|
|
Effects of the TLR4 transgene on reproductive traits and DNA methylation pattern of oocytes in ewes |
Yi FANG1,Xiangwei FU1,Junjie LI2,Ming DU1,Baoyu JIA1,Jinlong ZHANG3,Xiaosheng ZHANG3,Shien ZHU1,*( ) |
1. National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China 2. College of Animal Science and Technology, Agricultural University of Hebei, Baoding 071000, China 3. Animal Husbandry and Veterinary Research Institute of Tianjin, Tianjin 300412, China |
|
|
Abstract This study was conducted to systematically assess the reproductive performance of transgenic TLR4 ewes. In the TLR4 transgenic founders (F0) and their positive offspring (F1), hematological and reproductive parameters and the global DNA methylation level in oocytes at various stages were analyzed. The values of the physiological and biochemical parameters determined from the blood samples did not differ significantly between the transgenic and wild-type ewes. Moreover, the transgenic ewes showed reproductive traits similar to the wild-type ewes. These traits included characteristics of puberty, the estrus cycle, estrus duration, gestation, the pregnancy rate and the superovulation response. Additionally, no significant differences were found between transgenic and wild-type ewes in the DNA methylation level of the oocytes at various stages. In summary, the preliminary evidence presented in this paper demonstrates that the presence of the TLR4 transgene did not affect the reproductive performance in sheep.
|
Keywords
TLR4 transgenic ewe
safety assessment
reproductive trait
oocyte
DNA methylation
|
Corresponding Author(s):
Shien ZHU
|
Online First Date: 28 January 2015
Issue Date: 10 March 2015
|
|
1 |
Doblhoff-Dier O, Collins C H. Biosafety: future priorities for research in health care. Journal of Biotechnology, 2001, 85(2): 227-239
https://doi.org/10.1016/S0168-1656(00)00362-X
pmid: 11165365
|
2 |
Clark J, Whitelaw B. A future for transgenic livestock. Nature Reviews. Genetics, 2003, 4(10): 825-833
https://doi.org/10.1038/nrg1183
pmid: 14526378
|
3 |
Einsiedel E F. Public perceptions of transgenic animals. Revue Scientifique et Technique (International Office of Epizootics), 2005, 24(1): 149-157
pmid: 16110885
|
4 |
Van Reenen C G, Meuwissen T H, Hopster H, Oldenbroek K, Kruip T H, Blokhuis H J. Transgenesis may affect farm animal welfare: a case for systematic risk assessment. Journal of Animal Science, 2001, 79(7): 1763-1779
pmid: 11465364
|
5 |
van der Meer M, Rolls A, Baumans V, Olivier B, van Zutphen L F. Use of score sheets for welfare assessment of transgenic mice. Laboratory Animals, 2001, 35(4): 379-389
https://doi.org/10.1258/0023677011911859
pmid: 11669323
|
6 |
Webster J. The assessment and implementation of animal welfare: theory into practice. Revue Scientifique et Technique (International Office of Epizootics), 2005, 24(2): 723-734
pmid: 16358522
|
7 |
Food and Agriculture Organization (FAO). Safety assessment of foods derived from genetically modified animals, including fish. Rome: FAO Food and Nutrition Paper, 2004, 79: 1-36
|
8 |
Jackson K A, Berg J M, Murray J D, Maga E A. Evaluating the fitness of human lysozyme transgenic dairy goats: growth and reproductive traits. Transgenic Research, 2010, 19(6): 977-986
https://doi.org/10.1007/s11248-010-9371-z
pmid: 20135222
|
9 |
Brundige D R, Maga E A, Klasing K C, Murray J D. Lysozyme transgenic goats’ milk influences gastrointestinal morphology in young pigs. The Journal of Nutrition, 2008, 138(5): 921-926 18424602
