| 
					
						|  |  
    					|  |  
    					| Transcriptome resources and genome-wide marker development for Japanese larch (Larix kaempferi) |  
						| Wanfeng LI1,Suying HAN2,Liwang QI1,Shougong ZHANG1,*(  ) |  
						| 1. State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China 2. State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
 |  
						|  |  
					
						| 
								
									|  
          
          
            
              
				
								                
													
													    |  |  
														| 
													
													    | Abstract While the differential responses of trees to changes in climatic and environmental conditions have been demonstrated as they age, the underlying mechanisms and age control of tree growth and development are complex and poorly understood particularly at a molecular level. In this paper, we present a transcriptome analysis of Larix kaempferi, a deciduous conifer that is widely-grown in the northern hemisphere and of significant ecological and economic value. Using high-throughput RNA sequencing, we obtained about 26 million reads from the stems of 1-, 2-, 5-, 10-, 25- and 50-year-old L. kaempferi trees. Combining these with the published Roche 454 sequencing reads and the expressed sequence tags (both mainly from Larix embryogenic cell cultures), we assembled 26670549 reads into 146786 transcripts, of which we annotated 79182 to support investigations of the molecular basis of tree aging and adaption, somatic embryogenesis and wood formation. Using these sequences we also identified many single-nucleotide polymorphisms, simple sequence repeats, and insertion and deletion markers to assist breeding and genetic diversity studies of Larix. |  
															| Keywords 
																																																				Larix  
																		  																																				transcriptome  
																		  																																				age  
																		  																																				wood formation  
																		  																																				somatic embryogenesis  
																		  																																				molecular marker |  
															| Corresponding Author(s):
																Shougong ZHANG |  
															| Issue Date: 22 May 2014 |  |  
								            
								                
																																												
															| 1 | Rossi S, Deslauriers A, Anfodillo T, Carrer M. Age-dependent xylogenesis in timberline conifers. New Phytologist, 2008, 177(1): 199–20817944824 https://doi.org/10.1111/j.1469-8137.2007.02235.x
 |  
															| 2 | Rossi S, Deslauriers A, Gri?ar J, Seo J W, Rathgeber C B K, Anfodillo T, Morin H, Levanic T, Oven P, Jalkanen R. Critical temperatures for xylogenesis in conifers of cold climates. Global Ecology and Biogeography, 2008, 17(6): 696–707 https://doi.org/10.1111/j.1466-8238.2008.00417.x
 |  
															| 3 | Begum S, Nakaba S, Oribe Y, Kubo T, Funada R. Cambial sensitivity to rising temperatures by natural condition and artificial heating from late winter to early spring in the evergreen conifer Cryptomeria japonica. Trees-Structure and Function, 2010, 24(1): 43–52 https://doi.org/10.1007/s00468-009-0377-1
 |  
															| 4 | Li X, Liang E, Gri?ar J, Prislan P, Rossi S, ?ufar K. Age dependence of xylogenesis and its climatic sensitivity in Smith fir on the south-eastern Tibetan Plateau. Tree Physiology, 2013, 33(1): 48–56 https://doi.org/10.1093/treephys/tps113
														     															     															     		pmid: 23185065
 |  
															| 5 | Li W F, Ding Q, Chen J J, Cui K M, He X Q. Induction of PtoCDKB and PtoCYCB transcription by temperature during cambium reactivation in Populus tomentosa Carr. Journal of Experimental Botany, 2009, 60(9): 2621–2630 https://doi.org/10.1093/jxb/erp108
														     															     															     		pmid: 19414499
 |  
															| 6 | Little C H A, Bonga J M. Rest in cambium of Abies balsamea. Canadian Journal of Botany, 1974, 52(7): 1723–1730 https://doi.org/10.1139/b74-224
 |  
															| 7 | Mwange K N, Wang X W, Cui K M. Mechanism of dormancy in the buds and cambium of Eucommia ulmoides. Acta Botanica Sinica, 2003, 45(6): 698–704 |  
															| 8 | Mwange K N, Hou H W, Wang Y Q, He X Q, Cui K M. Opposite patterns in the annual distribution and time-course of endogenous abscisic acid and indole-3-acetic acid in relation to the periodicity of cambial activity in Eucommia ulmoides Oliv. Journal of Experimental Botany, 2005, 56(413): 1017–1028 https://doi.org/10.1093/jxb/eri095
														     															     															     		pmid: 15710633
 |  
															| 9 | Sundberg B, Little C H A. Tracheid production in response to changes in the internal level of indole-3-acetic Acid in 1-year-old shoots of scots pine. Plant Physiology, 1990, 94(4): 1721–1727 https://doi.org/10.1104/pp.94.4.1721
														     															     															     		pmid: 16667908
 |  
															| 10 | Baba K, Karlberg A, Schmidt J, Schrader J, Hvidsten T R, Bako L, Bhalerao R P. Activity-dormancy transition in the cambial meristem involves stage-specific modulation of auxin response in hybrid aspen. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(8): 3418–3423 https://doi.org/10.1073/pnas.1011506108
														     															     															     		pmid: 21289280
 |  
															| 11 | Nilsson J, Karlberg A, Antti H, Lopez-Vernaza M, Mellerowicz E, Perrot-Rechenmann C, Sandberg G, Bhalerao R P. Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen. Plant Cell, 2008, 20(4): 843–855 https://doi.org/10.1105/tpc.107.055798
														     															     															     		pmid: 18424614
 |  
															| 12 | Savidge R A, Wareing P F. A tracheid-differentiation factor from pine needles. Planta, 1981, 153(5): 395–404 https://doi.org/10.1007/BF00394977
														     															     															     		pmid: 24275808
 |  
															| 13 | Little C H A, Sundberg B. Tracheid production in response to indole-3-acetic-acid varies with internode age in Pinus sylvestris stems. Trees-Structure and Function, 1991, 5(2): 101–106 https://doi.org/10.1007/BF00227492
 |  
															| 14 | Savidge R A. The role of plant hormones in higher plant cellular differentiation. II. Experiments with the vascular cambium, and sclereid and tracheid differentiation in the pine, Pinus contorta. Histochemical Journal, 1983, 15(5): 447–466 https://doi.org/10.1007/BF01002699
														     															     															     		pmid: 6223902
 |  
															| 15 | Alvarez C, Valledor L. R. H, Sanchez-Olate M, Ríos D. Variation in gene expression profile with aging of Pinus radiata D. Don. BMC Proceedings, 2011, 5 (Suppl 7): P62 https://doi.org/10.1186/1753-6561-5-S7-P62
 |  
															| 16 | Busov V B, Johannes E, Whetten R W, Sederoff R R, Spiker S L, Lanz-Garcia C, Goldfarb B. An auxin-inducible gene from loblolly pine (Pinus taeda L.) is differentially expressed in mature and juvenile-phase shoots and encodes a putative transmembrane protein. Planta, 2004, 218(6): 916–927 https://doi.org/10.1007/s00425-003-1175-4
														     															     															     		pmid: 14722770
 |  
															| 17 | Carlsbecker A, Tandre K, Johanson U, Englund M, Engstr?m P. The MADS-box gene DAL1 is a potential mediator of the juvenile-to-adult transition in Norway spruce (Picea abies). Plant Journal, 2004, 40(4): 546–557 https://doi.org/10.1111/j.1365-313X.2004.02226.x
														     															     															     		pmid: 15500470
 |  
															| 18 | Diego L B, Berdasco M, Fraga M F, Ca?al M J, Rodríguez R, Castresana C. A Pinus radiata AAA-ATPase, the expression of which increases with tree ageing. Journal of Experimental Botany, 2004, 55(402): 1597–1599 https://doi.org/10.1093/jxb/erh171
														     															     															     		pmid: 15208342
 |  
															| 19 | Fernández-Oca?a A, Carmen García-López M, Jiménez-Ruiz J, Saniger L, Macías D, Navarro F, Oya R, Belaj A, de la Rosa R, Corpas F J, Bautista Barroso J, Luque F. Identification of a gene involved in the juvenile-to-adult transition (JAT) in cultivated olive trees. Tree Genetics & Genomes, 2010, 6(6): 891–903 https://doi.org/10.1007/s11295-010-0299-5
 |  
															| 20 | Hutchison K W, Sherman C D, Weber J, Smith S S, Singer P B, Greenwood M S. Maturation in larch: II. effects of age on photosynthesis and gene expression in developing foliage. Plant Physiology, 1990, 94(3): 1308–1315 https://doi.org/10.1104/pp.94.3.1308
														     															     															     		pmid: 16667834
 |  
															| 21 | Li X, Wu H X, Southerton S G. Seasonal reorganization of the xylem transcriptome at different tree ages reveals novel insights into wood formation in Pinus radiata. New Phytologist, 2010, 187(3): 764–776 https://doi.org/10.1111/j.1469-8137.2010.03333.x
														     															     															     		pmid: 20561208
 |  
															| 22 | Li X, Wu H X, Southerton S G. Transcriptome profiling of wood maturation in Pinus radiata identifies differentially expressed genes with implications in juvenile and mature wood variation. Gene, 2011, 487(1): 62–71 https://doi.org/10.1016/j.gene.2011.07.028
														     															     															     		pmid: 21839815
 |  
															| 23 | Wang J W, Park M Y, Wang L J, Koo Y, Chen X Y, Weigel D, Poethig R S. miRNA control of vegetative phase change in trees. PLOS Genetics, 2011, 7(2): e1002012 https://doi.org/10.1371/journal.pgen.1002012
														     															     															     		pmid: 21383862
 |  
															| 24 | Hsu C Y, Liu Y, Luthe D S, Yuceer C. Poplar FT2 shortens the juvenile phase and promotes seasonal flowering. Plant Cell, 2006, 18(8): 1846–1861 https://doi.org/10.1105/tpc.106.041038
														     															     															     		pmid: 16844908
 |  
															| 25 | Hsu C Y, Adams J P, Kim H, No K, Ma C, Strauss S H, Drnevich J, Vandervelde L, Ellis J D, Rice B M, Wickett N, Gunter L E, Tuskan G A, Brunner A M, Page G P, Barakat A, Carlson J E, DePamphilis C W, Luthe D S, Yuceer C. FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(26): 10756–10761 https://doi.org/10.1073/pnas.1104713108
														     															     															     		pmid: 21653885
 |  
															| 26 | B?hlenius H, Huang T, Charbonnel-Campaa L, Brunner A M, Jansson S, Strauss S H, Nilsson O. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science, 2006, 312(5776): 1040–1043 https://doi.org/10.1126/science.1126038
														     															     															     		pmid: 16675663
 |  
															| 27 | Li S G, Li W F, Han S Y, Yang W H, Qi L W. Stage-specific regulation of four HD-ZIP III transcription factors during polar pattern formation in Larix leptolepis somatic embryos. Gene, 2013, 522(2): 177–183 https://doi.org/10.1016/j.gene.2013.03.117
														     															     															     		pmid: 23566830
 |  
															| 28 | Li W F, Zhang S G, Han S Y, Wu T, Zhang J H, Qi L W. Regulation of LaMYB33 by miR159 during maintenance of embryogenic potential and somatic embryo maturation in Larix kaempferi (Lamb.) Carr. Plant Cell, Tissue and Organ Culture, 2013, 113(1): 131–136 https://doi.org/10.1007/s11240-012-0233-7
 |  
															| 29 | Zhang J, Zhang S, Han S, Li X, Tong Z, Qi L. Deciphering small noncoding RNAs during the transition from dormant embryo to germinated embryo in Larches (Larix leptolepis). PLoS ONE, 2013, 8(12): e81452 https://doi.org/10.1371/journal.pone.0081452
														     															     															     		pmid: 24339932
 |  
															| 30 | Zhang J, Zhang S, Han S, Wu T, Li X, Li W, Qi L. Genome-wide identification of microRNAs in larch and stage-specific modulation of 11 conserved microRNAs and their targets during somatic embryogenesis. Planta, 2012, 236(2): 647–657 https://doi.org/10.1007/s00425-012-1643-9
														     															     															     		pmid: 22526500
 |  
															| 31 | Zhang L F, Li W F, Han S Y, Yang W H, Qi L W. cDNA cloning, genomic organization and expression analysis during somatic embryogenesis of the translationally controlled tumor protein (TCTP) gene from Japanese larch (Larix leptolepis). Gene, 2013, 529(1): 150–158 https://doi.org/10.1016/j.gene.2013.07.076
														     															     															     		pmid: 23933269
 |  
															| 32 | Zhang S, Zhou J, Han S, Yang W, Li W, Wei H, Li X, Qi L. Four abiotic stress-induced miRNA families differentially regulated in the embryogenic and non-embryogenic callus tissues of Larix leptolepis. Biochemical and Biophysical Research Communications, 2010, 398(3): 355–360 https://doi.org/10.1016/j.bbrc.2010.06.056
														     															     															     		pmid: 20599742
 |  
															| 33 | Zhang S G, Han S Y, Yang W H, Wei H L, Zhang M, Qi L W. Changes in H2O2 content and antioxidant enzyme gene expression during the somatic embryogenesis of Larix leptolepis. Plant Cell, Tissue and Organ Culture, 2010, 100(1): 21–29 https://doi.org/10.1007/s11240-009-9612-0
 |  
															| 34 | Li W F, Zhang S G, Han S Y, Wu T, Zhang J H, Qi L W. The post-transcriptional regulation of LaSCL6 by miR171 during maintenance of embryogenic potential in Larix kaempferi (Lamb.). Carr. Tree Genetics & Genomes, 2014, 10(1): 223–229 https://doi.org/10.1007/s11295-013-0668-y
 |  
															| 35 | Zhang J H, Zhang S G, Li S G, Han S Y, Li W F, Li X M, Qi L W. Regulation of synchronism by abscisic-acid-responsive small noncoding RNAs during somatic embryogenesis in larch (Larix leptolepis). Plant Cell, Tissue and Organ Culture, 2014, 116(3): 361–370 https://doi.org/10.1007/s11240-013-0412-1
 |  
															| 36 | Zhang Y, Zhang S, Han S, Li X, Qi L. Transcriptome profiling and in silico analysis of somatic embryos in Japanese larch (Larix leptolepis). Plant Cell Reports, 2012, 31(9): 1637–1657 https://doi.org/10.1007/s00299-012-1277-1
														     															     															     		pmid: 22622308
 |  
															| 37 | Men L, Yan S, Liu G. De novo characterization of Larix gmelinii (Rupr.) Rupr. transcriptome and analysis of its gene expression induced by jasmonates. BMC Genomics, 2013, 14(1): 548 https://doi.org/10.1186/1471-2164-14-548
														     															     															     		pmid: 23941306
 |  
															| 38 | Mackay J, Dean J F, Plomion C, Peterson D G, Cánovas F M, Pavy N, Ingvarsson P K, Savolainen O, Guevara M á, Fluch S, Vinceti B, Abarca D, Díaz-Sala C, Cervera M T. Towards decoding the conifer giga-genome. Plant Molecular Biology, 2012, 80(6): 555–569 https://doi.org/10.1007/s11103-012-9961-7
														     															     															     		pmid: 22960864
 |  
															| 39 | Grabherr M G, Haas B J, Yassour M, Levin J Z, Thompson D A, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren B W, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 2011, 29(7): 644–652 https://doi.org/10.1038/nbt.1883
														     															     															     		pmid: 21572440
 |  
															| 40 | Zhang L, Qi L W, Han S Y. [Differentially expressed genes during Larix somatic embryomaturation and the expression profile of partial genes. Hereditas, 2009, 31(5): 540–545 (in Chinese) https://doi.org/10.3724/SP.J.1005.2009.00540
														     															     															     		pmid: 19586850
 |  
															| 41 | Zhang L, Qi L, Han S. Construction and analysis of differentially expressed cDNA library of larch somatic embryo at the stage of proembryogenic mass. Molecular Plant Breeding, 2008, 6(4): 675–682 (in Chinese) https://doi.org/10.3969/j.issn.1672-416X.2008.04.009
 |  
															| 42 | Huang X, Madan A. CAP3: A DNA sequence assembly program. Genome Research, 1999, 9(9): 868–877 https://doi.org/10.1101/gr.9.9.868
														     															     															     		pmid: 10508846
 |  
															| 43 | Altschul S F, Gish W, Miller W, Myers E W, Lipman D J. Basic local alignment search tool. Journal of Molecular Biology, 1990, 215(3): 403–410 https://doi.org/10.1016/S0022-2836(05)80360-2
														     															     															     		pmid: 2231712
 |  
															| 44 | Guindon S, Dufayard J F, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology, 2010, 59(3): 307–321 https://doi.org/10.1093/sysbio/syq010
														     															     															     		pmid: 20525638
 |  
															| 45 | Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25(14): 1754–1760 https://doi.org/10.1093/bioinformatics/btp324
														     															     															     		pmid: 19451168
 |  
															| 46 | Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The Sequence Alignment/Map format and SAMtools. Bioinformatics, 2009, 25(16): 2078–2079 https://doi.org/10.1093/bioinformatics/btp352
														     															     															     		pmid: 19505943
 |  
															| 47 | Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth B C, Remm M, Rozen S G. Primer3-new capabilities and interfaces. Nucleic Acids Research, 2012, 40(15): e115 https://doi.org/10.1093/nar/gks596
														     															     															     		pmid: 22730293
 |  
															| 48 | Carrer M, Urbinati C. Age-dependent tree-ring growth responses to climate in Larix decidua and Pinus cembra. Ecology, 2004, 85(3): 730–740 https://doi.org/10.1890/02-0478
 |  
															| 49 | Tian Z H, Dong J, Wang X W, Huang G R. Silviculture of Larix kaempferi. 1995, Beijing: Beijing Agriculture University Press94–105. (in Chinese) |  
															| 50 | Sorce C, Giovannelli A, Sebastiani L, Anfodillo T. Hormonal signals involved in the regulation of cambial activity, xylogenesis and vessel patterning in trees. Plant Cell Reports, 2013, 32(6): 885–898 https://doi.org/10.1007/s00299-013-1431-4
														     															     															     		pmid: 23553557
 |  
															| 51 | Sehr E M, Agusti J, Lehner R, Farmer E E, Schwarz M, Greb T. Analysis of secondary growth in the Arabidopsis shoot reveals a positive role of jasmonate signalling in cambium formation. Plant Journal, 2010, 63(5): 811–822 https://doi.org/10.1111/j.1365-313X.2010.04283.x
														     															     															     		pmid: 20579310
 |  
															| 52 | Cairney J, Pullman G S. The cellular and molecular biology of conifer embryogenesis. New Phytologist, 2007, 176(3): 511–536 https://doi.org/10.1111/j.1469-8137.2007.02239.x
														     															     															     		pmid: 17953539
 |  
															| 53 | Quiroz-Figueroa F R, Rojas-Herrera R, Galaz-Avalos R M, Loyola-Vargas V M. Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell, Tissue and Organ Culture, 2006, 86(3): 285–301 https://doi.org/10.1007/s11240-006-9139-6
 |  
															| 54 | Zimmerman J L. Somatic embryogenesis: a model for early development in higher plants. Plant Cell, 1993,  5(10):  1411–1423 https://doi.org/10.1105/tpc.5.10.1411
														     															     															     		pmid: 12271037
 |  
															| 55 | Gutmann M, vonAderkas P, Label P, Lelu M A. Effects of abscisic acid on somatic embryo maturation of hybrid larch. Journal of Experimental Botany, 1996, 47(12): 1905–1917 https://doi.org/10.1093/jxb/47.12.1905
 |  
															| 56 | Rai M K, Shekhawat N S, Harish, Gupta A K, Phulwaria M, Ram K, Jaiswal U. Harish, Gupta A K, Phulwaria M, Ram K, Jaiswal U. The role of abscisic acid in plant tissue culture: a review of recent progress. Plant Cell, Tissue and Organ Culture, 2011, 106(2): 179–190 https://doi.org/10.1007/s11240-011-9923-9
 |  
															| 57 | Khasa D P, Jaramillo-Correa J P, Jaquish B, Bousquet J. Contrasting microsatellite variation between subalpine and western larch, two closely related species with different distribution patterns. Molecular Ecology, 2006, 15(13): 3907–3918 https://doi.org/10.1111/j.1365-294X.2006.03066.x
														     															     															     		pmid: 17054492
 |  
															| 58 | Pluess A R. Pursuing glacier retreat: genetic structure of a rapidly expanding Larix decidua population. Molecular Ecology, 2011, 20(3): 473–485 https://doi.org/10.1111/j.1365-294X.2010.04972.x
														     															     															     		pmid: 21199030
 |  
															| 59 | Oreshkova N V, Belokon M M, Jamiyansuren S. Genetic diversity, population structure, and differentiation of Siberian larch, Gmelin larch and Cajander larch on SSR-markers data. Russian Journal of Genetics, 2013, 49(2): 178–186 https://doi.org/10.1134/S1022795412120095
														     															     															     		pmid: 23668086
 |  
															| 60 | Kozyrenko M M, Artyukova E V, Reunova G D, Levina E A, Zhuravlev Y N. Genetic diversity and relationships among Siberian and Far Eastern larches inferred from RAPD analysis. Russian Journal of Genetics, 2004, 40(4): 401–409 https://doi.org/10.1023/B:RUGE.0000024978.25458.f7
 |  
															| 61 | Yu X M, Zhou Q, Qian Z Q, Li S, Zhao G F. Analysis of genetic diversity and population differentiation of Larix potaninii var.chinensis using microsatellite DNA. Biochemical Genetics, 2006, 44(11–12): 483–493 https://doi.org/10.1007/s10528-006-9049-7
														     															     															     		pmid: 17103046
 |  
															| 62 | Funda T, Chen C, Liewlaksaneeyanawin C, Kenawy A M A, El-Kassaby Y A.C.. Liewlaksaneeyanawin C, Kenawy A M A, El-Kassaby Y A.. Pedigree and mating system analyses in a western larch (Larix occidentalis Nutt.) experimental population. Annals of Forest Science, 2008, 65(7): 705 https://doi.org/10.1051/forest:2008055
 |  
															| 63 | Acheré V, Faivre Rampant P, Paques L E, Prat D. Chloroplast and mitochondrial molecular tests identify European × Japanese larch hybrids. Theoretical and Applied Genetics, 2004, 108(8): 1643–1649 https://doi.org/10.1007/s00122-004-1595-y
														     															     															     		pmid: 14991107
 |  
															| 64 | Yang X, Sun X, Zhang S, Xie Y, Han H. Development of EST-SSR markers and genetic diversity analysis of the second cycle elite population in Larix kaempferi. Scientia Silvae Sinicae, 2011, 47(11): 52–58 (in Chinese) https://doi.org/10.11707/j.1001-7488.20111109
 |  
															| 65 | Liu C, Zhang L P, Wang C G, Song W Q, Chen C B. Development and Characterization of EST-SSR Molecular Markers in Larix kaempferi.Forest reseach, 2013, 26(S1): 60–68. (in Chinese) |  
															| 66 | Wagner S, Gerber S, Petit R J. Two highly informative dinucleotide SSR multiplexes for the conifer Larix decidua (European larch). Molecular ecology resources, 2012, 12(4): 717–25 https://doi.org/10.1111/j.1755-0998.2012.03139.x
 |  
								            
												
											    	
											        	|  | Viewed |  
											        	|  |  |  
												        |  | Full text 
 | 
 
 |  
												        |  |  |  
												        |  | Abstract 
 | 
 |  
												        |  |  |  
												        |  | Cited |  |  
												        |  |  |  |  
													    |  | Shared |  |  
													    |  |  |  |  
													    |  | Discussed |  |  |  |  |