|
|
Effects of DNA damage on oocyte meiotic maturation and early embryonic development |
Shen YIN,Junyu MA,Wei SHEN( ) |
Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China |
|
|
Abstract DNA damage is one of the most common threats to meiotic cells. It has the potential to induce infertility and genetic abnormalities that may be passed to the embryo. Here, we reviewed exogenous factors which could induce DNA damage. Specially, we addressed the different effects of DNA damage on mouse oocytes and embryonic development. Complex DNA damage, double-strand breaks, represents a more difficult repair process and involves various repair pathways. Understanding the mechanisms involved in DNA damage responses may improve therapeutic strategies for ovarian cancer and fertility preservation.
|
Keywords
DNA damage
double-strand breaks (DSBs)
oocyte
embryo
|
Corresponding Author(s):
Wei SHEN
|
Online First Date: 16 January 2015
Issue Date: 27 January 2015
|
|
1 |
Ferraretti A P, Goossens V, de Mouzon J, Bhattacharya S, Castilla J A, Korsak V, Kupka M, Nygren K G, Nyboe Andersen A. Assisted reproductive technology in Europe, 2008: results generated from European registers by ESHRE. Human Reproduction, 2012, 27(9): 2571–2584
https://doi.org/10.1093/humrep/des255
pmid: 22786779
|
2 |
Jacquet P, Adriaens I, Buset J, Neefs M, Vankerkom J. Cytogenetic studies in mouse oocytes irradiated in vitro at different stages of maturation, by use of an early preantral follicle culture system. Mutation Research, 2005, 583(2): 168–177
https://doi.org/10.1016/j.mrgentox.2005.03.008
pmid: 15878304
|
3 |
Tease C. X-ray-induced chromosome aberrations in dictyate oocytes of young and old female mice. Mutation Research, 1983, 119(2): 191–194
https://doi.org/10.1016/0165-7992(83)90128-8
pmid: 6828056
|
4 |
Adriaens I, Smitz J, Jacquet P. The current knowledge on radio sensitivity of ovarian follicle development stages. Human Reproduction Update, 2009, 15(3): 359–377
https://doi.org/10.1093/humupd/dmn063
pmid: 19151106
|
5 |
Dasika G K, Lin S C, Zhao S, Sung P, Tomkinson A, Lee E Y. DNA damage-induced cell cycle checkpoints and DNA strand break repair in development and tumorigenesis. Oncogene, 1999, 18(55): 7883–7899
https://doi.org/10.1038/sj.onc.1203283
pmid: 10630641
|
6 |
Roig I, Liebe B, Egozcue J, Cabero L, Garcia M, Scherthan H. Female-specific features of recombinational double-stranded DNA repair in relation to synapsis and telomere dynamics in human oocytes. Chromosoma, 2004, 113(1): 22–33
https://doi.org/10.1007/s00412-004-0290-8
pmid: 15235794
|
7 |
Grey C, Baudat F, de Massy B. Genome-wide control of the distribution of meiotic recombination. PLoS Biology, 2009, 7(2): e35
https://doi.org/10.1371/journal.pbio.1000035
pmid: 19226188
|
8 |
Cheng E Y, Hunt P A, Naluai-Cecchini T A, Fligner C L, Fujimoto V Y, Pasternack T L, Schwartz J M, Steinauer J E, Woodruff T J, Cherry S M, Hansen T A, Vallente R U, Broman K W, Hassold T J. Meiotic recombination in human oocytes. PLOS Genetics, 2009, 5(9): e1000661
https://doi.org/10.1371/journal.pgen.1000661
pmid: 19763179
|
9 |
Lambert J, Hergenr?der R, Suter D, Deckert V. Probing liquid-liquid interfaces with spatially resolved NMR spectroscopy. Angewandte Chemie, 2009, 48(34): 6343–6345
https://doi.org/10.1002/anie.200901389
pmid: 19598187
|
10 |