https://doi.org/18424602
|
10 |
Brundige D R, Maga E A, Klasing K C, Murray J D. Consumption of pasteurized human lysozyme transgenic goats’ milk alters serum metabolite profile in young pigs. Transgenic Research, 2010, 19(4): 563-574
https://doi.org/10.1007/s11248-009-9334-4
pmid: 19847666
|
11 |
Tang M, Zheng X, Cheng W, Jin E, Chen H, Yang S, Cui W, Li K. Safety assessment of sFat-1 transgenic pigs by detecting their co-habitant microbe in intestinal tract. Transgenic Research, 2011, 20(4): 749-758
https://doi.org/10.1007/s11248-010-9457-7
pmid: 21082244
|
12 |
Xu J, Zhao J, Wang J, Zhao Y, Zhang L, Chu M, Li N. Molecular-based environmental risk assessment of three varieties of genetically engineered cows. Transgenic Research, 2011, 20(5): 1043-1054
https://doi.org/10.1007/s11248-010-9477-3
pmid: 21221780
|
13 |
Zhao J, Xu J, Wang J, Zhao Y, Zhang L, He J, Chu M, Li N. Impacts of human lysozyme transgene on the microflora of pig feces and the surrounding soil. Journal of Biotechnology, 2012, 161(4): 437-444
https://doi.org/10.1016/j.jbiotec.2012.05.018
pmid: 22750647
|
14 |
Huber R C, Remuge L, Carlisle A, Lillico S, Sand?e P, S?rensen D B, Whitelaw C B, Olsson I A. Welfare assessment in transgenic pigs expressing green fluorescent protein (GFP). Transgenic Research, 2012, 21(4): 773-784
https://doi.org/10.1007/s11248-011-9571-1
pmid: 22173943
|
15 |
Deppenmeier S, Bock O, Mengel M, Niemann H, Kues W, Lemme E, Wirth D, Wonigeit K, Kreipe H. Health status of transgenic pigs expressing the human complement regulatory protein CD59. Xenotransplantation, 2006, 13(4): 345-356
https://doi.org/10.1111/j.1399-3089.2006.00317.x
pmid: 16768728
|
16 |
Maga E A, Murray J D. Welfare applications of genetically engineered animals for use in agriculture. Journal of Animal Science, 2010, 88(4): 1588-1591
https://doi.org/10.2527/jas.2010-2828
pmid: 20154173
|
17 |
Cao Z, Li Y, Wen X, Li Z, Mi C, Zhang Z, Li N, Li Q. Recloned transgenic pigs possess normal reproductive performance and stable genetic transmission capacity. Zygote, 2014, 22(1): 18-24
https://doi.org/10.1017/S0967199412000238
pmid: 22784554
|
18 |
Merlino G T, Stahle C, Jhappan C, Linton R, Mahon K A, Willingham M C. Inactivation of a sperm motility gene by insertion of an epidermal growth factor receptor transgene whose product is overexpressed and compartmentalized during spermatogenesis. Genes & Development, 1991, 5(8): 1395-1406
https://doi.org/10.1101/gad.5.8.1395
pmid: 1714416
|
19 |
Pellas T C, Ramachandran B, Duncan M, Pan S S, Marone M, Chada K. Germ-cell deficient (gcd), an insertional mutation manifested as infertility in transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(19): 8787-8791
https://doi.org/10.1073/pnas.88.19.8787
pmid: 1924340
|
20 |
Soriano P, Gridley T, Jaenisch R. Retroviruses and insertional mutagenesis in mice: proviral integration at the Mov 34 locus leads to early embryonic death. Genes & Development, 1987, 1(4): 366-375
https://doi.org/10.1101/gad.1.4.366
pmid: 2824282
|
21 |
Oliveri R S, Kalisz M, Schjerling C K, Andersen C Y, Borup R, Byskov A G. Evaluation in mammalian oocytes of gene transcripts linked to epigenetic reprogramming. Reproduction, 2007, 134(4): 549-558
https://doi.org/10.1530/REP-06-0315
pmid: 17890290
|
22 |
Kues W A, Schwinzer R, Wirth D, Verhoeyen E, Lemme E, Herrmann D, Barg-Kues B, Hauser H, Wonigeit K, Niemann H. Epigenetic silencing and tissue independent expression of a novel tetracycline inducible system in double-transgenic pigs. The FASEB Journal, 2006, 20(8): 1200-1202
