi F, Gashti M P, Shamei A. Functional cellulose fibers via polycarboxylic acid/carbon nanotube composite coating. Journal of Coatings Technology and Research, 2013, 10(1): 123–132
https://doi.org/10.1007/s11998-012-9429-3
|
30 |
Song W L, Fan L Z, Cao M S, Lu M M, Wang C Y, Wang J, Chen T T, Li Y, Hou Z L, Liu J, Sun Y P. Facile fabrication of ultrathin graphene papers for effective electromagnetic shielding. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2014, 2(25): 5057–5064
https://doi.org/10.1039/c4tc00517a
|
31 |
Chung D. Materials for electromagnetic interference shielding. Journal of Materials Engineering and Performance, 2000, 9(3): 350–354
https://doi.org/10.1361/105994900770346042
|
32 |
Zhang H B, Zheng W G, Yan Q, Jiang Z G, Yu Z Z. The effect of surface chemistry of graphene on rheological and electrical properties of polymethylmethacrylate composites. Carbon, 2012, 50(14): 5117–5125
https://doi.org/10.1016/j.carbon.2012.06.052
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|