Derijck A, van der Heijden G, Giele M, Philippens M, de Boer P. DNA double-strand break repair in parental chromatin of mouse zygotes, the first cell cycle as an origin of de novo mutation. Human Molecular Genetics, 2008, 17(13): 1922–1937
https://doi.org/10.1093/hmg/ddn090
pmid: 18353795
|
11 |
Speed R M. Meiosis in the foetal mouse ovary: I. An analysis at the light microscope level using surface-spreading. Chromosoma, 1982, 85(3): 427–437
https://doi.org/10.1007/BF00330366
pmid: 6180868
|
12 |
Speed R M, Chandley A C. Meiosis in the foetal mouse ovary: II. Oocyte development and age-related aneuploidy. Does a production line exist? Chromosoma, 1983, 88(3): 184–189
https://doi.org/10.1007/BF00285618
pmid: 6628083
|
13 |
Pandita T K, Richardson C. Chromatin remodeling finds its place in the DNA double-strand break response. Nucleic Acids Research, 2009, 37(5): 1363–1377
https://doi.org/10.1093/nar/gkn1071
pmid: 19139074
|
14 |
van Gent D C, Hoeijmakers J H, Kanaar R. Chromosomal stability and the DNA double-stranded break connection. Nature Reviews Genetics, 2001, 2(3): 196–206
https://doi.org/10.1038/35056049
pmid: 11256071
|
15 |
Bohgaki T, Bohgaki M, Hakem R. DNA double-strand break signaling and human disorders. Genome Integrity, 2010, 1: 15
https://doi.org/10.1186/2041-9414-1-15
pmid: 21054854
|
16 |
Paull T T, Rogakou E P, Yamazaki V, Kirchgessner C U, Gellert M, Bonner W M. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Current Biology, 2000, 10(15): 886–895
https://doi.org/10.1016/S0960-9822(00)00610-2
pmid: 10959836
|
17 |
Rogakou E P, Pilch D R, Orr A H, Ivanova V S, Bonner W M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. Journal of Biological Chemistry, 1998, 273(10): 5858–5868
https://doi.org/10.1074/jbc.273.10.5858
pmid: 9488723
|
18 |
Durkacz B W, Omidiji O, Gray D A, Shall S. (ADP-ribose)n participates in DNA excision repair. Nature, 1980, 283(5747): 593–596
https://doi.org/10.1038/283593a0
pmid: 6243744
|
19 |
Malanga M, Althaus F R. The role of poly(ADP-ribose) in the DNA damage signaling network. Biochemistry and Cell Biology, 2005, 83(3): 354–364
pmid: 15959561
|
20 |
Godon C, Cordelières F P, Biard D, Giocanti N, Mégnin-Chanet F, Hall J, Favaudon V. PARP inhibition versus PARP-1 silencing: different outcomes in terms of single-strand break repair and radiation susceptibility. Nucleic Acids Research, 2008, 36(13): 4454–4464
https://doi.org/10.1093/nar/gkn403
pmid: 18603595
|
21 |
Marangos P, Carroll J. Oocytes progress beyond prophase in the presence of DNA damage. Current Biology, 2012, 22(11): 989–994
https://doi.org/10.1016/j.cub.2012.03.063
pmid: 22578416
|
22 |
Ma J Y, Ou Yang Y C, Wang Z W, Wang Z B, Jiang Z Z, Luo S M, Hou Y, Liu Z H, Schatten H, Sun Q Y. The effects of DNA double-strand breaks on mouse oocyte meiotic maturation. Cell Cycle, 2013, 12(8): 1233–1241
https://doi.org/10.4161/cc.24311
pmid: 23518501
|
23 |
Yuen W S, Merriman J A, O’Bryan M K, Jones K T. DNA double strand breaks but not interstrand crosslinks prevent progress through meiosis in fully grown mouse oocytes. PLoS ONE, 2012, 7(8): e43875
https://doi.org/10.1371/journal.pone.0043875
pmid: 22928046
|
24 |
Wang Z W, Ma X S, Ma J Y, Luo Y B, Lin F, Wang Z B, Fan H Y, Schatten H, Sun Q Y. Laser microbeam-induced DNA damage inhibits cell division in fertilized eggs and early embryos. Cell Cycle, 2013, 12(20): 3336–3344
pmid: 24036543
|
25 |
De Bont R, van Larebeke N. Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis, 2004, 19(3): 169–185
https://doi.org/10.1093/mutage/geh025
pmid: 15123782
|
26 |
Zhang Y L, Yu C, Ji S Y, Li X M, Zhang Y P, Zhang D, Zhou D, Fan H Y. TOP2β is essential for ovarian follicles that are hypersensitive to chemotherapeutic drugs. Molecular Endocrinology, 2013, 27(10): 1678–1691
https://doi.org/10.1210/me.2013-1108
pmid: 24002654
|
27 |
Li X M, Yu C, Wang Z W, Zhang Y L, Liu X M, Zhou D, Sun Q Y, Fan H Y. DNA topoisomerase II is dispensable for oocyte meiotic resumption but is essential for meiotic chromosome condensation and separation in mice. Biology of Reproduction, 2013, 89(5): 118
https://doi.org/10.1095/biolreprod.113.110692
pmid: 24048577
|
28 |
Wu C C, Li T K, Farh L, Lin L Y, Lin T S, Yu Y J, Yen T J, Chiang C W, Chan N L. Structural basis of type II topoisomerase inhibition by the anticancer drug etoposide. Science, 2011, 333(6041): 459–462
https://doi.org/10.1126/science.1204117
pmid: 21778401
|
29 |
Jia L, Li H, Sun Y. Induction of p21-dependent senescence by an NAE inhibitor, MLN4924, as a mechanism of growth suppression. Neoplasia, 2011, 13(6): 561–569
pmid: 21677879
|
30 |
Luo Z, Pan Y, Jeong L S, Liu J, Jia L. Inactivation of the Cullin (CUL)-RING E3 ligase by the NEDD8-activating enzyme inhibitor MLN4924 triggers protective autophagy in cancer cells. Autophagy, 2012, 8(11): 1677–1679
https://doi.org/10.4161/auto.21484
pmid: 22874562
|
31 |
Luo Z, Yu G, Lee H W, Li L, Wang L, Yang D, Pan Y, Ding C, Qian J, Wu L, Chu Y, Yi J, Wang X, Sun Y, Jeong L S, Liu J, Jia L. The Nedd8-activating enzyme inhibitor MLN4924 induces autophagy and apoptosis to suppress liver cancer cell growth. Cancer Research, 2012, 72(13): 3360–3371
https://doi.org/10.1158/0008-5472.CAN-12-0388
pmid: 22562464
|
32 |
Pan W W, Zhou J J, Yu C, Xu Y, Guo L J, Zhang H Y, Zhou D, Song F Z, Fan H Y. Ubiquitin E3 ligase CRL4 (CDT2/DCAF2) as a potential chemotherapeutic target for ovarian surface epithelial cancer. Journal of Biological Chemistry, 2013, 288(41): 29680–29691
https://doi.org/10.1074/jbc.M113.495069
pmid: 23995842
|
33 |
Savage J R. A brief survey of aberration origin theories. Mutation Research, 1998, 404(1-2): 139–147
https://doi.org/10.1016/S0027-5107(98)00107-9
pmid: 9729341
|
34 |
Beerman T A, Goldberg I H. The relationship between DNA strand-scission and DNA synthesis inhibition in HeLa cells treated with neocarzinostatin. Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis, 1977, 475(2): 281–293
pmid: 139166
|
35 |
Hatayama T, Goldberg I H. DNA damage and repair in relation to cell killing in neocarzinostatin-treated HeLa cells. Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis, 1979, 563(1): 59–71
pmid: 159073
|
36 |
Ba?uelos A, Reyes E, Ocadiz R, Alvarez E, Moreno M, Monroy A, Gariglio P. Neocarzinostatin induces an effective p53-dependent response in human papillomavirus-positive cervical cancer cells. The Journal of Pharmacology and Experimental Therapeutics, 2003, 306(2): 671–680
pmid: 12750435
|
37 |
Hanoux V, Pairault C, Bakalska M, Habert R, Livera G. Caspase-2 involvement during ionizing radiation-induced oocyte death in the mouse ovary. Cell Death and Differentiation, 2007, 14(4): 671– 681
https://doi.org/10.1038/sj.cdd.4402052
pmid: 17082817
|
38 |
Lukas C, Falck J, Bartkova J, Bartek J, Lukas J. Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage. Nature Cell Biology, 2003, 5(3): 255–260
https://doi.org/10.1038/ncb945
pmid: 12598907
|
39 |
Jazayeri A, Falck J, Lukas C, Bartek J, Smith G C, Lukas J, Jackson S P. ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nature Cell Biology, 2006, 8(1): 37–45
https://doi.org/10.1038/ncb1337
pmid: 16327781
|
40 |
Botchway S W, Reynolds P, Parker A W, O’Neill P. Use of near infrared femtosecond lasers as sub-micron radiation microbeam for cell DNA damage and repair studies. Mutation Research, 2010, 704(1-3): 38–44
https://doi.org/10.1016/j.mrrev.2010.01.003
pmid: 20079460
|
41 |
Bekker-Jensen S, Lukas C, Kitagawa R, Melander F, Kastan M B, Bartek J, Lukas J. Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks. The Journal of Cell Biology, 2006, 173(2): 195–206
pmid: 16618811
|
42 |
Rogakou E P, Boon C, Redon C, Bonner W M. Megabase chromatin domains involved in DNA double-strand breaks in vivo. The Journal of Cell Biology, 1999, 146(5): 905–916
https://doi.org/10.1083/jcb.146.5.905
pmid: 10477747
|
43 |
Carroll J, Marangos P. The DNA damage response in mammalian oocytes. Frontiers in Genetics, 2013, 4: 117
https://doi.org/10.3389/fgene.2013.00117
pmid: 23805152
|
44 |
Aguilera A, Gómez-González B. Genome instability: a mechanistic view of its causes and consequences. Nature Reviews Genetics, 2008, 9(3): 204–217
|
45 |
Cohn M A, D’Andrea A D. Chromatin recruitment of DNA repair proteins: lessons from the fanconi anemia and double-strand break repair pathways. Molecular Cell, 2008, 32(3): 306–312
https://doi.org/10.1016/j.molcel.2008.10.009
pmid: 18995829
|
46 |
Reinhardt H C, Yaffe M B. Kinases that control the cell cycle in response to DNA damage: Chk1, Chk2, and MK2. Current Opinion in Cell Biology, 2009, 21(2): 245–255
https://doi.org/10.1016/j.ceb.2009.01.018
pmid: 19230643
|
47 |
Smith J, Tho L M, Xu N, Gillespie D A. The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Advances in Cancer Research, 2010, 108: 73–112
https://doi.org/10.1016/B978-0-12-380888-2.00003-0
pmid: 21034966
|
48 |
Lavin M F, Delia D, Chessa L. ATM and the DNA damage response: workshop on ataxia-telangiectasia and related syndromes. EMBO Reports, 2006, 7(2): 154–160
pmid: 16439996
|
49 |
Shiloh Y. The ATM-mediated DNA-damage response: taking shape. Trends in Biochemical Sciences, 2006, 31(7): 402–410
https://doi.org/10.1016/j.tibs.2006.05.004
pmid: 16774833
|
50 |
Branzei D, Foiani M. Regulation of DNA repair throughout the cell cycle. Nature Reviews Molecular Cell Biology, 2008, 9(4): 297–308
|
51 |
Bartek J, Lukas J. DNA damage checkpoints: from initiation to recovery or adaptation. Current Opinion in Cell Biology, 2007, 19(2): 238–245
https://doi.org/10.1016/j.ceb.2007.02.009
pmid: 17303408
|
52 |
Ciccia A, Elledge S J. The DNA damage response: making it safe to play with knives. Molecular Cell, 2010, 40(2): 179–204
https://doi.org/10.1016/j.molcel.2010.09.019
pmid: 20965415
|
53 |
Solc P, Schultz R M, Motlik J. Prophase I arrest and progression to metaphase I in mouse oocytes: comparison of resumption of meiosis and recovery from G2-arrest in somatic cells. Molecular Human Reproduction, 2010, 16(9): 654–664
pmid: 20453035
|
54 |
Lindqvist A, Rodríguez-Bravo V, Medema R H. The decision to enter mitosis: feedback and redundancy in the mitotic entry network. The Journal of Cell Biology, 2009, 185(2): 193–202
pmid: 19364923
|
55 |
Bassermann F, Frescas D, Guardavaccaro D, Busino L, Peschiaroli A, Pagano M. The Cdc14B-Cdh1-Plk1 axis controls the G2 DNA-damage-response checkpoint. Cell, 2008, 134(2): 256–267
https://doi.org/10.1016/j.cell.2008.05.043
pmid: 18662541
|
56 |
Reis A, Chang H Y, Levasseur M, Jones K T. APCcdh1 activity in mouse oocytes prevents entry into the first meiotic division. Nature Cell Biology, 2006, 8(5): 539–540
pmid: 16715549
|
57 |
Schneider M R, Wolf E. The epidermal growth factor receptor ligands at a glance. Journal of Cellular Physiology, 2009, 218(3): 460–466
https://doi.org/10.1002/jcp.21635
pmid: 19006176
|
58 |
Mac?rek L, Lindqvist A, Lim D, Lampson M A, Klompmaker R, Freire R, Clouin C, Taylor S S, Yaffe M B, Medema R H. Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery. Nature, 2008, 455(7209): 119–123
|
59 |
Barlow C, Liyanage M, Moens P B, Tarsounas M, Nagashima K, Brown K, Rottinghaus S, Jackson S P, Tagle D, Ried T, Wynshaw-Boris A. Atm deficiency results in severe meiotic disruption as early as leptonema of prophase I. Development, 1998, 125(20): 4007–4017
|
60 |
Di Giacomo M, Barchi M, Baudat F, Edelmann W, Keeney S, Jasin M. Distinct DNA-damage-dependent and-independent responses drive the loss of oocytes in recombination-defective mouse mutants. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(3): 737–742
https://doi.org/10.1073/pnas.0406212102
pmid: 15640358
|
61 |
Jackson S P, Bartek J. The DNA-damage response in human biology and disease. Nature, 2009, 461(7267): 1071–1078
https://doi.org/10.1038/nature08467
pmid: 19847258
|
62 |
Lincoln A J, Wickramasinghe D, Stein P, Schultz R M, Palko M E, De Miguel M P, Tessarollo L, Donovan P J. Cdc25b phosphatase is required for resumption of meiosis during oocyte maturation. Nature Genetics, 2002, 30(4): 446–449
https://doi.org/10.1038/ng856
pmid: 11912493
|
63 |
Lindqvist A, K?llstr?m H, Lundgren A, Barsoum E, Rosenthal C K. Cdc25B cooperates with Cdc25A to induce mitosis but has a unique role in activating cyclin B1-Cdk1 at the centrosome. The Journal of Cell Biology, 2005, 171(1): 35–45
https://doi.org/10.1083/jcb.200503066
pmid: 16216921
|
64 |
Alexandre H, Van Cauwenberge A, Tsukitani Y, Mulnard J. Pleiotropic effect of okadaic acid on maturing mouse oocytes. Development, 1991, 112(4): 971–980
pmid: 1718679
|
65 |
Gavin A C, Tsukitani Y, Schorderet-Slatkine S. Induction of M-phase entry of prophase-blocked mouse oocytes through microinjection of okadaic acid, a specific phosphatase inhibitor. Experimental Cell Research, 1991, 192(1): 75–81
https://doi.org/10.1016/0014-4827(91)90159-R
pmid: 1701730
|
66 |
Schwartz D A, Schultz R M. Stimulatory effect of okadaic acid, an inhibitor of protein phosphatases, on nuclear envelope breakdown and protein phosphorylation in mouse oocytes and one-cell embryos. Developmental Biology, 1991, 145(1): 119–127
https://doi.org/10.1016/0012-1606(91)90218-R
pmid: 1850367
|
67 |
Ghosh S, Schroeter D, Paweletz N. Okadaic acid overrides the S-phase check point and accelerates progression of G2-phase to induce premature mitosis in HeLa cells. Experimental Cell Research, 1996, 227(1): 165–169
https://doi.org/10.1006/excr.1996.0262
pmid: 8806464
|
68 |
Ghosh S, Paweletz N, Schroeter D. Cdc2-independent induction of premature mitosis by okadaic acid in HeLa cells. Experimental Cell Research, 1998, 242(1): 1–9
https://doi.org/10.1006/excr.1998.4115
pmid: 9665796
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|