https://doi.org/10.1096/fj.05-5415fje
pmid: 16684801
|
23 |
Hofmann A, Kessler B, Ewerling S, Kabermann A, Brem G, Wolf E, Pfeifer A. Epigenetic regulation of lentiviral transgene vectors in a large animal model. Molecular Therapy, 2006, 13(1): 59-66
https://doi.org/10.1016/j.ymthe.2005.07.685
pmid: 16140581
|
24 |
Reik W, R?mer I, Barton S C, Surani M A, Howlett S K, Klose J. Adult phenotype in the mouse can be affected by epigenetic events in the early embryo. Development, 1993, 119(3): 933-942
pmid: 8187648
|
25 |
Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science, 2001, 293(5532): 1089-1093
https://doi.org/10.1126/science.1063443
pmid: 11498579
|
26 |
Yue M, Fu X, Zhou G, Hou Y, Du M, Wang L, Zhu S. Abnormal DNA methylation in oocytes could be associated with a decrease in reproductive potential in old mice. Journal of Assisted Reproduction and Genetics, 2012, 29(7): 643-650
https://doi.org/10.1007/s10815-012-9780-4
pmid: 22618193
|
27 |
Takeda K, Akira S. Toll-like receptors in innate immunity. International Immunology, 2005, 17(1): 1-14
https://doi.org/10.1093/intimm/dxh186
pmid: 15585605
|
28 |
Borjesson D L, Christopher M M, Boyce W M. Biochemical and hematologic reference intervals for free-ranging desert bighorn sheep. Journal of Wildlife Diseases, 2000, 36(2): 294-300
https://doi.org/10.7589/0090-3558-36.2.294
pmid: 10813611
|
29 |
Deng S, Yu K, Zhang B, Yao Y, Liu Y, He H, Zhang H, Cui M, Fu J, Lian Z, Li N. Effects of over-expression of TLR2 in transgenic goats on pathogen clearance and role of up-regulation of lysozyme secretion and infiltration of inflammatory cells. BMC Veterinary Research, 2012a, 8(1): 196
https://doi.org/10.1186/1746-6148-8-196
pmid: 23082910
|
30 |
Garrels W, Holler S, Cleve N, Niemann H, Ivics Z, Kues W A. Assessment of fecundity and germ line transmission in two transgenic pig lines produced by sleeping beauty transposition. Genes, 2012, 3(4): 615-633
https://doi.org/10.3390/genes3040615
pmid: 24705079
|
31 |
Jungi T W, Farhat K, Burgener I A, Werling D. Toll-like receptors in domestic animals. Cell and Tissue Research, 2011, 343(1): 107-120
https://doi.org/10.1007/s00441-010-1047-8
pmid: 20927536
|
32 |
Kannaki T R, Shanmugam M, Verma P C. Toll-like receptors and their role in animal reproduction. Animal Reproduction Science, 2011, 125(1-4): 1-12
https://doi.org/10.1016/j.anireprosci.2011.03.008
pmid: 21497464
|
33 |
Müller M, Brem G. Transgenic approaches to the increase of disease resistance in farm animals. Revue Scientifique et Technique (International Office of Epizootics), 1998, 17(1): 365-378
pmid: 9638824
|
34 |
Girling J E, Hedger M P. Toll-like receptors in the gonads and reproductive tract: emerging roles in reproductive physiology and pathology. Immunology and Cell Biology, 2007, 85(6): 481-489
https://doi.org/10.1038/sj.icb.7100086
pmid: 17592495
|
35 |
Deng S, Wu Q, Yu K, Zhang Y, Yao Y, Li W, Deng Z, Liu G, Li W, Lian Z. Changes in the relative inflammatory responses in sheep cells overexpressing of toll-like receptor 4 when stimulated with LPS. PLoS ONE, 2012a, 7(10): e47118
https://doi.org/10.1371/journal.pone.0047118
pmid: 23056598
|
36 |
Li E. Chromatin modification and epigenetic reprogramming in mammalian development. Nature Reviews. Genetics, 2002, 3(9): 662-673
https://doi.org/10.1038/nrg887
pmid: 12209141
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|