Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2014, Vol. 1 Issue (1) : 77-84    https://doi.org/10.15302/J-FASE-2014010
RESEARCH ARTICLE
Transcriptome resources and genome-wide marker development for Japanese larch (Larix kaempferi)
Wanfeng LI1,Suying HAN2,Liwang QI1,Shougong ZHANG1,*()
1. State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
2. State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
 Download: PDF(621 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

While the differential responses of trees to changes in climatic and environmental conditions have been demonstrated as they age, the underlying mechanisms and age control of tree growth and development are complex and poorly understood particularly at a molecular level. In this paper, we present a transcriptome analysis of Larix kaempferi, a deciduous conifer that is widely-grown in the northern hemisphere and of significant ecological and economic value. Using high-throughput RNA sequencing, we obtained about 26 million reads from the stems of 1-, 2-, 5-, 10-, 25- and 50-year-old L. kaempferi trees. Combining these with the published Roche 454 sequencing reads and the expressed sequence tags (both mainly from Larix embryogenic cell cultures), we assembled 26670549 reads into 146786 transcripts, of which we annotated 79182 to support investigations of the molecular basis of tree aging and adaption, somatic embryogenesis and wood formation. Using these sequences we also identified many single-nucleotide polymorphisms, simple sequence repeats, and insertion and deletion markers to assist breeding and genetic diversity studies of Larix.

Keywords Larix      transcriptome      age      wood formation      somatic embryogenesis      molecular marker     
Corresponding Author(s): Shougong ZHANG   
Issue Date: 22 May 2014
 Cite this article:   
Wanfeng LI,Suying HAN,Liwang QI, et al. Transcriptome resources and genome-wide marker development for Japanese larch (Larix kaempferi)[J]. Front. Agr. Sci. Eng. , 2014, 1(1): 77-84.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2014010
https://academic.hep.com.cn/fase/EN/Y2014/V1/I1/77
Types of dataTotal sequencesTotal bases/bpMean length/bp
Illumina260749162607491600100
Roche 454591759211291630357
Sanger38742956198763
Total26670549
Assembled transcripts146786124640235849
Tab.1  Summary of transcriptome assembly
Fig.1  Representation of Gene Ontology (GO) classification in terms of ‘biologic processes’
Fig.2  Phylogenetic tree analysis from the orthologous data set across A. thaliana, L. kaempferi, P. abies, P. trichocarpa and V. vinifera
Marker informationSNPSSRInDel
Total number of identified markers463482475612434
Number of markers within annotated transcripts36422735208723
Number of transcripts with markers48578443810357
Number of annotated transcripts with markers3245332647035
Tab.2  Molecular markers identified from L. kaempferi
Fig.3  Summary analysis of single-nucleotide polymorphisms (SNPs) and single-nucleotide polymorphisms (SSRs). (a) Distribution of minor allele frequencies of SNPs identified in L. kaempferi. The x-axis represents the SNP sequence-derived minor allele frequency, while the y-axis represents the number of SNPs with a given minor allele frequency; (b) distribution of SNPs per transcript. The x-axis represents the number of SNPs per transcript, while the y-axis represents the number of transcripts with a given number of SNPs; (c) frequency of SSRs. The x-axis represents the SSR types and the y-axis represents the percentage of a given SSR type
1 Rossi S, Deslauriers A, Anfodillo T, Carrer M. Age-dependent xylogenesis in timberline conifers. New Phytologist, 2008, 177(1): 199–20817944824
https://doi.org/10.1111/j.1469-8137.2007.02235.x
2 Rossi S, Deslauriers A, Gri?ar J, Seo J W, Rathgeber C B K, Anfodillo T, Morin H, Levanic T, Oven P, Jalkanen R. Critical temperatures for xylogenesis in conifers of cold climates. Global Ecology and Biogeography, 2008, 17(6): 696–707
https://doi.org/10.1111/j.1466-8238.2008.00417.x
3 Begum S, Nakaba S, Oribe Y, Kubo T, Funada R. Cambial sensitivity to rising temperatures by natural condition and artificial heating from late winter to early spring in the evergreen conifer Cryptomeria japonica. Trees-Structure and Function, 2010, 24(1): 43–52
https://doi.org/10.1007/s00468-009-0377-1
4 Li X, Liang E, Gri?ar J, Prislan P, Rossi S, ?ufar K. Age dependence of xylogenesis and its climatic sensitivity in Smith fir on the south-eastern Tibetan Plateau. Tree Physiology, 2013, 33(1): 48–56
https://doi.org/10.1093/treephys/tps113 pmid: 23185065
5 Li W F, Ding Q, Chen J J, Cui K M, He X Q. Induction of PtoCDKB and PtoCYCB transcription by temperature during cambium reactivation in Populus tomentosa Carr. Journal of Experimental Botany, 2009, 60(9): 2621–2630
https://doi.org/10.1093/jxb/erp108 pmid: 19414499
6 Little C H A, Bonga J M. Rest in cambium of Abies balsamea. Canadian Journal of Botany, 1974, 52(7): 1723–1730
https://doi.org/10.1139/b74-224
7 Mwange K N, Wang X W, Cui K M. Mechanism of dormancy in the buds and cambium of Eucommia ulmoides. Acta Botanica Sinica, 2003, 45(6): 698–704
8 Mwange K N, Hou H W, Wang Y Q, He X Q, Cui K M. Opposite patterns in the annual distribution and time-course of endogenous abscisic acid and indole-3-acetic acid in relation to the periodicity of cambial activity in Eucommia ulmoides Oliv. Journal of Experimental Botany, 2005, 56(413): 1017–1028
https://doi.org/10.1093/jxb/eri095 pmid: 15710633
9 Sundberg B, Little C H A. Tracheid production in response to changes in the internal level of indole-3-acetic Acid in 1-year-old shoots of scots pine. Plant Physiology, 1990, 94(4): 1721–1727
https://doi.org/10.1104/pp.94.4.1721 pmid: 16667908
10 Baba K, Karlberg A, Schmidt J, Schrader J, Hvidsten T R, Bako L, Bhalerao R P. Activity-dormancy transition in the cambial meristem involves stage-specific modulation of auxin response in hybrid aspen. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(8): 3418–3423
https://doi.org/10.1073/pnas.1011506108 pmid: 21289280
11 Nilsson J, Karlberg A, Antti H, Lopez-Vernaza M, Mellerowicz E, Perrot-Rechenmann C, Sandberg G, Bhalerao R P. Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen. Plant Cell, 2008, 20(4): 843–855
https://doi.org/10.1105/tpc.107.055798 pmid: 18424614
12 Savidge R A, Wareing P F. A tracheid-differentiation factor from pine needles. Planta, 1981, 153(5): 395–404
https://doi.org/10.1007/BF00394977 pmid: 24275808
13 Little C H A, Sundberg B. Tracheid production in response to indole-3-acetic-acid varies with internode age in Pinus sylvestris stems. Trees-Structure and Function, 1991, 5(2): 101–106
https://doi.org/10.1007/BF00227492
14 Savidge R A. The role of plant hormones in higher plant cellular differentiation. II. Experiments with the vascular cambium, and sclereid and tracheid differentiation in the pine, Pinus contorta. Histochemical Journal, 1983, 15(5): 447–466
https://doi.org/10.1007/BF01002699 pmid: 6223902
15 Alvarez C, Valledor L. R. H, Sanchez-Olate M, Ríos D. Variation in gene expression profile with aging of Pinus radiata D. Don. BMC Proceedings, 2011, 5 (Suppl 7): P62
https://doi.org/10.1186/1753-6561-5-S7-P62
16 Busov V B, Johannes E, Whetten R W, Sederoff R R, Spiker S L, Lanz-Garcia C, Goldfarb B. An auxin-inducible gene from loblolly pine (Pinus taeda L.) is differentially expressed in mature and juvenile-phase shoots and encodes a putative transmembrane protein. Planta, 2004, 218(6): 916–927
https://doi.org/10.1007/s00425-003-1175-4 pmid: 14722770
17 Carlsbecker A, Tandre K, Johanson U, Englund M, Engstr?m P. The MADS-box gene DAL1 is a potential mediator of the juvenile-to-adult transition in Norway spruce (Picea abies). Plant Journal, 2004, 40(4): 546–557
https://doi.org/10.1111/j.1365-313X.2004.02226.x pmid: 15500470
18 Diego L B, Berdasco M, Fraga M F, Ca?al M J, Rodríguez R, Castresana C. A Pinus radiata AAA-ATPase, the expression of which increases with tree ageing. Journal of Experimental Botany, 2004, 55(402): 1597–1599
https://doi.org/10.1093/jxb/erh171 pmid: 15208342
19 Fernández-Oca?a A, Carmen García-López M, Jiménez-Ruiz J, Saniger L, Macías D, Navarro F, Oya R, Belaj A, de la Rosa R, Corpas F J, Bautista Barroso J, Luque F. Identification of a gene involved in the juvenile-to-adult transition (JAT) in cultivated olive trees. Tree Genetics & Genomes, 2010, 6(6): 891–903
https://doi.org/10.1007/s11295-010-0299-5
20 Hutchison K W, Sherman C D, Weber J, Smith S S, Singer P B, Greenwood M S. Maturation in larch: II. effects of age on photosynthesis and gene expression in developing foliage. Plant Physiology, 1990, 94(3): 1308–1315
https://doi.org/10.1104/pp.94.3.1308 pmid: 16667834
21 Li X, Wu H X, Southerton S G. Seasonal reorganization of the xylem transcriptome at different tree ages reveals novel insights into wood formation in Pinus radiata. New Phytologist, 2010, 187(3): 764–776
https://doi.org/10.1111/j.1469-8137.2010.03333.x pmid: 20561208
22 Li X, Wu H X, Southerton S G. Transcriptome profiling of wood maturation in Pinus radiata identifies differentially expressed genes with implications in juvenile and mature wood variation. Gene, 2011, 487(1): 62–71
https://doi.org/10.1016/j.gene.2011.07.028 pmid: 21839815
23 Wang J W, Park M Y, Wang L J, Koo Y, Chen X Y, Weigel D, Poethig R S. miRNA control of vegetative phase change in trees. PLOS Genetics, 2011, 7(2): e1002012
https://doi.org/10.1371/journal.pgen.1002012 pmid: 21383862
24 Hsu C Y, Liu Y, Luthe D S, Yuceer C. Poplar FT2 shortens the juvenile phase and promotes seasonal flowering. Plant Cell, 2006, 18(8): 1846–1861
https://doi.org/10.1105/tpc.106.041038 pmid: 16844908
25 Hsu C Y, Adams J P, Kim H, No K, Ma C, Strauss S H, Drnevich J, Vandervelde L, Ellis J D, Rice B M, Wickett N, Gunter L E, Tuskan G A, Brunner A M, Page G P, Barakat A, Carlson J E, DePamphilis C W, Luthe D S, Yuceer C. FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(26): 10756–10761
https://doi.org/10.1073/pnas.1104713108 pmid: 21653885
26 B?hlenius H, Huang T, Charbonnel-Campaa L, Brunner A M, Jansson S, Strauss S H, Nilsson O. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science, 2006, 312(5776): 1040–1043
https://doi.org/10.1126/science.1126038 pmid: 16675663
27 Li S G, Li W F, Han S Y, Yang W H, Qi L W. Stage-specific regulation of four HD-ZIP III transcription factors during polar pattern formation in Larix leptolepis somatic embryos. Gene, 2013, 522(2): 177–183
https://doi.org/10.1016/j.gene.2013.03.117 pmid: 23566830
28 Li W F, Zhang S G, Han S Y, Wu T, Zhang J H, Qi L W. Regulation of LaMYB33 by miR159 during maintenance of embryogenic potential and somatic embryo maturation in Larix kaempferi (Lamb.) Carr. Plant Cell, Tissue and Organ Culture, 2013, 113(1): 131–136
https://doi.org/10.1007/s11240-012-0233-7
29 Zhang J, Zhang S, Han S, Li X, Tong Z, Qi L. Deciphering small noncoding RNAs during the transition from dormant embryo to germinated embryo in Larches (Larix leptolepis). PLoS ONE, 2013, 8(12): e81452
https://doi.org/10.1371/journal.pone.0081452 pmid: 24339932
30 Zhang J, Zhang S, Han S, Wu T, Li X, Li W, Qi L. Genome-wide identification of microRNAs in larch and stage-specific modulation of 11 conserved microRNAs and their targets during somatic embryogenesis. Planta, 2012, 236(2): 647–657
https://doi.org/10.1007/s00425-012-1643-9 pmid: 22526500
31 Zhang L F, Li W F, Han S Y, Yang W H, Qi L W. cDNA cloning, genomic organization and expression analysis during somatic embryogenesis of the translationally controlled tumor protein (TCTP) gene from Japanese larch (Larix leptolepis). Gene, 2013, 529(1): 150–158
https://doi.org/10.1016/j.gene.2013.07.076 pmid: 23933269
32 Zhang S, Zhou J, Han S, Yang W, Li W, Wei H, Li X, Qi L. Four abiotic stress-induced miRNA families differentially regulated in the embryogenic and non-embryogenic callus tissues of Larix leptolepis. Biochemical and Biophysical Research Communications, 2010, 398(3): 355–360
https://doi.org/10.1016/j.bbrc.2010.06.056 pmid: 20599742
33 Zhang S G, Han S Y, Yang W H, Wei H L, Zhang M, Qi L W. Changes in H2O2 content and antioxidant enzyme gene expression during the somatic embryogenesis of Larix leptolepis. Plant Cell, Tissue and Organ Culture, 2010, 100(1): 21–29
https://doi.org/10.1007/s11240-009-9612-0
34 Li W F, Zhang S G, Han S Y, Wu T, Zhang J H, Qi L W. The post-transcriptional regulation of LaSCL6 by miR171 during maintenance of embryogenic potential in Larix kaempferi (Lamb.). Carr. Tree Genetics & Genomes, 2014, 10(1): 223–229
https://doi.org/10.1007/s11295-013-0668-y
35 Zhang J H, Zhang S G, Li S G, Han S Y, Li W F, Li X M, Qi L W. Regulation of synchronism by abscisic-acid-responsive small noncoding RNAs during somatic embryogenesis in larch (Larix leptolepis). Plant Cell, Tissue and Organ Culture, 2014, 116(3): 361–370
https://doi.org/10.1007/s11240-013-0412-1
36 Zhang Y, Zhang S, Han S, Li X, Qi L. Transcriptome profiling and in silico analysis of somatic embryos in Japanese larch (Larix leptolepis). Plant Cell Reports, 2012, 31(9): 1637–1657
https://doi.org/10.1007/s00299-012-1277-1 pmid: 22622308
37 Men L, Yan S, Liu G. De novo characterization of Larix gmelinii (Rupr.) Rupr. transcriptome and analysis of its gene expression induced by jasmonates. BMC Genomics, 2013, 14(1): 548
https://doi.org/10.1186/1471-2164-14-548 pmid: 23941306
38 Mackay J, Dean J F, Plomion C, Peterson D G, Cánovas F M, Pavy N, Ingvarsson P K, Savolainen O, Guevara M á, Fluch S, Vinceti B, Abarca D, Díaz-Sala C, Cervera M T. Towards decoding the conifer giga-genome. Plant Molecular Biology, 2012, 80(6): 555–569
https://doi.org/10.1007/s11103-012-9961-7 pmid: 22960864
39 Grabherr M G, Haas B J, Yassour M, Levin J Z, Thompson D A, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren B W, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 2011, 29(7): 644–652
https://doi.org/10.1038/nbt.1883 pmid: 21572440
40 Zhang L, Qi L W, Han S Y. [Differentially expressed genes during Larix somatic embryomaturation and the expression profile of partial genes. Hereditas, 2009, 31(5): 540–545 (in Chinese)
https://doi.org/10.3724/SP.J.1005.2009.00540 pmid: 19586850
41 Zhang L, Qi L, Han S. Construction and analysis of differentially expressed cDNA library of larch somatic embryo at the stage of proembryogenic mass. Molecular Plant Breeding, 2008, 6(4): 675–682 (in Chinese)
https://doi.org/10.3969/j.issn.1672-416X.2008.04.009
42 Huang X, Madan A. CAP3: A DNA sequence assembly program. Genome Research, 1999, 9(9): 868–877
https://doi.org/10.1101/gr.9.9.868 pmid: 10508846
43 Altschul S F, Gish W, Miller W, Myers E W, Lipman D J. Basic local alignment search tool. Journal of Molecular Biology, 1990, 215(3): 403–410
https://doi.org/10.1016/S0022-2836(05)80360-2 pmid: 2231712
44 Guindon S, Dufayard J F, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology, 2010, 59(3): 307–321
https://doi.org/10.1093/sysbio/syq010 pmid: 20525638
45 Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25(14): 1754–1760
https://doi.org/10.1093/bioinformatics/btp324 pmid: 19451168
46 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The Sequence Alignment/Map format and SAMtools. Bioinformatics, 2009, 25(16): 2078–2079
https://doi.org/10.1093/bioinformatics/btp352 pmid: 19505943
47 Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth B C, Remm M, Rozen S G. Primer3-new capabilities and interfaces. Nucleic Acids Research, 2012, 40(15): e115
https://doi.org/10.1093/nar/gks596 pmid: 22730293
48 Carrer M, Urbinati C. Age-dependent tree-ring growth responses to climate in Larix decidua and Pinus cembra. Ecology, 2004, 85(3): 730–740
https://doi.org/10.1890/02-0478
49 Tian Z H, Dong J, Wang X W, Huang G R. Silviculture of Larix kaempferi. 1995, Beijing: Beijing Agriculture University Press94–105. (in Chinese)
50 Sorce C, Giovannelli A, Sebastiani L, Anfodillo T. Hormonal signals involved in the regulation of cambial activity, xylogenesis and vessel patterning in trees. Plant Cell Reports, 2013, 32(6): 885–898
https://doi.org/10.1007/s00299-013-1431-4 pmid: 23553557
51 Sehr E M, Agusti J, Lehner R, Farmer E E, Schwarz M, Greb T. Analysis of secondary growth in the Arabidopsis shoot reveals a positive role of jasmonate signalling in cambium formation. Plant Journal, 2010, 63(5): 811–822
https://doi.org/10.1111/j.1365-313X.2010.04283.x pmid: 20579310
52 Cairney J, Pullman G S. The cellular and molecular biology of conifer embryogenesis. New Phytologist, 2007, 176(3): 511–536
https://doi.org/10.1111/j.1469-8137.2007.02239.x pmid: 17953539
53 Quiroz-Figueroa F R, Rojas-Herrera R, Galaz-Avalos R M, Loyola-Vargas V M. Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell, Tissue and Organ Culture, 2006, 86(3): 285–301
https://doi.org/10.1007/s11240-006-9139-6
54 Zimmerman J L. Somatic embryogenesis: a model for early development in higher plants. Plant Cell, 1993, 5(10): 1411–1423
https://doi.org/10.1105/tpc.5.10.1411 pmid: 12271037
55 Gutmann M, vonAderkas P, Label P, Lelu M A. Effects of abscisic acid on somatic embryo maturation of hybrid larch. Journal of Experimental Botany, 1996, 47(12): 1905–1917
https://doi.org/10.1093/jxb/47.12.1905
56 Rai M K, Shekhawat N S, Harish, Gupta A K, Phulwaria M, Ram K, Jaiswal U. Harish, Gupta A K, Phulwaria M, Ram K, Jaiswal U. The role of abscisic acid in plant tissue culture: a review of recent progress. Plant Cell, Tissue and Organ Culture, 2011, 106(2): 179–190
https://doi.org/10.1007/s11240-011-9923-9
57 Khasa D P, Jaramillo-Correa J P, Jaquish B, Bousquet J. Contrasting microsatellite variation between subalpine and western larch, two closely related species with different distribution patterns. Molecular Ecology, 2006, 15(13): 3907–3918
https://doi.org/10.1111/j.1365-294X.2006.03066.x pmid: 17054492
58 Pluess A R. Pursuing glacier retreat: genetic structure of a rapidly expanding Larix decidua population. Molecular Ecology, 2011, 20(3): 473–485
https://doi.org/10.1111/j.1365-294X.2010.04972.x pmid: 21199030
59 Oreshkova N V, Belokon M M, Jamiyansuren S. Genetic diversity, population structure, and differentiation of Siberian larch, Gmelin larch and Cajander larch on SSR-markers data. Russian Journal of Genetics, 2013, 49(2): 178–186
https://doi.org/10.1134/S1022795412120095 pmid: 23668086
60 Kozyrenko M M, Artyukova E V, Reunova G D, Levina E A, Zhuravlev Y N. Genetic diversity and relationships among Siberian and Far Eastern larches inferred from RAPD analysis. Russian Journal of Genetics, 2004, 40(4): 401–409
https://doi.org/10.1023/B:RUGE.0000024978.25458.f7
61 Yu X M, Zhou Q, Qian Z Q, Li S, Zhao G F. Analysis of genetic diversity and population differentiation of Larix potaninii var.chinensis using microsatellite DNA. Biochemical Genetics, 2006, 44(11–12): 483–493
https://doi.org/10.1007/s10528-006-9049-7 pmid: 17103046
62 Funda T, Chen C, Liewlaksaneeyanawin C, Kenawy A M A, El-Kassaby Y A.C.. Liewlaksaneeyanawin C, Kenawy A M A, El-Kassaby Y A.. Pedigree and mating system analyses in a western larch (Larix occidentalis Nutt.) experimental population. Annals of Forest Science, 2008, 65(7): 705
https://doi.org/10.1051/forest:2008055
63 Acheré V, Faivre Rampant P, Paques L E, Prat D. Chloroplast and mitochondrial molecular tests identify European × Japanese larch hybrids. Theoretical and Applied Genetics, 2004, 108(8): 1643–1649
https://doi.org/10.1007/s00122-004-1595-y pmid: 14991107
64 Yang X, Sun X, Zhang S, Xie Y, Han H. Development of EST-SSR markers and genetic diversity analysis of the second cycle elite population in Larix kaempferi. Scientia Silvae Sinicae, 2011, 47(11): 52–58 (in Chinese)
https://doi.org/10.11707/j.1001-7488.20111109
65 Liu C, Zhang L P, Wang C G, Song W Q, Chen C B. Development and Characterization of EST-SSR Molecular Markers in Larix kaempferi.Forest reseach, 2013, 26(S1): 60–68. (in Chinese)
66 Wagner S, Gerber S, Petit R J. Two highly informative dinucleotide SSR multiplexes for the conifer Larix decidua (European larch). Molecular ecology resources, 2012, 12(4): 717–25
https://doi.org/10.1111/j.1755-0998.2012.03139.x
[1] Andreas BUERKERT, Eva SCHLECHT. Toward sustainable intensification of agriculture in sub-Saharan Africa[J]. Front. Agr. Sci. Eng. , 2020, 7(4): 401-405.
[2] Enli WANG, Di HE, Zhigan ZHAO, Chris J. SMITH, Ben C. T. MACDONALD. Using a systems modeling approach to improve soil management and soil quality[J]. Front. Agr. Sci. Eng. , 2020, 7(3): 289-295.
[3] Yakov KUZYAKOV, Anna GUNINA, Kazem ZAMANIAN, Jing TIAN, Yu LUO, Xingliang XU, Anna YUDINA, Humberto APONTE, Hattan ALHARBI, Lilit OVSEPYAN, Irina KURGANOVA, Tida GE, Thomas GUILLAUME. New approaches for evaluation of soil health, sensitivity and resistance to degradation[J]. Front. Agr. Sci. Eng. , 2020, 7(3): 282-288.
[4] Giulia BONGIORNO. Novel soil quality indicators for the evaluation of agricultural management practices: a biological perspective[J]. Front. Agr. Sci. Eng. , 2020, 7(3): 257-274.
[5] Nicolas MUNIER-JOLAIN, Martin LECHENET. Methodological considerations for redesigning sustainable cropping systems: the value of data-mining large and detailed farm data sets at the cropping system level[J]. Front. Agr. Sci. Eng. , 2020, 7(1): 21-27.
[6] Zhenling CUI, Zhengxia DOU, Hao YING, Fusuo ZHANG. Producing more with less: reducing environmental impacts through an integrated soil-crop system management approach[J]. Front. Agr. Sci. Eng. , 2020, 7(1): 14-20.
[7] Mahmood ul HASSAN, Xin WEN, Jiuliang XU, Jiahui ZHONG, Xuexian LI. Development and challenges of green food in China[J]. Front. Agr. Sci. Eng. , 2020, 7(1): 56-66.
[8] David R. CHADWICK, John R. WILLIAMS, Yuelai LU, Lin MA, Zhaohai BAI, Yong HOU, Xinping CHEN, Thomas H. MISSELBROOK. Strategies to reduce nutrient pollution from manure management in China[J]. Front. Agr. Sci. Eng. , 2020, 7(1): 45-55.
[9] Rui WANG, Weiming SHI, Yilin LI. Phosphorus supply and management in vegetable production systems in China[J]. Front. Agr. Sci. Eng. , 2019, 6(4): 348-356.
[10] Jianbo SHEN, Liyang WANG, Xiaoqiang JIAO, Fanlei MENG, Lin ZHANG, Gu FENG, Junling ZHANG, Lixing YUAN, Lin MA, Yong HOU, Tao ZHANG, Weifeng ZHANG, Guohua LI, Kai ZHANG, Fusuo ZHANG. Innovations of phosphorus sustainability: implications for the whole chain[J]. Front. Agr. Sci. Eng. , 2019, 6(4): 321-331.
[11] Qing XUE, Xinyue HE, Saskia D. SACHS, Gero C. BECKER, Tao ZHANG, Andrea KRUSE. The current phosphate recycling situation in China and Germany: a comparative review[J]. Front. Agr. Sci. Eng. , 2019, 6(4): 403-418.
[12] Wujun MA, Zitong YU, Maoyun SHE, Yun ZHAO, Shahidul ISLAM. Wheat gluten protein and its impacts on wheat processing quality[J]. Front. Agr. Sci. Eng. , 2019, 6(3): 279-287.
[13] Rudi APPELS. Wheat research and breeding in the new era of a high-quality reference genome[J]. Front. Agr. Sci. Eng. , 2019, 6(3): 225-232.
[14] Meng DUAN, Jin XIE, Xiaomin MAO. Modeling water and heat transfer in soil-plant-atmosphere continuum applied to maize growth under plastic film mulching[J]. Front. Agr. Sci. Eng. , 2019, 6(2): 144-161.
[15] Zhengyuan HUANG, Lei GAO, Yunpeng HOU, Shien ZHU, Xiangwei FU. Cryopreservation of farm animal gametes and embryos: recent updates and progress[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 42-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed