Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2019, Vol. 6 Issue (1) : 8-27    https://doi.org/10.15302/J-FASE-2018233
REVIEW
Porcine pluripotent stem cells: progress, challenges and prospects
Jianyong HAN1, Yi-Liang MIAO2, Jinlian HUA3, Yan LI4, Xue ZHANG4, Jilong ZHOU2, Na LI3, Ying ZHANG3, Jinying ZHANG1, Zhonghua LIU4()
1. State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
2. Institute of Stem Cell and Regenerative Biology/College of Animal Science and Veterinary Medicine/Key Laboratory of Agricultural Animal Genetics Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
3. College of Veterinary Medicine/Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling 712100, China
4. Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
 Download: PDF(1075 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Pluripotent stem cells (PSCs) are characterized by their capacity for high self-renewal and multiple differentiation potential and include embryonic stem cells, embryonic germ cells and induced PSCs. PSCs provide a very suitable model for the studies of human diseases, drugs screening, regenerative medicine and developmental biology research. Pigs are considered as an ideal model for preclinical development of human xenotransplantation, therapeutic approaches and regenerative medicine because of their size and physiological similarity to humans. However, lack of knowledge about the derivation, characterization and pluripotency mechanisms of porcine PSCs hinders progress in these biotechnologies. In this review, we discuss the latest progress on porcine PSCs generation, evaluation criteria for pluripotency, the scientific and technical questions arising from these studies. We also introduce our perspectives on porcine PSC research, in the hope of providing new ideas for generating naive porcine PSCs and animal breeding.

Keywords embryonic germ cells      embryonic stem cells      induced pluripotent stem cells      pigs      pluripotent stem cells     
Corresponding Author(s): Zhonghua LIU   
Just Accepted Date: 07 June 2018   Online First Date: 17 July 2018    Issue Date: 25 February 2019
 Cite this article:   
Jianyong HAN,Yi-Liang MIAO,Jinlian HUA, et al. Porcine pluripotent stem cells: progress, challenges and prospects[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 8-27.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2018233
https://academic.hep.com.cn/fase/EN/Y2019/V6/I1/8
Fig.1  Derivation of pluripotent stem cells from different embryo development stage
Species Cell source Culture system Differentiation potential Reference
Mouse 8.5 dpc PGCs
7.0 dpc PGCs
11.5–13.5 dpc PGCs
STO feeder layer+ SCF, LIF, bFGF
STO feeder layer+ SCF, LIF, bFGF
MEF feeder layer+ LIF, SB431542, Kempaullone
Chimera
ES-like cells, teratomas
Chimera
[36]
[37]
[38]
Human 5–9 weeks PGCs
106 dpc PGCs
4–13 week PGCs
STO feeder layer+ LIF, bFGF, Forskolin
DMEM+ 10% NBS
Knockout DMEM+ 20 KSR+ LIF+ bFGF+ Forskolin
EG-like cells, all three germ layer cells
ES-like cells
ES-like cells, all three germ layer cells
[39]
[40]
Porcine E25–27 PGCs
E25–27 PGCs
STO feeder+ SCF+ bFGF+ LIF
Using a growth-factor-defined culture system supplemented bFGF
ND
Chimera
[41]
[42]
Tab.1  Pluripotent stem cells derived from primordial germ cells
Species Cell source Culture system Differentiation potential Reference
Mouse Neonatal testis MEF feeder layer+ standard ESCs culture conditions Chimera [68]
Human Testicular cells hESCs culture conditions All three germ layers, no teratoma [69]
Porcine Neonatal testicular cells DMEM/F-12+ 10% KSR and four cytokines Colonize in vivo and differentiate [67]
Tab.2  Pluripotent stem cells derived from testis
Cell source Culture system Differentiation potential Reference
Neonatal mouse ovary cells ESCs culture conditions All three germ layers, Teratomas, Chimera (dead) [85]
Tab.3  Pluripotent stem cells derived from mouse ovary
Cell sources Morphology Pluripotent markers Differentiation in vivo Differentiation in vitro Reference
Pluripotency state Colony formation time/rate Passage Karyotype Pluripotency factors Surface markers AP Teratoma Chimera EB Multilineage differentiation potency
In vivo and in vitro embryos ESC-like 10% p14 Normal OCT4, NANOG SSEA-1 ND CP + + [114]
EpiSC-like 5–7 d p>41 Normal OCT4, NANOG, SOX2, TDGF1, REX1 SSEA4, TRA-1-60, TRA-1-81 AP ND + + [29]
1.6%–9.5% p≥9 Normal NANOG AP (weak) ND ND + + [115]
In vivo embryos ESC-like >6 d, >43% ND ND OCT4, NANOG, SOX2 CK18 AP ND ND ND + [116]
EpiSC-like 5–7 d p>12 Normal OCT4, NANOG, SOX2, NODAL SSEA-1 ND ND + + [117]
ND OCT4, SOX2, NANOG TRA-1-60, TRA-1-81 AP ND ND ND ND [33]
In vitro embryos ESC-like 5–8 d p>48 Normal OCT4, NANOG, SOX2, REX-1 SSEA-1, SSEA-4, TRA-1-60, TRA-1-81 AP ND + + [118]
5.1% p≈100 Normal OCT4, NANOG SSEA-1, SSEA-4 AP ND ND ND ND [45]
8–13 d p>15 Normal OCT4, NANOG ND CB + + [119]
ND p>50 Normal OCT4, KLF4, STAT3, SOX2, NANOG, LIN28 SSEA-1 (strong), SSEA-4 (weak) AP + ND ND + [46]
EpiSC-like 39% p<52 Normal OCT3, OCT4, NANOG SSEA-4 AP + ND + + [120]
5–8 d,>26.2% p>25 Normal OCT4, NANOG, SOX2, REX-1 AP ND + + [121]
17.6% ND ND OCT4, SOX2, NANOG AP ND ND + + [122]
13–16 d p>75 Normal OCT4, SOX2, NANOG AP + CP + + [10]
10.7% p>90 Normal OCT4 SSEA-4, TRA-1-60, TRA-1-81, AP + ND + + [123]
9 d p>36 Normal OCT4, SOX2, NANOG AP + ND + + [124]
ND <29% ND ND OCT4, NANOG, SOX2, C-MYC AP ND ND ND ND [125]
Tab.4  Characteristics of porcine embryonic stem cells
Cell sources Morphology Pluripotent markers Differentiation in vivo Differentiation in vitro Reference
Pluripotency state Colony formation time/rate Passage Karyotype Pluripotency factors Surface markers AP Teratoma Chimera EB Multilineage differentiation potency
Porcine fetal fibroblasts ESC-like 14 d p>40 Normal OCT4, SOX2, NANOG, LIN28, OCT3, C-MYC SSEA-1, SSEA-3, SSEA-4, TRA-1-60, TRA-1-81 AP + CP + + [97]
6–8 d p>30 Normal OCT4, SOX2, NANOG, TERT SSEA-4, SSEA-1, TRA-1-60, TRA-1-81 AP + CB + + [112]
10–12 d ND Normal REX1, OCT4, SOX2, REX1, NANOG SSEA4 AP + ND + + [111]
5 d ND Normal OCT4, C-MYC SSEA4, TRA-1-60 AP + ND + + [126]
EpiSC-like 22 d p<20 Abnormal OCT4, NANOG, SOX2, KLF4 SSEA-1 AP + ND + + [59]
8–10 d p>25 Normal NANOG, REX1, LIN28, SOX2, OCT3 SSEA-4 AP + ND ND ND [127]
12 d p>90 ND OCT4, NANOG, ZFP42, UTF1, EpCAM, ESRRB SSEA-1 AP - - + - [128]
14–20 d p>20 ND OCT4, SOX2, NANOG, KLF4, C-MYC, LIN28, DPPA2 SSEA-1, SSEA-4 AP + CP + + [66]
10 d p>35 ND SOX2, OCT4, Klf4, NANOG, REX1, TDGF SSEA-4 AP - ND + + [129]
ND p>30 Normal OCT4, SOX2 SSEA-1, SSEA-4, TRA-1-60, TRA-1-81 AP + CB + + [130]
6–7 d ND Normal OCT4, SOX2, NANOG, REX1, KLF4 SSEA-1 AP ND ND + + [34]
7 d p>30 Normal OCT4, SOX2, NANOG, REX1, TBX3, NR5A2 AP + ND [131]
8 d p>50 Normal OCT4, SOX2, NANOG SSEA1, SSEA4, TRA-1-81 (weak), TRA-1-60 (weak) AP ND ND + + [132]
Ear fibroblasts ESC-like 7 d p>20 Normal OCT4, SOX2, NANOG, REX1 + ND ND + [133]
18 d p76 Normal OCT4, NANOG, SOX2, KLF4 SSEA-1 AP + ND + + [133]
EpiSC-like ND ND ND AP ND
ND
+ + [92]
8 d p>30 Normal OCT4, SOX2, NANOG, LIN28 SSEA-3, SSEA-4 TRA-1-60, TRA-1-81 AP + + + [134]
9 d ND Normal NANOG SSEA-4, TRA-1-60 AP + ND + + [135]
11 d p>25 Abnormal SOX2, OCT4, NANOG, LIN28, REX1, CDH1, DNMT SSEA-1, SSEA-4, TRA-1-60, TRA-1-81 AP ND ND + + [136]
7 d p>41 Normal OCT3, OCT4, NANOG, SOX2, REX1, CDH1 SSEA3, SSEA4, TRA-1-60, TRA-1-81 AP + ND + + [137]
Adipose tissue ESC-like 8 d p>30 Normal OCT4, SOX2, NANOG, LIN28, ESRRB, DPPA5, UTF1 SSEA3, SSEA4 AP + ND + + [138]
Adipose stromal cells EpiSC-like 15 d p50 Normal NANOG, OCT4, SOX2, KLF4 SSEA-1, TRA-1-60, TRA-1-81, AP + ND + + [139]
Testicular fibroblasts EPiSC-like 10 d 12 month Normal OCT4, SAll4, SOX2, NANOG, LIN28, CDH1 SSEA4 AP ND + + [140]
Dermal fibroblasts ND 7 d p>22 Normal SOX2, OCT4, NANOG SSEA4, TRA-1-60, TRA-1-81 AP ND ND + + [42]
Tab.5  Characteristics of porcine induced pluripotent stem cells
Cell sources Morphology Pluripotent markers Differentiation in vivo Differentiation in vitro Reference
Pluripotency state Colony formation time/rate Passage Karyotype Pluripotency factors Surface markers AP Teratoma Chimera formation EB Multilineage
differentiation
potency
Fetuses (days 17–30) ESC-like 7–10 d p14 ND AP ND CP + ND [41]
8 d p54 Normal OCT4 SSEA-4, TRA-1-81, SSEA-1 AP ND ND + + [141]
6–9 d ND ND SSEA-1 AP ND ND + Endoderm [142]
6–9 d ND ND SSEA-1 AP ND ND + ND [142]
ND p≈35 ND OCT4, SOX2, NANOG, REX1, C-MYC SSEA-4, TRA-1-60, TRA-1-81 AP + ND + + [143]
ND p12 Normal AP ND CP + + [48]
ND p21–23 ND AP CP + + [144]
5–7 d p>20 Normal OCT4 SSEA-1 (weak), SSEA-3, SSEA-4, AP + ND + + [145]
ND 5–8 d ND ND AP ND ND ND ND [146]
ND 7–10 d p>31 Normal SSEA-1 AP ND CP ND ND [49]
Tab.6  Characteristics of porcine embryonic germ cells
Fig.2  Porcine embryonic stem cells have great significance and potential for wide application
1 M JEvans, M H Kaufman. Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981, 292(5819): 154–156
https://doi.org/10.1038/292154a0
2 IChambers, A Smith. Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene, 2004, 23(43): 7150–7160
https://doi.org/10.1038/sj.onc.1207930
3 VHall. Porcine embryonic stem cells: a possible source for cell replacement therapy. Stem Cell Reviews and Reports, 2008, 4(4): 275–282
https://doi.org/10.1007/s12015-008-9040-2
4 SLiu, G Bou, RSun, SGuo, B Xue, RWei, A JCooney, ZLiu. Sox2 is the faithful marker for pluripotency in pig: evidence from embryonic studies. Developmental Dynamics, 2015, 244(4): 619–627
https://doi.org/10.1002/dvdy.24248
5 KPrelle, W Holtz, MSborn. The intermediate filament protein vimentin as differentiation marker in preimplantation porcine embryo. Biology of Reproduction, 1995, 52(S1): 177
6 M JEvans, E Notarianni, SLaurie, R MMoor. N E, Laurie S, Moor R M. Derivation and preliminary characterization of pluripotent cell lines from porcine and bovine blastocysts. Theriogenology, 1990, 33(1): 125–128
https://doi.org/10.1016/0093-691X(90)90603-Q
7 J APiedrahita, G BAnderson, R HBondurant. On the isolation of embryonic stem cells: comparative behavior of murine, porcine and ovine embryos. Theriogenology, 1990, 34(5): 879–901
https://doi.org/10.1016/0093-691X(90)90559-C
8 L RChen, Y L Shiue, L Bertolini, J FMedrano, R HBonDurant, G BAnderson. Establishment of pluripotent cell lines from porcine preimplantation embryos. Theriogenology, 1999, 52(2): 195–212
https://doi.org/10.1016/S0093-691X(99)00122-3
9 MLi, W Ma, YHou, X FSun, Q YSun, W HWang. Improved isolation and culture of embryonic stem cells from Chinese miniature pig. Journal of Reproduction and Development, 2004, 50(2): 237–244
https://doi.org/10.1262/jrd.50.237
10 BXue, Y Li, YHe, RWei, R Sun, ZYin, GBou, Z Liu. Porcine pluripotent stem cells derived from IVF Embryos contribute to chimeric development in vivo. PLoS One, 2016, 11(3): e0151737
https://doi.org/10.1371/journal.pone.0151737
11 MLi, Y H Li, Y Hou, X FSun, QSun, W H Wang. Isolation and culture of pluripotent cells from in vitro produced porcine embryos. Zygote, 2004, 12(1): 43–48
https://doi.org/10.1017/S0967199404002679
12 R MStrojek, M A Reed, J L Hoover, T E Wagner. A method for cultivating morphologically undifferentiated embryonic stem cells from porcine blastocysts. Theriogenology, 1990, 33(4): 901–913
https://doi.org/10.1016/0093-691X(90)90825-E
13 LMagnani, R A Cabot. In vitro and in vivo derived porcine embryos possess similar, but not identical, patterns of Oct4, Nanog, and Sox2 mRNA expression during cleavage development. Molecular Reproduction and Development, 2008, 75(12): 1726–1735
https://doi.org/10.1002/mrd.20915
14 T ABrevini, V Tosetti, MCrestan, SAntonini, FGandolfi. Derivation and characterization of pluripotent cell lines from pig embryos of different origins. Theriogenology, 2007, 67(1): 54–63
https://doi.org/10.1016/j.theriogenology.2006.09.019
15 NKirchhof, J W Carnwath, E Lemme, KAnastassiadis, HScholer, HNiemann. Expression pattern of Oct-4 in preimplantation embryos of different species. Biology of Reproduction, 2000, 63(6): 1698–1705
https://doi.org/10.1095/biolreprod63.6.1698
16 E WKuijk, L Du Puy, H TVan Tol, C HOei, H PHaagsman, BColenbrander, B ARoelen. Differences in early lineage segregation between mammals. Developmental Dynamics, 2008, 237(4): 918–927
https://doi.org/10.1002/dvdy.21480
17 IVackova, A Ungrova, FLopes. Putative embryonic stem cell lines from pig embryos. Journal of Reproduction and Development, 2007, 53(6): 1137–1149
https://doi.org/10.1262/jrd.19108
18 Y LShiue, J R Yang, Y J Liao, T Y Kuo, C H Liao, C H Kang, C Tai, G BAnderson, L RChen. Derivation of porcine pluripotent stem cells for biomedical research. Theriogenology, 2016, 86(1): 176–181
https://doi.org/10.1016/j.theriogenology.2016.04.030
19 SBao, F Tang, XLi, KHayashi, AGillich, KLao, M A Surani. Epigenetic reversion of post-implantation epiblast to pluripotent embryonic stem cells. Nature, 2009, 461(7268): 1292–1295
https://doi.org/10.1038/nature08534
20 MTosolini, A Jouneau. From naive to primed pluripotency: in vitro conversion of mouse embryonic stem cells in epiblast Stem cells. Methods in Molecular Biology, 2016, 1341: 209–216
https://doi.org/10.1007/7651_2015_208
21 YYang, B Liu, JXu, JWang, J Wu, CShi, YXu, J Dong, CWang, WLai, J Zhu, LXiong, DZhu, X Li, WYang, TYamauchi, ASugawara, ZLi, F Sun, XLi, CLi, A He, YDu, TWang, C Zhao, HLi, XChi, H Zhang, YLiu, CLi, S Duo, MYin, HShen, J C Belmonte, H. Deng Derivation of pluripotent stem cells with in vivo embryonic and extraembryonic potency. Cell, 2017, 169(2): 243–257 e225
22 JYang, D J Ryan, W Wang, J CTsang, GLan, H Masaki, XGao, LAntunes, YYu, Z Zhu, JWang, A AKolodziejczyk, L SCampos, CWang, F Yang, ZZhong, BFu, M A Eckersley-Maslin, MWoods, YTanaka, XChen, A C Wilkinson, J Bussell, JWhite, RRamirez-Solis, WReik, B Gottgens, S ATeichmann, P P LTam, HNakauchi, XZou, L Lu, PLiu. Establishment of mouse expanded potential stem cells. Nature, 2017, 550(7676): 393–397
https://doi.org/10.1038/nature24052
23 T ABrevini, G Pennarossa, FGandolfi. No shortcuts to pig embryonic stem cells. Theriogenology, 2010, 74(4): 544–550
https://doi.org/10.1016/j.theriogenology.2010.04.020
24 J APiedrahita, G BAnderson, R HBondurant. Influence of feeder layer type on the efficiency of isolation of porcine embryo-derived cell lines. Theriogenology, 1990, 34(5): 865–877
https://doi.org/10.1016/0093-691X(90)90558-B
25 N CTalbot, C E Jr Rexroad, V G Pursel, A M Powell, N D Nel. Culturing the epiblast cells of the pig blastocyst. In vitro Cellular & Developmental Biology: Animal, 1993, 29(7): 543–554
https://doi.org/10.1007/BF02634148
26 MLi, D Zhang, YHou, LJiao, X Zheng, W HWang. Isolation and culture of embryonic stem cells from porcine blastocysts. Molecular Reproduction and Development, 2003, 65(4): 429–434
https://doi.org/10.1002/mrd.10301
27 TBrevini, F Cillo, FGandolfi. Establishment and molecular characterization of pig parthenogenetic embryonic stem cells. Reproduction, Fertility, and Development, 2005, 17(2): 235
https://doi.org/10.1071/RDv17n2Ab168
28 H SKim, H Y Son, S Kim, G SLee, C HPark, S KKang, B CLee, W SHwang, C KLee. Isolation and initial culture of porcine inner cell masses derived from in vitro-produced blastocysts. Zygote, 2007, 15(1): 55–63
https://doi.org/10.1017/S0967199406003972
29 J KPark, H S Kim, K J Uh, K H Choi, H M Kim, T Lee, B CYang, H JKim, H HKa, HKim, C K Lee. Primed pluripotent cell lines derived from various embryonic origins and somatic cells in pig. PLoS One, 2013, 8(1): e52481
https://doi.org/10.1371/journal.pone.0052481
30 IVassiliev, S Vassilieva, L FBeebe, S MMcIlfatrick, S JHarrison, M BNottle. Development of culture conditions for the isolation of pluripotent porcine embryonal outgrowths from in vitro produced and in vivo derived embryos. Journal of Reproduction and Development, 2010, 56(5): 546–551
https://doi.org/10.1262/jrd.09-197A
31 JWang, R Wei, GBou, ZLiu. Tbx3 and Nr5 alpha2 improve the viability of porcine induced pluripotent stem cells after dissociation into single cells by inhibiting RHO-ROCK-MLC signaling. Biochemical and Biophysical Research Communications, 2015, 456(3): 743–749
https://doi.org/10.1016/j.bbrc.2014.12.041
32 KMoore, J A Piedrahita. The effects of human leukemia inhibitory factor (hLIF) and culture medium on in vitro differentiation of cultured porcine inner cell mass (pICM). In vitro Cellular & Developmental Biology: Animal, 1997, 33(1): 62–71
https://doi.org/10.1007/s11626-997-0023-4
33 SBaek, N R Han, J I Yun, J Y Hwang, M Kim, C KPark, ELee, S T Lee. Effects of culture dimensions on maintenance of porcine inner cell mass-derived cell self-renewal. Molecules and Cells, 2017, 40(2): 117–122
https://doi.org/10.14348/molcells.2017.2223
34 JWang, Q Gu, JHao, YJia, B Xue, HJin, JMa, R Wei, THai, QKong, G Bou, PXia, QZhou, L Wang, Z.Liu Tbx3 and Nr5 alpha2 play important roles in pig pluripotent stem cells. Stem Cell Reviews and reports, 2013, 9(5): 700–708
35 C LKeefer, D Pant, LBlomberg, N CTalbot. Challenges and prospects for the establishment of embryonic stem cell lines of domesticated ungulates. Animal Reproduction Science, 2007, 98(1–2): 147–168
https://doi.org/10.1016/j.anireprosci.2006.10.009
36 YMatsui, K Zsebo, B LHogan. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell, 1992, 70(5): 841–847
https://doi.org/10.1016/0092-8674(92)90317-6
37 IVassiliev, S Vassilieva, L F SBeebe, S JHarrison, S MMcilfatrick, M BNottle. In vitro and in vivo characterization of putative porcine embryonic stem cells. Cellular Reprogramming, 2010, 12(2): 223–230
https://doi.org/10.1089/cell.2009.0053
38 HShim, A Gutiérrezadán, L RChen, R HBondurant, EBehboodi, G BAnderson. Isolation of pluripotent stem cells from cultured porcine primordial germ cells. Theriogenology, 1997, 47(5): 1089–1095
39 M JShamblott, JAxelman, SWang, E M Bugg, J W Littlefield, P J Donovan, P D Blumenthal, G R Huggins, J D Gearhart. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(23): 13726–13731
https://doi.org/10.1073/pnas.95.23.13726
40 JHua, K Sidhu. Recent advances in the derivation of germ cells from the embryonic stem cells. Stem Cells and Development, 2008, 17(3): 399–412
https://doi.org/10.1089/scd.2007.0225
41 J APiedrahita, KMoore, BOetama, C KLee, NScales, JRamsoondar, F WBazer, TOtt. Generation of transgenic porcine chimeras using primordial germ cell-derived colonies. Biology of Reproduction, 1998, 58(5): 1321–1329
https://doi.org/10.1095/biolreprod58.5.1321
42 F DWest, S L Terlouw, D J Kwon, J L Mumaw, S K Dhara, K Hasneen, J RDobrinsky, S LStice. Porcine induced pluripotent stem cells produce chimeric offspring. Stem Cells and Development, 2010, 19(8): 1211–1220
https://doi.org/10.1089/scd.2009.0458
43 M THochereau-de Reviers, CPerreau. In vitro culture of embryonic disc cells from porcine blastocysts. Reproduction, Nutrition, Development, 1993, 33(5): 475–483
https://doi.org/10.1051/rnd:19930508
44 PHou, Y Li, XZhang, CLiu, J Guan, HLi, TZhao, J Ye, WYang, KLiu, J Ge, JXu, QZhang, YZhao, H Deng. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science, 2013, 341(6146): 651–654
https://doi.org/10.1126/science.1239278
45 SHaraguchi, K Kikuchi, MNakai, TTokunaga. Establishment of self-renewing porcine embryonic stem cell-like cells by signal inhibition. Journal of Reproduction and Development, 2012, 58(6): 707–716
https://doi.org/10.1262/jrd.2012-008
46 B PTelugu, T Ezashi, SSinha, A PAlexenko, LSpate, R SPrather, R MRoberts. Leukemia inhibitory factor (LIF)-dependent, pluripotent stem cells established from inner cell mass of porcine embryos. Journal of Biological Chemistry, 2011, 286(33): 28948–28953
https://doi.org/10.1074/jbc.M111.229468
47 SPetkov, P Hyttel, HNiemann. The small molecule inhibitors PD0325091 and CHIR99021 reduce expression of pluripotency-related genes in putative porcine induced pluripotent stem cells. Cellular Reprogramming, 2014, 16(4): 235–240
https://doi.org/10.1089/cell.2014.0010
48 HShim, A Gutiérrez-Adán, L RChen, R HBonDurant, EBehboodi, G BAnderson. Isolation of pluripotent stem cells from cultured porcine primordial germ cells. Biology of Reproduction, 1997, 57(5): 1089–1095
https://doi.org/10.1095/biolreprod57.5.1089
49 SMueller, K Prelle, NRieger, HPetznek, CLassnig, ULuksch, BAigner, MBaetscher, EWolf, M Mueller, GBrem. Chimeric pigs following blastocyst injection of transgenic porcine primordial germ cells. Molecular Reproduction and Development, 1999, 54(3): 244–254
https://doi.org/10.1002/(SICI)1098-2795(199911)54:3<244::AID-MRD5>3.0.CO;2-5
50 J LResnick, L S Bixler, L Cheng, P JDonovan. Long-term proliferation of mouse primordial germ cells in culture. Nature, 1992, 359(6395): 550–551
https://doi.org/10.1038/359550a0
51 KBaumann. Stem cells: human primordial germ cells in a dish. Nature Reviews: Molecular Cell Biology, 2015, 16(2): 68
https://doi.org/10.1038/nrm3945
52 P ALabosky, D P Barlow, B L Hogan. Mouse embryonic germ (EG) cell lines: transmission through the germline and differences in the methylation imprint of insulin-like growth factor 2 receptor (Igf2r) gene compared with embryonic stem (ES) cell lines. Development, 1994, 120(11): 3197–3204
53 TKimura, Y Kaga, YSekita, KFujikawa, TNakatani, MOdamoto, SFunaki, MIkawa, KAbe, T Nakano. Pluripotent stem cells derived from mouse primordial germ cells by small molecule compounds. Stem Cells, 2015, 33(1): 45–55
https://doi.org/10.1002/stem.1838
54 PLópez-Iglesias, YAlcaina, NTapia, DSabour, M JArauzo-Bravo, DSainz de la Maza, EBerra, A NO’Mara, MNistal, SOrtega, P JDonovan, H RSchöler, M PDe Miguel. Hypoxia induces pluripotency in primordial germ cells by HIF1a stabilization and Oct4 deregulation. Antioxidants & Redox Signalling, 2015, 22(3): 205–223
https://doi.org/10.1089/ars.2014.5871
55 F ABazley, C F Liu, X Yuan, HHao, A HAll, ADe Los Angeles, E TZambidis, J DGearhart, C LKerr. Direct reprogramming of human primordial germ cells into induced pluripotent stem cells: efficient generation of genetically engineered germ cells. Stem Cells and Development, 2015, 24(22): 2634–2648
https://doi.org/10.1089/scd.2015.0100
56 KMorohaku, Y Hirao, YObata. Differentiation of mouse primordial germ cells into functional oocytes in vitro. Annals of Biomedical Engineering, 2017, 45(7): 1608–1619
https://doi.org/10.1007/s10439-017-1815-7
57 XDu, T Feng, DYu, YWu, H Zou, SMa, CFeng, Y Huang, HOuyang, XHu, D Pan, NLi, SWu. Barriers for deriving transgene-free pig iPS cells with episomal vectors. Stem Cells, 2015, 33(11): 3228–3238
https://doi.org/10.1002/stem.2089
58 Q SGao, L Jin, SLi, H YZhu, QGuo, X C Li, Q G Jin, J D Kang, C G Yan, X J Yin. Generation of large pig and bovine blastocysts by culturing in human induced pluripotent stem cell medium. Zygote, 2016, 24(2): 236–244
https://doi.org/10.1017/S0967199415000088
59 TEzashi, B P Telugu, A P Alexenko, S Sachdev, SSinha, R MRoberts. Derivation of induced pluripotent stem cells from pig somatic cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(27): 10993–10998
https://doi.org/10.1073/pnas.0905284106
60 YWu, O Li, CHe, YLi, M Li, X LLiu, YWang, Y He. Generation and characterization of induced pluripotent stem cells from guinea pig fetal fibroblasts. Molecular Medicine Reports, 2017, 15(6): 3690–3698
https://doi.org/10.3892/mmr.2017.6431
61 D Gde Rooij, L DRussell. All you wanted to know about spermatogonia but were afraid to ask. Journal of Andrology, 2000, 21(6): 776–798
62 M LMeistrich. Effects of chemotherapy and radiotherapy on spermatogenesis. European Urology, 1993, 23(1): 136–142
https://doi.org/10.1159/000474582
63 HAbbasi, S M Hosseini, M Hajian, ZNasiri, MBahadorani, MTahmoorespur, M RNasiri, M HNasr-Esfahani. Lentiviral vector-mediated transduction of goat undifferentiated spermatogonia. Animal Reproduction Science, 2015, 163: 10–17
https://doi.org/10.1016/j.anireprosci.2015.09.002
64 MKanatsu-Shinohara, TShinohara. Spermatogonial stem cell self-renewal and development. Annual Review of Cell and Developmental Biology, 2013, 29(1): 163–187
https://doi.org/10.1146/annurev-cellbio-101512-122353
65 JKehler, E Tolkunova, BKoschorz, MPesce, LGentile, MBoiani, HLomeli, ANagy, K J McLaughlin, H R Scholer, A Tomilin. Oct4 is required for primordial germ cell survival. EMBO Reports, 2004, 5(11): 1078–1083
https://doi.org/10.1038/sj.embor.7400279
66 YWu, L Ouyang, CHe, LYong, L Min, XLiu, YWang, Y He. Generation and characterization of induced pluripotent stem cells from guinea pig fetal fibroblasts. Molecular Medicine Reports, 2017, 15(6): 3690–3698
https://doi.org/10.3892/mmr.2017.6431
67 PZhang, X Chen, YZheng, JZhu, Y Qin, YLv, WZeng. Long-term propagation of porcine undifferentiated spermatogonia. Stem Cells and Development, 2017, 26(15): 1121–1131
https://doi.org/10.1089/scd.2017.0018
68 IKanatsu-Shinohara, MK Kanatsu-Shinohara, KInoue, JLee, M Yoshimoto, NOgonuki, HMiki, S Baba, TKato, YKazuki, SToyokuni, MToyoshima, ONiwa, M Oshimura, THeike, TNakahata, FIshino, AOgura, TShinohara. Generation of pluripotent stem cells from neonatal mouse testis. Cell, 2004, 119(7): 1001–1012
https://doi.org/10.1016/j.cell.2004.11.011
69 NKossack, J Meneses, SShefi, H NNguyen, SChavez, CNicholas, JGromoll, P JTurek, R AReijo-Pera. Isolation and characterization of pluripotent human spermatogonial stem cell-derived cells. Stem Cells, 2009, 27(1): 138–149
https://doi.org/10.1634/stemcells.2008-0439
70 KGuan, S Wagner, BUnsold, L SMaier, DKaiser, BHemmerlein, KNayernia, WEngel, GHasenfuss. Generation of functional cardiomyocytes from adult mouse spermatogonial stem cells. Circulation Research, 2007, 100(11): 1615–1625
https://doi.org/10.1161/01.RES.0000269182.22798.d9
71 KGuan, F Wolf, ABecker, WEngel, KNayernia, GHasenfuss. Isolation and cultivation of stem cells from adult mouse testes. Nature Protocols, 2009, 4(2): 143–154
https://doi.org/10.1038/nprot.2008.242
72 SConrad, M Renninger, JHennenlotter, TWiesner, LJust, M Bonin, WAicher, H JBuhring, UMattheus, AMack, H J Wagner, S Minger, MMatzkies, MReppel, JHescheler, K DSievert, AStenzl, TSkutella. Generation of pluripotent stem cells from adult human testis. Nature, 2008, 456(7220): 344–349
https://doi.org/10.1038/nature07404
73 QWu, S Ohsako, RIshimura, J SSuzuki, CTohyama. Exposure of mouse preimplantation embryos to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) alters the methylation status of imprinted genes H19 and Igf2. Biology of Reproduction, 2004, 70(6): 1790–1797
https://doi.org/10.1095/biolreprod.103.025387
74 MKanatsu-Shinohara, KInoue, JLee, M Yoshimoto, NOgonuki, HMiki, S Baba, TKato, YKazuki, SToyokuni, MToyoshima, ONiwa, M Oshimura, THeike, TNakahata, FIshino, AOgura, TShinohara. Generation of pluripotent stem cells from neonatal mouse testis. Cell, 2004, 119(7): 1001–1012
https://doi.org/10.1016/j.cell.2004.11.011
75 HGuo, B Hu, LYan, JYong, Y Wu, YGao, FGuo, Y Hou, XFan, JDong, X Wang, XZhu, JYan, Y Wei, HJin, WZhang, LWen, F Tang, JQiao. DNA methylation and chromatin accessibility profiling of mouse and human fetal germ cells. Cell Research, 2017, 27(2): 165–183
https://doi.org/10.1038/cr.2016.128
76 HAzizi, S Conrad, UHinz, BAsgari, DNanus, HPeterziel, AHajizadeh Moghaddam, HBaharvand, T. SkutellaDerivation of pluripotent cells from mouse SSCs seems to be age dependent. Stem Cells International, 2016, 2016: 8216312
77 KKo, M J Arauzo-Bravo, J Kim, MStehling, H RScholer. Conversion of adult mouse unipotent germline stem cells into pluripotent stem cells. Nature Protocols, 2010, 5(5): 921–928
https://doi.org/10.1038/nprot.2010.44
78 KGuan, K Nayernia, L SMaier, SWagner, RDressel, J HLee, JNolte, FWolf, M Li, WEngel, GHasenfuss. Pluripotency of spermatogonial stem cells from adult mouse testis. Nature, 2006, 440(7088): 1199–1203
https://doi.org/10.1038/nature04697
79 GBilousova, D R Roop. Generation of functional multipotent keratinocytes from mouse induced pluripotent stem cells. Methods in Molecular Biology, 2013, 961: 337–350
https://doi.org/10.1007/978-1-62703-227-8_22
80 S FMoraveji, F Attari, AShahverdi, HSepehri, AFarrokhi, S NHassani, HFonoudi, NAghdami, HBaharvand. Inhibition of glycogen synthase kinase-3 promotes efficient derivation of pluripotent stem cells from neonatal mouse testis. Human Reproduction, 2012, 27(8): 2312–2324
https://doi.org/10.1093/humrep/des204
81 F JShen, C Zhang, S XYang, Y HXiong, W BLiao, X JDu, L LWang. Long-term culture and identification of spermatogonial stem cells from BALB/c mice in vitro. National Journal of Andrology, 2008, 14(11): 977–981
82 MKanatsu-Shinohara, NOgonuki, KInoue, HMiki, A Ogura, SToyokuni, TShinohara. Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biology of Reproduction, 2003, 69(2): 612–616
https://doi.org/10.1095/biolreprod.103.017012
83 CZhang, J Wu. Production of offspring from a germline stem cell line derived from prepubertal ovaries of germline reporter mice. Molecular Human Reproduction, 2016, 22(7): 457–464
https://doi.org/10.1093/molehr/gaw030
84 KZou, L Hou, KSun, WXie, J Wu. Improved efficiency of female germline stem cell purification using fragilis-based magnetic bead sorting. Stem Cells and Development, 2011, 20(12): 2197–2204
https://doi.org/10.1089/scd.2011.0091
85 HWang, M Jiang, HBi, XChen, L He, XLi, JWu. Conversion of female germline stem cells from neonatal and prepubertal mice into pluripotent stem cells. Journal of Molecular Cell Biology, 2014, 6(2): 164–171
https://doi.org/10.1093/jmcb/mju004
86 KTakahashi, S Yamanaka. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4): 663–676
https://doi.org/10.1016/j.cell.2006.07.024
87 TEzashi, B P Telugu, R M Roberts. Induced pluripotent stem cells from pigs and other ungulate species: an alternative to embryonic stem cells? Reproduction in Domestic Animals, 2012, 47(Suppl 4): 92–97
https://doi.org/10.1111/j.1439-0531.2012.02061.x
88 KOkita, S Yamanaka. Induced pluripotent stem cells: opportunities and challenges. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 2011, 366(1575): 2198–2207
89 X YZhao, W Li, ZLv, LLiu, M Tong, THai, JHao, C Guo, QMa, LWang, F Zeng, QZhou. iPS cells produce viable mice through tetraploid complementation. Nature, 2009, 461(7260): 86–90
https://doi.org/10.1038/nature08267
90 JLiu, D Balehosur, BMurray, J MKelly, HSumer, P JVerma. Generation and characterization of reprogrammed sheep induced pluripotent stem cells. Theriogenology, 2012, 77(2): 338–346 e331
91 LBao, L He, JChen, ZWu, J Liao, LRao, JRen, H Li, HZhu, LQian, Y Gu, HDai, XXu, J Zhou, WWang, CCui, L Xiao. Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors. Cell Research, 2011, 21(4): 600–608
https://doi.org/10.1038/cr.2011.6
92 NMontserrat, L De Oñate, EGarreta, FGonzãlez, AAdamo, CEguizãbal, SHäfner, RVassena, J C IBelmonte. Generation of feeder-free pig induced pluripotent stem cells without Pou5f1. Cell Transplantation, 2012, 21(5): 815–825
https://doi.org/10.3727/096368911X601019
93 M AEsteban, M Peng, ZDeli, JCai, J Yang, JXu, LLai, D Pei. Porcine induced pluripotent stem cells may bridge the gap between mouse and human iPS. IUBMB Life, 2010, 62(4): 277–282
94 XHan, J Han, FDing, SCao, S S Lim, Y Dai, RZhang, YZhang, BLim, N Li. Generation of induced pluripotent stem cells from bovine embryonic fibroblast cells. Cell Research, 2011, 21(10): 1509–1512
https://doi.org/10.1038/cr.2011.125
95 BHuang, T Li, LAlonso-Gonzalez, RGorre, SKeatley, AGreen, PTurner, P KKallingappa, VVerma, BOback. A virus-free poly-promoter vector induces pluripotency in quiescent bovine cells under chemically defined conditions of dual kinase inhibition. PLoS One, 2011, 6(9): e24501
https://doi.org/10.1371/journal.pone.0024501
96 ZSong, J Cai, YLiu, DZhao, J Yong, SDuo, XSong, Y Guo, YZhao, HQin, X Yin, CWu, JChe, S Lu, MDing, HDeng. Efficient generation of hepatocyte-like cells from human induced pluripotent stem cells. Cell Research, 2009, 19(11): 1233–1242
https://doi.org/10.1038/cr.2009.107
97 S HFujishiro, KNakano, YMizukami, TAzami, YArai, H Matsunari, RIshino, TNishimura, MWatanabe, TAbe, Y Furukawa, KUmeyama, SYamanaka, MEma, H Nagashima, YHanazono. Generation of naive-like porcine-induced pluripotent stem cells capable of contributing to embryonic and fetal development. Stem Cells and Development, 2013, 22(3): 473–482
https://doi.org/10.1089/scd.2012.0173
98 F DWest, E W Uhl, Y Liu, HStowe, YLu, P Yu, AGallegos-Cardenas, S LPratt, S LStice. Brief report: chimeric pigs produced from induced pluripotent stem cells demonstrate germline transmission and no evidence of tumor formation in young pigs. Stem Cells, 2011, 29(10): 1640–1643
https://doi.org/10.1002/stem.713
99 TZhao, Z N Zhang, Z Rong, YXu. Immunogenicity of induced pluripotent stem cells. Nature, 2011, 474(7350): 212–215
https://doi.org/10.1038/nature10135
100 KOkita, T Ichisaka, SYamanaka. Generation of germline-competent induced pluripotent stem cells. Nature, 2007, 448(7151): 313–317
https://doi.org/10.1038/nature05934
101 I HPark, N Arora, HHuo, NMaherali, TAhfeldt, AShimamura, M WLensch, CCowan, KHochedlinger, G QDaley. Disease-specific induced pluripotent stem cells. Cell, 2008, 134(5): 877–886
https://doi.org/10.1016/j.cell.2008.07.041
102 MWernig, A Meissner, RForeman, TBrambrink, MKu, K Hochedlinger, B EBernstein, RJaenisch. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 2007, 448(7151): 318–324
https://doi.org/10.1038/nature05944
103 TBrambrink, R Foreman, G GWelstead, C JLengner, MWernig, HSuh, R Jaenisch. Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell, 2008, 2(2): 151–159
https://doi.org/10.1016/j.stem.2008.01.004
104 KOkita, M Nakagawa, HHyenjong, TIchisaka, SYamanaka. Generation of mouse induced pluripotent stem cells without viral vectors. Science, 2008, 322(5903): 949–953
https://doi.org/10.1126/science.1164270
105 JYu, K Hu, KSmuga-Otto, STian, R Stewart, I ISlukvin, J AThomson. Human induced pluripotent stem cells free of vector and transgene sequences. Science, 2009, 324(5928): 797–801
https://doi.org/10.1126/science.1172482
106 HZhou, S Wu, J YJoo, SZhu, D W Han, T Lin, STrauger, GBien, S Yao, YZhu, GSiuzdak, H RScholer, LDuan, S Ding. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell, 2009, 4(5): 381–384
https://doi.org/10.1016/j.stem.2009.04.005
107 DKim, C H Kim, J I Moon, Y G Chung, M Y Chang, B S Han, S Ko, EYang, K YCha, RLanza, K SKim. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell, 2009, 4(6): 472–476
https://doi.org/10.1016/j.stem.2009.05.005
108 XLi, D Liu, YMa, XDu, J Jing, LWang, BXie, D Sun, SSun, XJin, X Zhang, TZhao, JGuan, Z Yi, WLai, PZheng, ZHuang, YChang, ZChai, J Xu, H.Deng Direct reprogramming of fibroblasts via a chemically induced XEN-like state. Cell Stem Cell, 2017, 21(2): 264–273
109 YZhao, T Zhao, JGuan, XZhang, YFu, J Ye, JZhu, GMeng, J Ge, SYang, LCheng, YDu, C Zhao, TWang, LSu, W Yang, HDeng. A XEN-like state bridges somatic cells to pluripotency during chemical reprogramming. Cell, 2015, 163(7): 1678–1691
https://doi.org/10.1016/j.cell.2015.11.017
110 PLiu, M Chen, YLiu, L SQi, S. DingCRISPR-based chromatin remodeling of the endogenous Oct4 or Sox2 locus enables reprogramming to pluripotency. Cell Stem Cell, 2018, 22(2): 252–261
111 YLiu, Y Ma, J YYang, DCheng, XLiu, X Ma, F DWest, HWang. Comparative gene expression signature of pig, human and mouse induced pluripotent stem cell lines reveals insight into pig pluripotency gene networks. Stem Cell Reviews and Reports, 2014, 10(2): 162–176
https://doi.org/10.1007/s12015-013-9485-9
112 DCheng, Y Guo, ZLi, YLiu, X Gao, YGao, XCheng, JHu, H Wang. Porcine induced pluripotent stem cells require LIF and maintain their developmental potential in early stage of embryos. PLoS One, 2012, 7(12): e51778
https://doi.org/10.1371/journal.pone.0051778
113 V JHall, J Christensen, YGao, M HSchmidt, PHyttel. Porcine pluripotency cell signaling develops from the inner cell mass to the epiblast during early development. Developmental Dynamics, 2009, 238(8): 2014–2024
https://doi.org/10.1002/dvdy.22027
114 IVassiliev, S Vassilieva, L FBeebe, S JHarrison, S MMcIlfatrick, M BNottle. In vitro and in vivo characterization of putative porcine embryonic stem cells. Cellular Reprogramming, 2010, 12(2): 223–230
https://doi.org/10.1089/cell.2009.0053
115 IVackova, Z Novakova, VKrylov, KOkada, TKott, H Fulka, JMotlik. Analysis of marker expression in porcine cell lines derived from blastocysts produced in vitro and in vivo. Journal of Reproduction and Development, 2011, 57(5): 594–603
https://doi.org/10.1262/jrd.10-184H
116 Lu Puy, S M Chuva de Sousa Lopes, H P Haagsman, B A J Roelen. Analysis of co-expression of OCT4, NANOG and SOX2 in pluripotent cells of the porcine embryo, in vivo and in vitro. Theriogenology, 2011, 75(3): 513–526
https://doi.org/10.1016/j.theriogenology.2010.09.019
117 RAlberio, N Croxall, CAllegrucci. Pig epiblast stem cells depend on activin/nodal signaling for pluripotency and self-renewal. Stem Cells and Development, 2010, 19(10): 1627–1636
https://doi.org/10.1089/scd.2010.0012
118 SKim, J H Kim, E Lee, Y WJeong, M SHossein, S MPark, S WPark, J YLee, Y IJeong, H SKim, Y WKim, S HHyun, W SHwang. Establishment and characterization of embryonic stem-like cells from porcine somatic cell nuclear transfer blastocysts. Zygote, 2010, 18(2): 93–101
https://doi.org/10.1017/S0967199409990372
119 IVassiliev, S Vassilieva, K PTruong, L FBeebe, S MMcIlfatrick, S JHarrison, M BNottle. Isolation and in vitro characterization of putative porcine embryonic stem cells from cloned embryos treated with trichostatin A. Cellular Reprogramming, 2011, 13(3): 205–213
https://doi.org/10.1089/cell.2010.0102
120 S KJung, H J Kim, C L Kim, J H Lee, J Y You, E S Lee, J M Lim, S J Yun, J Y Song, S H Cha. Enhancing effects of serum-rich and cytokine-supplemented culture conditions on developing blastocysts and deriving porcine parthenogenetic embryonic stem cells. Journal of Veterinary Science, 2014, 15(4): 519–528
https://doi.org/10.4142/jvs.2014.15.4.519
121 CSiriboon, Y H Lin, M Kere, C DChen, L RChen, C HChen, C FTu, N WLo, J CJu. Putative porcine embryonic stem cell lines derived from aggregated four-celled cloned embryos produced by oocyte bisection cloning. PLoS One, 2015, 10(2): e0118165
https://doi.org/10.1371/journal.pone.0118165
122 D KLee, C H Park, K H Choi, Y I Jeong, K J Uh, J Y Hwang, S G Lee, C K Lee. Aggregation of cloned embryos in empty zona pellucida improves derivation efficiency of pig ES-like cells. Zygote, 2016, 24(6): 909–917
https://doi.org/10.1017/S0967199416000241
123 J RYang, Y L Shiue, C H Liao, S Z Lin, L R Chen. Establishment and characterization of novel porcine embryonic stem cell lines expressing hrGFP. Cloning and Stem Cells, 2009, 11(2): 235–244
https://doi.org/10.1089/clo.2008.0050
124 EKim, S U Hwang, H Yoo, J DYoon, YJeon, H Kim, E BJeung, C KLee, S HHyun. Putative embryonic stem cells derived from porcine cloned blastocysts using induced pluripotent stem cells as donors. Theriogenology, 2016, 85(4): 601–616
https://doi.org/10.1016/j.theriogenology.2015.09.051
125 GTan, L Ren, YHuang, XTang, Y Zhou, DLi, HSong, H Ouyang, DPang. Isolation and culture of embryonic stem-like cells from pig nuclear transfer blastocysts of different days. Zygote, 2012, 20(4): 347–352
https://doi.org/10.1017/S096719941100030X
126 QGu, J Hao, THai, JWang, Y Jia, QKong, CFeng, B Xue, BXie, SLiu, J Li, YHe, JSun, L Liu, LWang, ZLiu, Q Zhou. Efficient generation of mouse ESCs-like pig induced pluripotent stem cells. Protein & Cell, 2014, 5(5): 338–342
https://doi.org/10.1007/s13238-014-0043-2
127 M AEsteban, J Xu, JYang, MPeng, D Qin, WLi, ZJiang, JChen, K Deng, MZhong, JCai, L Lai, DPei. Generation of induced pluripotent stem cell lines from Tibetan miniature pig. Journal of Biological Chemistry, 2009, 284(26): 17634–17640
https://doi.org/10.1074/jbc.M109.008938
128 SPetkov, S Glage, MNowak-Imialek, HNiemann. Long-term culture of porcine induced pluripotent stem-like cells under feeder-free conditions in the presence of histone deacetylase inhibitors. Stem Cells and Development, 2016, 25(5): 386–394
https://doi.org/10.1089/scd.2015.0317
129 K MPark, J Lee, K HHussein, S HHong, S RYang, ELee, H M Woo. Generation of liver-specific TGF-alpha/c-Myc-overexpressing porcine induced pluripotent stem-like cells and blastocyst formation using nuclear transfer. Journal of Veterinary Medical Science, 2016, 78(4): 709–713
https://doi.org/10.1292/jvms.15-0363
130 WZhang, Y Pei, LZhong, BWen, S Cao, JHan. Pluripotent and metabolic features of two types of porcine iPSCs derived from defined mouse and human ES cell culture conditions. PLoS One, 2015, 10(4): e0124562
https://doi.org/10.1371/journal.pone.0124562
131 YLiu, J Y Yang, Y Lu, PYu, C RDove, J MHutcheson, J LMumaw, S LStice, F DWest. alpha-1,3-Galactosyltransferase knockout pig induced pluripotent stem cells: a cell source for the production of xenotransplant pigs. Cellular Reprogramming, 2013, 15(2): 107–116
132 H TBui, D N Kwon, M H Kang, M H Oh, M R Park, W J Park, S S Paik, N Van Thuan, J HKim. Epigenetic reprogramming in somatic cells induced by extract from germinal vesicle stage pig oocytes. Development, 2012, 139(23): 4330–4340
https://doi.org/10.1242/dev.086116
133 D JKwon, H Jeon, K BOh, S AOck, G SIm, S SLee, S KIm, J WLee, S JOh, J KPark, SHwang. Generation of leukemia inhibitory factor-dependent induced pluripotent stem cells from the Massachusetts General Hospital miniature pig. BioMed research international, 2013, 2013: 140639
134 Nontserrat, E G Bahima, L Batlle, SHäfner, A M CRodrigues, FGonzález, J C IBelmonte. Generation of pig iPS cells: a model for cell therapy. Journal of Cardiovascular Translational Research, 2011, 4(2): 121–130
https://doi.org/10.1007/s12265-010-9233-3
135 K MPark, S H Cha, C Ahn, H MWoo. Generation of porcine induced pluripotent stem cells and evaluation of their major histocompatibility complex protein expression in vitro. Veterinary Research Communications, 2013, 37(4): 293–301
https://doi.org/10.1007/s11259-013-9574-x
136 ZWu, J Chen, JRen, LBao, J Liao, CCui, LRao, H Li, YGu, HDai, H Zhu, XTeng, LCheng, LXiao. Generation of pig induced pluripotent stem cells with a drug-inducible system. Journal of Molecular Cell Biology, 2009, 1(1): 46–54
https://doi.org/10.1093/jmcb/mjp003
137 YZhang, C Wei, PZhang, XLi, T Liu, YPu, YLi, Z Cao, HCao, YLiu, X Zhang, YZhang. Efficient reprogramming of naive-like induced pluripotent stem cells from porcine adipose-derived stem cells with a feeder-independent and serum-free system. PLoS One, 2014, 9(1): e85089
https://doi.org/10.1371/journal.pone.0085089
138 MGu, P K Nguyen, A S Lee, D Xu, SHu, J RPlews, LHan, B C Huber, W H Lee, Y Gong, P Ede Almeida, JLyons, FIkeno, CPacharinsak, A JConnolly, S SGambhir, R CRobbins, M TLongaker, J CWu. Microfluidic single-cell analysis shows that porcine induced pluripotent stem cell-derived endothelial cells improve myocardial function by paracrine activation. Circulation Research, 2012, 111(7): 882–893
https://doi.org/10.1161/CIRCRESAHA.112.269001
139 ACongras, H Barasc, KCanale-Tabet, FPlisson-Petit, CDelcros, OFeraud, NOudrhiri, EHadadi, FGriscelli, ABennaceur-Griscelli, ATurhan, MAfanassieff, SFerchaud, APinton, MYerle-Bouissou, HAcloque. Non integrative strategy decreases chromosome instability and improves endogenous pluripotency genes reactivation in porcine induced pluripotent-like stem cells. Scientific Reports, 2016, 6(1): 27059
https://doi.org/10.1038/srep27059
140 J YYang, J L Mumaw, Y Liu, S LStice, F DWest. SSEA4-positive pig induced pluripotent stem cells are primed for differentiation into neural cells. Cell Transplantation, 2013, 22(6): 945–959
https://doi.org/10.3727/096368912X657279
141 S GPetkov, G B Anderson. Culture of porcine embryonic germ cells in serum-supplemented and serum-free conditions: the effects of serum and growth factors on primary and long-term culture. Cloning and Stem Cells, 2008, 10(2): 263–276
https://doi.org/10.1089/clo.2007.0085
142 C KLee, J A Piedrahita. Effects of growth factors and feeder cells on porcine primordial germ cells in vitro. Cloning, 2000, 2(4): 197–205
https://doi.org/10.1089/152045500454753
143 S GPetkov, H Marks, TKlein, R SGarcia, YGao, H Stunnenberg, PHyttel. In vitro culture and characterization of putative porcine embryonic germ cells derived from domestic breeds and Yucatan mini pig embryos at Days 20–24 of gestation. Stem Cell Research, 2011, 6(3): 226–237
https://doi.org/10.1016/j.scr.2011.01.003
144 RRui, H Shim, A LMoyer, D LAnderson, C TPenedo, J DRowe, R HBonDurant, G BAnderson. Attempts to enhance production of porcine chimeras from embryonic germ cells and preimplantation embryos. Theriogenology, 2004, 61(7–8): 1225–1235
https://doi.org/10.1016/j.theriogenology.2003.06.007
145 H CTsung, Z W Du, R Rui, X LLi, L PBao, JWu, S M Bao, Z Yao. The culture and establishment of embryonic germ (EG) cell lines from Chinese mini swine. Cell Research, 2003, 13(3): 195–202
https://doi.org/10.1038/sj.cr.7290164
146 GDurcova-Hills, K Prelle, SMuller, MStojkovic, JMotlik, EWolf, G Brem. Primary culture of porcine PGCs requires LIF and porcine membrane-bound stem cell factor. Zygote, 1998, 6(3): 271–275
https://doi.org/10.1017/S0967199498000215
147 W AKues, D Herrmann, BBarg-Kues, SHaridoss, MNowak-Imialek, TBuchholz, MStreeck, AGrebe, IGrabundzija, SMerkert, UMartin, V JHall, M ARasmussen, ZIvics, PHyttel, HNiemann. Derivation and characterization of sleeping beauty transposon-mediated porcine induced pluripotent stem cells. Stem Cells and Development, 2013, 22(1): 124–135
https://doi.org/10.1089/scd.2012.0382
148 XLi, Z Y Shan, Y S Wu, X H Shen, C J Liu, J L Shen, Z H Liu, L Lei. Generation of neural progenitors from induced Bama miniature pig pluripotent cells. Reproduction, 2014, 147(1): 65–72
https://doi.org/10.1530/REP-13-0196
149 MVejlsted, Y Du, GVajta, PMaddox-Hyttel. Post-hatching development of the porcine and bovine embryo–defining criteria for expected development in vivo and in vitro. Theriogenology, 2006, 65(1): 153–165
https://doi.org/10.1016/j.theriogenology.2005.09.021
150 GBou, S Liu, MSun, JZhu, B Xue, JGuo, YZhao, B Qu, XWeng, YWei, L Lei, ZLiu. CDX2 is essential for cell proliferation and polarity in porcine blastocysts. Development, 2017, 144(7): 1296–1306
https://doi.org/10.1242/dev.141085
151 NMaherali, K Hochedlinger. Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell, 2008, 3(6): 595–605
https://doi.org/10.1016/j.stem.2008.11.008
152 V JHall, J V Jacobsen, M A Rasmussen, P Hyttel. Ultrastructural and molecular distinctions between the porcine inner cell mass and epiblast reveal unique pluripotent cell states. Developmental Dynamics, 2010, 239(11): 2911–2920
https://doi.org/10.1002/dvdy.22424
153 V JHall, P Hyttel. Breaking down pluripotency in the porcine embryo reveals both a premature and reticent stem cell state in the inner cell mass and unique expression profiles of the naive and primed stem cell states. Stem Cells and Development, 2014, 23(17): 2030–2045
https://doi.org/10.1089/scd.2013.0502
154 FWianny, C Perreau, M T Hochereau de Reviers. Proliferation and differentiation of porcine inner cell mass and epiblast in vitro. Biology of Reproduction, 1997, 57(4): 756–764
https://doi.org/10.1095/biolreprod57.4.756
155 JNichols, A Smith. Naive and primed pluripotent states. Cell Stem Cell, 2009, 4(6): 487–492
https://doi.org/10.1016/j.stem.2009.05.015
156 C HPark, K J Uh, B P Mulligan, E B Jeung, S H Hyun, T Shin, HKa, C KLee. Analysis of imprinted gene expression in normal fertilized and uniparental preimplantation porcine embryos. PLoS One, 2011, 6(7): e22216
https://doi.org/10.1371/journal.pone.0022216
157 J YHwang, J N Oh, C H Park, D K Lee, C K Lee. Dosage compensation of X-chromosome inactivation center-linked genes in porcine preimplantation embryos: non-chromosome-wide initiation of X-chromosome inactivation in blastocysts. Mechanisms of Development, 2015, 138(Pt 3): 246–255
https://doi.org/10.1016/j.mod.2015.10.005
158 X YZhao, W Li, ZLv, LLiu, M Tong, THai, JHao, C L Guo, Q W Ma, L Wang, FZeng, QZhou. iPS cells produce viable mice through tetraploid complementation. Nature, 2009, 461(7260): 86–90
https://doi.org/10.1038/nature08267
159 LKang, J Wang, YZhang, ZKou, S Gao. iPS cells can support full-term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell, 2009, 5(2): 135–138
https://doi.org/10.1016/j.stem.2009.07.001
160 R NAravalli, E N Cressman, C J Steer. Hepatic differentiation of porcine induced pluripotent stem cells in vitro. Veterinary Journal, 2012, 194(3): 369–374
https://doi.org/10.1016/j.tvjl.2012.05.013
161 YZhao, X Yin, HQin, FZhu, H Liu, WYang, QZhang, CXiang, PHou, Z Song, YLiu, JYong, P Zhang, JCai, MLiu, H Li, YLi, XQu, K Cui, WZhang, TXiang, YWu, Y Zhao, CLiu, CYu, K Yuan, JLou, MDing, H Deng. Two supporting factors greatly improve the efficiency of human iPSC generation. Cell Stem Cell, 2008, 3(5): 475–479
https://doi.org/10.1016/j.stem.2008.10.002
162 SCong, G Cao, DLiu. Effects of different feeder layers on culture of bovine embryonic stem cell-like cells in vitro. Cytotechnology, 2014, 66(6): 995–1005
https://doi.org/10.1007/s10616-013-9653-4
163 VVerma, B Huang, P KKallingappa, BOback. Dual kinase inhibition promotes pluripotency in finite bovine embryonic cell lines. Stem Cells and Development, 2013, 22(11): 1728–1742
https://doi.org/10.1089/scd.2012.0481
164 YGao, Y Guo, ADuan, DCheng, SZhang, HWang. Optimization of culture conditions for maintaining porcine induced pluripotent stem cells. DNA and Cell Biology, 2014, 33(1): 1–11
https://doi.org/10.1089/dna.2013.2095
165 T RTalluri, D Kumar, SGlage, WGarrels, ZIvics, KDebowski, RBehr, H Niemann, W AKues. Derivation and characterization of bovine induced pluripotent stem cells by transposon-mediated reprogramming. Cellular Reprogramming, 2015, 17(2): 131–140
https://doi.org/10.1089/cell.2014.0080
166 RFang, K Liu, YZhao, HLi, D Zhu, YDu, CXiang, XLi, H Liu, ZMiao, XZhang, YShi, W Yang, JXu, HDeng. Generation of naive induced pluripotent stem cells from rhesus monkey fibroblasts. Cell Stem Cell, 2014, 15(4): 488–497
https://doi.org/10.1016/j.stem.2014.09.004
167 WZhang, H Wang, SZhang, LZhong, YWang, Y Pei, JHan, SCao. Lipid supplement in the cultural condition facilitates the porcine iPSC derivation through cAMP/PKA/CREB signal pathway. International Journal of Molecular Sciences, 2018, 19(2): 509–515
https://doi.org/10.3390/ijms19020509
168 MMuñoz, B Trigal, IMolina, CDiez, J N Caamano, E Gomez. Constraints to progress in embryonic stem cells from domestic species. Stem Cell Reviews and Reports, 2009, 5(1): 6–9
https://doi.org/10.1007/s12015-009-9052-6
169 T ABrevini, S Antonini, FCillo, MCrestan, FGandolfi. Porcine embryonic stem cells: facts, challenges and hopes. Theriogenology, 2007, 68(S1): S206–S213
https://doi.org/10.1016/j.theriogenology.2007.05.043
170 B PTelugu, T Ezashi, R MRoberts. The promise of stem cell research in pigs and other ungulate species. Stem Cell Reviews and Reports, 2010, 6(1): 31–41
https://doi.org/10.1007/s12015-009-9101-1
171 LYang, M Guell, DNiu, HGeorge, ELesha, DGrishin, JAach, E Shrock, WXu, JPoci, R Cortazio, R AWilkinson, J AFishman, GChurch. Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science, 2015, 350(6264): 1101–1104
https://doi.org/10.1126/science.aad1191
172 LZhou, W Wang, YLiu, J Fde Castro, TEzashi, B P V LTelugu, R MRoberts, H JKaplan, D CDean. Differentiation of induced pluripotent stem cells of swine into rod photoreceptors and their integration into the retina. Stem Cells, 2011, 29(6): 972–980
https://doi.org/10.1002/stem.637
173 XLi, F Zhang, GSong, WGu, M Chen, BYang, DLi, D Wang, KCao. Intramyocardial injection of pig pluripotent stem cells improves left ventricular function and perfusion: a study in a porcine model of acute myocardial infarction. PLoS One, 2013, 8(6): e66688
https://doi.org/10.1371/journal.pone.0066688
174 YAo, J D Mich-Basso, B Lin, LYang. High efficient differentiation of functional hepatocytes from porcine induced pluripotent stem cells. PLoS One, 2014, 9(6): e100417
https://doi.org/10.1371/journal.pone.0100417
175 H JSchuurman, R NPierson. Progress towards clinical xenotransplantation. Frontiers in Bioscience-Landmark, 2008, 13(13): 204–220
https://doi.org/10.2741/2671
176 TFujimura, Y Takahagi, TShigehisa, HNagashima, SMiyagawa, RShirakura, HMurakami. Production of alpha 1,3-galactosyltransferase gene-deficient pigs by somatic cell nuclear transfer: a novel selection method for gal alpha 1,3-Gal antigen-deficient cells. Molecular Reproduction and Development, 2008, 75(9): 1372–1378
https://doi.org/10.1002/mrd.20890
177 J APiedrahita, NOlby. Perspectives on transgenic livestock in agriculture and biomedicine: an update. Reproduction, Fertility, and Development, 2011, 23(1): 56–63
https://doi.org/10.1071/RD10246
178 NFan, J Chen, ZShang, HDou, G Ji, QZou, LWu, L He, FWang, KLiu, N Liu, JHan, QZhou, D Pan, DYang, BZhao, Z Ouyang, ZLiu, YZhao, L Lin, CZhong, QWang, S Wang, YXu, JLuan, Y Liang, ZYang, JLi, C Lu, GVajta, ZLi, H Ouyang, HWang, YWang, Y Yang, ZLiu, HWei, Z Luan, M AEsteban, HDeng, H Yang, DPei, NLi, G Pei, LLiu, YDu, L Xiao, LLai. Piglets cloned from induced pluripotent stem cells. Cell Research, 2013, 23(1): 162–166
https://doi.org/10.1038/cr.2012.176
179 L ABlomberg, B P Telugu. Twenty years of embryonic stem cell research in farm animals. Reproduction in Domestic Animals, 2012, 47(S4): 80–85
https://doi.org/10.1111/j.1439-0531.2012.02059.x
180 M AHandel, J J Eppig, J C Schimenti. Applying “gold standards” to in-vitro-derived germ cells. Cell, 2014, 157(6): 1257–1261
https://doi.org/10.1016/j.cell.2014.05.019
181 H TBui, N Van Thuan, D NKwon, Y JChoi, M HKang, J WHan, TKim, J H Kim. Identification and characterization of putative stem cells in the adult pig ovary. Development, 2014, 141(11): 2235–2244
https://doi.org/10.1242/dev.104554
182 J MHickey, T Chiurugwi, IMackay, WPowell, J MHickey, TChiurugwi, IMackay, WPowell, AEggen, AKilian, CJones, CCanales, DGrattapaglia, FBassi, GAtlin, GGorjanc, IDawson, IRabbi, J MRibaut, JRutkoski, JBenzie, JLightner, JMwacharo, JParmentier, KRobbins, LSkot, M Wolfe, MRouard, MClark, PAmer, P Gardiner, PHendre, RMrode, SSivasankar, SRasmussen, SGroh, V Jackson, WThomas, YBeyene. Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery. Nature Genetics, 2017, 49(9): 1297–1303
https://doi.org/10.1038/ng.3920
183 YZhang, J Ma, HLi, JLv, R Wei, YCong, ZLiu. bFGF signaling-mediated reprogramming of porcine primordial germ cells. Cell and Tissue Research, 2016, 364(2): 429–441
https://doi.org/10.1007/s00441-015-2326-1
[1] Ruigao SONG, Yu WANG, Yanfang WANG, Jianguo ZHAO. Base editing in pigs for precision breeding[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 161-170.
[2] Qijing LEI, Qin PAN, Shuai YU, Na LI, Shulin CHEN, Kuldip SIDHU, Jinlian HUA. Reprogramming of the pig primordial germ cells into pluripotent stem cells: a brief review[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 28-32.
[3] Xiuchun TIAN. The past, present and future of bovine pluripotent stem cells: a brief overview[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 3-7.
[4] Xingwang WANG, Rongrong DING, Jianping QUAN, Linxue YANG, Ming YANG, Enqin ZHENG, Dewu LIU, Gengyuan CAI, Zhenfang WU, Jie YANG. Genome-wide association analysis reveals genetic loci and candidate genes associated with intramuscular fat in Duroc pigs[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 335-341.
[5] Hanning WANG,Yangli PEI,Ning LI,Jianyong HAN. Progress, problems and prospects of porcine pluripotent stem cells[J]. Front. Agr. Sci. Eng. , 2014, 1(1): 6-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed