| 
					
						|  |  
    					|  |  
    					| Porcine pluripotent stem cells: progress, challenges and prospects |  
						| Jianyong HAN1, Yi-Liang MIAO2, Jinlian HUA3, Yan LI4, Xue ZHANG4, Jilong ZHOU2, Na LI3, Ying ZHANG3, Jinying ZHANG1, Zhonghua LIU4(  ) |  
						| 1. State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China 2. Institute of Stem Cell and Regenerative Biology/College of Animal Science and Veterinary Medicine/Key Laboratory of Agricultural Animal Genetics Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
 3. College of Veterinary Medicine/Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling 712100, China
 4. Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
 |  
						|  |  
					
						| 
								
									|  
          
          
            
              
				
								                
													
													    |  |  
														| 
													
													    | Abstract Pluripotent stem cells (PSCs) are characterized by their capacity for high self-renewal and multiple differentiation potential and include embryonic stem cells, embryonic germ cells and induced PSCs. PSCs provide a very suitable model for the studies of human diseases, drugs screening, regenerative medicine and developmental biology research. Pigs are considered as an ideal model for preclinical development of human xenotransplantation, therapeutic approaches and regenerative medicine because of their size and physiological similarity to humans. However, lack of knowledge about the derivation, characterization and pluripotency mechanisms of porcine PSCs hinders progress in these biotechnologies. In this review, we discuss the latest progress on porcine PSCs generation, evaluation criteria for pluripotency, the scientific and technical questions arising from these studies. We also introduce our perspectives on porcine PSC research, in the hope of providing new ideas for generating naive porcine PSCs and animal breeding. |  
															| Keywords 
																																																				embryonic germ cells  
																		  																																				embryonic stem cells  
																		  																																				induced pluripotent stem cells  
																		  																																				pigs  
																		  																																				pluripotent stem cells |  
															| Corresponding Author(s):
																Zhonghua LIU |  
															| Just Accepted Date: 07 June 2018  
																																														Online First Date: 17 July 2018   
																																														Issue Date: 25 February 2019 |  |  
								            
								                
																																												
															| 1 | M JEvans,  M H Kaufman. Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981, 292(5819): 154–156 https://doi.org/10.1038/292154a0
 |  
															| 2 | IChambers,  A Smith. Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene, 2004, 23(43): 7150–7160 https://doi.org/10.1038/sj.onc.1207930
 |  
															| 3 | VHall. Porcine embryonic stem cells: a possible source for cell replacement therapy. Stem Cell Reviews and Reports, 2008, 4(4): 275–282 https://doi.org/10.1007/s12015-008-9040-2
 |  
															| 4 | SLiu,  G Bou,  RSun,   SGuo,  B Xue,  RWei,   A JCooney,   ZLiu. Sox2 is the faithful marker for pluripotency in pig: evidence from embryonic studies. Developmental Dynamics, 2015, 244(4): 619–627 https://doi.org/10.1002/dvdy.24248
 |  
															| 5 | KPrelle,  W Holtz,  MSborn. The intermediate filament protein vimentin as differentiation marker in preimplantation porcine embryo. Biology of Reproduction, 1995, 52(S1): 177 |  
															| 6 | M JEvans,  E Notarianni,  SLaurie,   R MMoor. N E, Laurie S, Moor R M. Derivation and preliminary characterization of pluripotent cell lines from porcine and bovine blastocysts. Theriogenology, 1990, 33(1): 125–128 https://doi.org/10.1016/0093-691X(90)90603-Q
 |  
															| 7 | J APiedrahita,   G BAnderson,   R HBondurant. On the isolation of embryonic stem cells: comparative behavior of murine, porcine and ovine embryos. Theriogenology, 1990, 34(5): 879–901 https://doi.org/10.1016/0093-691X(90)90559-C
 |  
															| 8 | L RChen,  Y L Shiue,  L Bertolini,  J FMedrano,   R HBonDurant,   G BAnderson. Establishment of pluripotent cell lines from porcine preimplantation embryos. Theriogenology, 1999, 52(2): 195–212 https://doi.org/10.1016/S0093-691X(99)00122-3
 |  
															| 9 | MLi,  W Ma,  YHou,   X FSun,   Q YSun,   W HWang. Improved isolation and culture of embryonic stem cells from Chinese miniature pig. Journal of Reproduction and Development, 2004, 50(2): 237–244 https://doi.org/10.1262/jrd.50.237
 |  
															| 10 | BXue,  Y Li,  YHe,   RWei,  R Sun,  ZYin,   GBou,  Z Liu. Porcine pluripotent stem cells derived from IVF Embryos contribute to chimeric development in vivo. PLoS One, 2016, 11(3): e0151737 https://doi.org/10.1371/journal.pone.0151737
 |  
															| 11 | MLi,  Y H Li,  Y Hou,  X FSun,   QSun,  W H Wang. Isolation and culture of pluripotent cells from in vitro produced porcine embryos. Zygote, 2004, 12(1): 43–48 https://doi.org/10.1017/S0967199404002679
 |  
															| 12 | R MStrojek,  M A Reed,  J L Hoover,  T E Wagner. A method for cultivating morphologically undifferentiated embryonic stem cells from porcine blastocysts. Theriogenology, 1990, 33(4): 901–913 https://doi.org/10.1016/0093-691X(90)90825-E
 |  
															| 13 | LMagnani,  R A Cabot. In vitro and in vivo derived porcine embryos possess similar, but not identical, patterns of Oct4, Nanog, and Sox2 mRNA expression during cleavage development. Molecular Reproduction and Development, 2008, 75(12): 1726–1735 https://doi.org/10.1002/mrd.20915
 |  
															| 14 | T ABrevini,  V Tosetti,  MCrestan,   SAntonini,   FGandolfi. Derivation and characterization of pluripotent cell lines from pig embryos of different origins. Theriogenology, 2007, 67(1): 54–63 https://doi.org/10.1016/j.theriogenology.2006.09.019
 |  
															| 15 | NKirchhof,  J W Carnwath,  E Lemme,  KAnastassiadis,   HScholer,   HNiemann. Expression pattern of Oct-4 in preimplantation embryos of different species. Biology of Reproduction, 2000, 63(6): 1698–1705 https://doi.org/10.1095/biolreprod63.6.1698
 |  
															| 16 | E WKuijk,  L Du Puy,  H TVan Tol,   C HOei,   H PHaagsman,   BColenbrander,   B ARoelen. Differences in early lineage segregation between mammals. Developmental Dynamics, 2008, 237(4): 918–927 https://doi.org/10.1002/dvdy.21480
 |  
															| 17 | IVackova,  A Ungrova,  FLopes. Putative embryonic stem cell lines from pig embryos. Journal of Reproduction and Development, 2007, 53(6): 1137–1149 https://doi.org/10.1262/jrd.19108
 |  
															| 18 | Y LShiue,  J R Yang,  Y J Liao,  T Y Kuo,  C H Liao,  C H Kang,  C Tai,  G BAnderson,   L RChen. Derivation of porcine pluripotent stem cells for biomedical research. Theriogenology, 2016, 86(1): 176–181 https://doi.org/10.1016/j.theriogenology.2016.04.030
 |  
															| 19 | SBao,  F Tang,  XLi,   KHayashi,   AGillich,   KLao,  M A Surani. Epigenetic reversion of post-implantation epiblast to pluripotent embryonic stem cells. Nature, 2009, 461(7268): 1292–1295 https://doi.org/10.1038/nature08534
 |  
															| 20 | MTosolini,  A Jouneau. From naive to primed pluripotency: in vitro conversion of mouse embryonic stem cells in epiblast Stem cells. Methods in Molecular Biology, 2016, 1341: 209–216 https://doi.org/10.1007/7651_2015_208
 |  
															| 21 | YYang,  B Liu,  JXu,   JWang,  J Wu,  CShi,   YXu,  J Dong,  CWang,   WLai,  J Zhu,  LXiong,   DZhu,  X Li,  WYang,   TYamauchi,   ASugawara,   ZLi,  F Sun,  XLi,   CLi,  A He,  YDu,   TWang,  C Zhao,  HLi,   XChi,  H Zhang,  YLiu,   CLi,  S Duo,  MYin,   HShen,  J C Belmonte,  H. Deng Derivation of pluripotent stem cells with in vivo embryonic and extraembryonic potency.  Cell, 2017, 169(2): 243–257 e225 |  
															| 22 | JYang,  D J Ryan,  W Wang,  J CTsang,   GLan,  H Masaki,  XGao,   LAntunes,   YYu,  Z Zhu,  JWang,   A AKolodziejczyk,   L SCampos,   CWang,  F Yang,  ZZhong,   BFu,  M A Eckersley-Maslin,  MWoods,   YTanaka,   XChen,  A C Wilkinson,  J Bussell,  JWhite,   RRamirez-Solis,   WReik,  B Gottgens,  S ATeichmann,   P P LTam,   HNakauchi,   XZou,  L Lu,  PLiu. Establishment of mouse expanded potential stem cells. Nature, 2017, 550(7676): 393–397 https://doi.org/10.1038/nature24052
 |  
															| 23 | T ABrevini,  G Pennarossa,  FGandolfi. No shortcuts to pig embryonic stem cells. Theriogenology, 2010, 74(4): 544–550 https://doi.org/10.1016/j.theriogenology.2010.04.020
 |  
															| 24 | J APiedrahita,   G BAnderson,   R HBondurant. Influence of feeder layer type on the efficiency of isolation of porcine embryo-derived cell lines. Theriogenology, 1990, 34(5): 865–877 https://doi.org/10.1016/0093-691X(90)90558-B
 |  
															| 25 | N CTalbot,  C E Jr Rexroad,  V G Pursel,  A M Powell,  N D Nel. Culturing the epiblast cells of the pig blastocyst. In vitro Cellular & Developmental Biology: Animal, 1993, 29(7): 543–554 https://doi.org/10.1007/BF02634148
 |  
															| 26 | MLi,  D Zhang,  YHou,   LJiao,  X Zheng,  W HWang. Isolation and culture of embryonic stem cells from porcine blastocysts. Molecular Reproduction and Development, 2003, 65(4): 429–434 https://doi.org/10.1002/mrd.10301
 |  
															| 27 | TBrevini,  F Cillo,  FGandolfi. Establishment and molecular characterization of pig parthenogenetic embryonic stem cells. Reproduction, Fertility, and Development, 2005, 17(2): 235 https://doi.org/10.1071/RDv17n2Ab168
 |  
															| 28 | H SKim,  H Y Son,  S Kim,  G SLee,   C HPark,   S KKang,   B CLee,   W SHwang,   C KLee. Isolation and initial culture of porcine inner cell masses derived from in vitro-produced blastocysts. Zygote, 2007, 15(1): 55–63 https://doi.org/10.1017/S0967199406003972
 |  
															| 29 | J KPark,  H S Kim,  K J Uh,  K H Choi,  H M Kim,  T Lee,  B CYang,   H JKim,   H HKa,   HKim,  C K Lee. Primed pluripotent cell lines derived from various embryonic origins and somatic cells in pig. PLoS One, 2013, 8(1): e52481 https://doi.org/10.1371/journal.pone.0052481
 |  
															| 30 | IVassiliev,  S Vassilieva,  L FBeebe,   S MMcIlfatrick,   S JHarrison,   M BNottle. Development of culture conditions for the isolation of pluripotent porcine embryonal outgrowths from in vitro produced and in vivo derived embryos. Journal of Reproduction and Development, 2010, 56(5): 546–551 https://doi.org/10.1262/jrd.09-197A
 |  
															| 31 | JWang,  R Wei,  GBou,   ZLiu. Tbx3 and Nr5 alpha2 improve the viability of porcine induced pluripotent stem cells after dissociation into single cells by inhibiting RHO-ROCK-MLC signaling. Biochemical and Biophysical Research Communications, 2015, 456(3): 743–749 https://doi.org/10.1016/j.bbrc.2014.12.041
 |  
															| 32 | KMoore,  J A Piedrahita. The effects of human leukemia inhibitory factor (hLIF) and culture medium on in vitro differentiation of cultured porcine inner cell mass (pICM). In vitro Cellular & Developmental Biology: Animal, 1997, 33(1): 62–71 https://doi.org/10.1007/s11626-997-0023-4
 |  
															| 33 | SBaek,  N R Han,  J I Yun,  J Y Hwang,  M Kim,  C KPark,   ELee,  S T Lee. Effects of culture dimensions on maintenance of porcine inner cell mass-derived cell self-renewal. Molecules and Cells, 2017, 40(2): 117–122 https://doi.org/10.14348/molcells.2017.2223
 |  
															| 34 | JWang,  Q Gu,  JHao,   YJia,  B Xue,  HJin,   JMa,  R Wei,  THai,   QKong,  G Bou,  PXia,   QZhou,  L Wang,  Z.Liu Tbx3 and Nr5 alpha2 play important roles in pig pluripotent stem cells. Stem Cell Reviews and reports, 2013, 9(5): 700–708 |  
															| 35 | C LKeefer,  D Pant,  LBlomberg,   N CTalbot. Challenges and prospects for the establishment of embryonic stem cell lines of domesticated ungulates. Animal Reproduction Science, 2007, 98(1–2): 147–168 https://doi.org/10.1016/j.anireprosci.2006.10.009
 |  
															| 36 | YMatsui,  K Zsebo,  B LHogan. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell, 1992, 70(5): 841–847 https://doi.org/10.1016/0092-8674(92)90317-6
 |  
															| 37 | IVassiliev,  S Vassilieva,  L F SBeebe,   S JHarrison,   S MMcilfatrick,   M BNottle. In vitro and in vivo characterization of putative porcine embryonic stem cells. Cellular Reprogramming, 2010, 12(2): 223–230 https://doi.org/10.1089/cell.2009.0053
 |  
															| 38 | HShim,  A Gutiérrezadán,  L RChen,   R HBondurant,   EBehboodi,   G BAnderson. Isolation of pluripotent stem cells from cultured porcine primordial germ cells. Theriogenology, 1997, 47(5): 1089–1095 |  
															| 39 | M JShamblott,   JAxelman,   SWang,  E M Bugg,  J W Littlefield,  P J Donovan,  P D Blumenthal,  G R Huggins,  J D Gearhart. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(23): 13726–13731 https://doi.org/10.1073/pnas.95.23.13726
 |  
															| 40 | JHua,  K Sidhu. Recent advances in the derivation of germ cells from the embryonic stem cells. Stem Cells and Development, 2008, 17(3): 399–412 https://doi.org/10.1089/scd.2007.0225
 |  
															| 41 | J APiedrahita,   KMoore,   BOetama,   C KLee,   NScales,   JRamsoondar,   F WBazer,   TOtt. Generation of transgenic porcine chimeras using primordial germ cell-derived colonies. Biology of Reproduction, 1998, 58(5): 1321–1329 https://doi.org/10.1095/biolreprod58.5.1321
 |  
															| 42 | F DWest,  S L Terlouw,  D J Kwon,  J L Mumaw,  S K Dhara,  K Hasneen,  J RDobrinsky,   S LStice. Porcine induced pluripotent stem cells produce chimeric offspring. Stem Cells and Development, 2010, 19(8): 1211–1220 https://doi.org/10.1089/scd.2009.0458
 |  
															| 43 | M THochereau-de Reviers,   CPerreau. In vitro culture of embryonic disc cells from porcine blastocysts. Reproduction, Nutrition, Development, 1993, 33(5): 475–483 https://doi.org/10.1051/rnd:19930508
 |  
															| 44 | PHou,  Y Li,  XZhang,   CLiu,  J Guan,  HLi,   TZhao,  J Ye,  WYang,   KLiu,  J Ge,  JXu,   QZhang,   YZhao,  H Deng. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science, 2013, 341(6146): 651–654 https://doi.org/10.1126/science.1239278
 |  
															| 45 | SHaraguchi,  K Kikuchi,  MNakai,   TTokunaga. Establishment of self-renewing porcine embryonic stem cell-like cells by signal inhibition. Journal of Reproduction and Development, 2012, 58(6): 707–716 https://doi.org/10.1262/jrd.2012-008
 |  
															| 46 | B PTelugu,  T Ezashi,  SSinha,   A PAlexenko,   LSpate,   R SPrather,   R MRoberts. Leukemia inhibitory factor (LIF)-dependent, pluripotent stem cells established from inner cell mass of porcine embryos. Journal of Biological Chemistry, 2011, 286(33): 28948–28953 https://doi.org/10.1074/jbc.M111.229468
 |  
															| 47 | SPetkov,  P Hyttel,  HNiemann. The small molecule inhibitors PD0325091 and CHIR99021 reduce expression of pluripotency-related genes in putative porcine induced pluripotent stem cells. Cellular Reprogramming, 2014, 16(4): 235–240 https://doi.org/10.1089/cell.2014.0010
 |  
															| 48 | HShim,  A Gutiérrez-Adán,  L RChen,   R HBonDurant,   EBehboodi,   G BAnderson. Isolation of pluripotent stem cells from cultured porcine primordial germ cells. Biology of Reproduction, 1997, 57(5): 1089–1095 https://doi.org/10.1095/biolreprod57.5.1089
 |  
															| 49 | SMueller,  K Prelle,  NRieger,   HPetznek,   CLassnig,   ULuksch,   BAigner,   MBaetscher,   EWolf,  M Mueller,  GBrem. Chimeric pigs following blastocyst injection of transgenic porcine primordial germ cells. Molecular Reproduction and Development, 1999, 54(3): 244–254 https://doi.org/10.1002/(SICI)1098-2795(199911)54:3<244::AID-MRD5>3.0.CO;2-5
 |  
															| 50 | J LResnick,  L S Bixler,  L Cheng,  P JDonovan. Long-term proliferation of mouse primordial germ cells in culture. Nature, 1992, 359(6395): 550–551 https://doi.org/10.1038/359550a0
 |  
															| 51 | KBaumann. Stem cells: human primordial germ cells in a dish. Nature Reviews: Molecular Cell Biology, 2015, 16(2): 68 https://doi.org/10.1038/nrm3945
 |  
															| 52 | P ALabosky,  D P Barlow,  B L Hogan. Mouse embryonic germ (EG) cell lines: transmission through the germline and differences in the methylation imprint of insulin-like growth factor 2 receptor (Igf2r) gene compared with embryonic stem (ES) cell lines. Development, 1994, 120(11): 3197–3204 |  
															| 53 | TKimura,  Y Kaga,  YSekita,   KFujikawa,   TNakatani,   MOdamoto,   SFunaki,   MIkawa,   KAbe,  T Nakano. Pluripotent stem cells derived from mouse primordial germ cells by small molecule compounds. Stem Cells, 2015, 33(1): 45–55 https://doi.org/10.1002/stem.1838
 |  
															| 54 | PLópez-Iglesias,   YAlcaina,   NTapia,   DSabour,   M JArauzo-Bravo,   DSainz de la Maza,  EBerra,   A NO’Mara,   MNistal,   SOrtega,   P JDonovan,   H RSchöler,   M PDe Miguel. Hypoxia induces pluripotency in primordial germ cells by HIF1a stabilization and Oct4 deregulation. Antioxidants & Redox Signalling, 2015, 22(3): 205–223 https://doi.org/10.1089/ars.2014.5871
 |  
															| 55 | F ABazley,  C F Liu,  X Yuan,  HHao,   A HAll,   ADe Los Angeles,   E TZambidis,   J DGearhart,   C LKerr. Direct reprogramming of human primordial germ cells into induced pluripotent stem cells: efficient generation of genetically engineered germ cells. Stem Cells and Development, 2015, 24(22): 2634–2648 https://doi.org/10.1089/scd.2015.0100
 |  
															| 56 | KMorohaku,  Y Hirao,  YObata. Differentiation of mouse primordial germ cells into functional oocytes in vitro. Annals of Biomedical Engineering, 2017, 45(7): 1608–1619 https://doi.org/10.1007/s10439-017-1815-7
 |  
															| 57 | XDu,  T Feng,  DYu,   YWu,  H Zou,  SMa,   CFeng,  Y Huang,  HOuyang,   XHu,  D Pan,  NLi,   SWu. Barriers for deriving transgene-free pig iPS cells with episomal vectors. Stem Cells, 2015, 33(11): 3228–3238 https://doi.org/10.1002/stem.2089
 |  
															| 58 | Q SGao,  L Jin,  SLi,   H YZhu,   QGuo,  X C Li,  Q G Jin,  J D Kang,  C G Yan,  X J Yin. Generation of large pig and bovine blastocysts by culturing in human induced pluripotent stem cell medium. Zygote, 2016, 24(2): 236–244 https://doi.org/10.1017/S0967199415000088
 |  
															| 59 | TEzashi,  B P Telugu,  A P Alexenko,  S Sachdev,  SSinha,   R MRoberts. Derivation of induced pluripotent stem cells from pig somatic cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(27): 10993–10998 https://doi.org/10.1073/pnas.0905284106
 |  
															| 60 | YWu,  O Li,  CHe,   YLi,  M Li,  X LLiu,   YWang,  Y He. Generation and characterization of induced pluripotent stem cells from guinea pig fetal fibroblasts. Molecular Medicine Reports, 2017, 15(6): 3690–3698 https://doi.org/10.3892/mmr.2017.6431
 |  
															| 61 | D Gde Rooij,   L DRussell. All you wanted to know about spermatogonia but were afraid to ask. Journal of Andrology, 2000, 21(6): 776–798 |  
															| 62 | M LMeistrich. Effects of chemotherapy and radiotherapy on spermatogenesis. European Urology, 1993, 23(1): 136–142 https://doi.org/10.1159/000474582
 |  
															| 63 | HAbbasi,  S M Hosseini,  M Hajian,  ZNasiri,   MBahadorani,   MTahmoorespur,   M RNasiri,   M HNasr-Esfahani. Lentiviral vector-mediated transduction of goat undifferentiated spermatogonia. Animal Reproduction Science, 2015, 163: 10–17 https://doi.org/10.1016/j.anireprosci.2015.09.002
 |  
															| 64 | MKanatsu-Shinohara,   TShinohara. Spermatogonial stem cell self-renewal and development. Annual Review of Cell and Developmental Biology, 2013, 29(1): 163–187 https://doi.org/10.1146/annurev-cellbio-101512-122353
 |  
															| 65 | JKehler,  E Tolkunova,  BKoschorz,   MPesce,   LGentile,   MBoiani,   HLomeli,   ANagy,  K J McLaughlin,  H R Scholer,  A Tomilin. Oct4 is required for primordial germ cell survival. EMBO Reports, 2004, 5(11): 1078–1083 https://doi.org/10.1038/sj.embor.7400279
 |  
															| 66 | YWu,  L Ouyang,  CHe,   LYong,  L Min,  XLiu,   YWang,  Y He. Generation and characterization of induced pluripotent stem cells from guinea pig fetal fibroblasts. Molecular Medicine Reports, 2017, 15(6): 3690–3698 https://doi.org/10.3892/mmr.2017.6431
 |  
															| 67 | PZhang,  X Chen,  YZheng,   JZhu,  Y Qin,  YLv,   WZeng. Long-term propagation of porcine undifferentiated spermatogonia. Stem Cells and Development, 2017, 26(15): 1121–1131 https://doi.org/10.1089/scd.2017.0018
 |  
															| 68 | IKanatsu-Shinohara,   MK Kanatsu-Shinohara,   KInoue,   JLee,  M Yoshimoto,  NOgonuki,   HMiki,  S Baba,  TKato,   YKazuki,   SToyokuni,   MToyoshima,   ONiwa,  M Oshimura,  THeike,   TNakahata,   FIshino,   AOgura,   TShinohara. Generation of pluripotent stem cells from neonatal mouse testis. Cell, 2004, 119(7): 1001–1012 https://doi.org/10.1016/j.cell.2004.11.011
 |  
															| 69 | NKossack,  J Meneses,  SShefi,   H NNguyen,   SChavez,   CNicholas,   JGromoll,   P JTurek,   R AReijo-Pera. Isolation and characterization of pluripotent human spermatogonial stem cell-derived cells. Stem Cells, 2009, 27(1): 138–149 https://doi.org/10.1634/stemcells.2008-0439
 |  
															| 70 | KGuan,  S Wagner,  BUnsold,   L SMaier,   DKaiser,   BHemmerlein,   KNayernia,   WEngel,   GHasenfuss. Generation of functional cardiomyocytes from adult mouse spermatogonial stem cells. Circulation Research, 2007, 100(11): 1615–1625 https://doi.org/10.1161/01.RES.0000269182.22798.d9
 |  
															| 71 | KGuan,  F Wolf,  ABecker,   WEngel,   KNayernia,   GHasenfuss. Isolation and cultivation of stem cells from adult mouse testes. Nature Protocols, 2009, 4(2): 143–154 https://doi.org/10.1038/nprot.2008.242
 |  
															| 72 | SConrad,  M Renninger,  JHennenlotter,   TWiesner,   LJust,  M Bonin,  WAicher,   H JBuhring,   UMattheus,   AMack,  H J Wagner,  S Minger,  MMatzkies,   MReppel,   JHescheler,   K DSievert,   AStenzl,   TSkutella. Generation of pluripotent stem cells from adult human testis. Nature, 2008, 456(7220): 344–349 https://doi.org/10.1038/nature07404
 |  
															| 73 | QWu,  S Ohsako,  RIshimura,   J SSuzuki,   CTohyama. Exposure of mouse preimplantation embryos to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) alters the methylation status of imprinted genes H19 and Igf2. Biology of Reproduction, 2004, 70(6): 1790–1797 https://doi.org/10.1095/biolreprod.103.025387
 |  
															| 74 | MKanatsu-Shinohara,   KInoue,   JLee,  M Yoshimoto,  NOgonuki,   HMiki,  S Baba,  TKato,   YKazuki,   SToyokuni,   MToyoshima,   ONiwa,  M Oshimura,  THeike,   TNakahata,   FIshino,   AOgura,   TShinohara. Generation of pluripotent stem cells from neonatal mouse testis. Cell, 2004, 119(7): 1001–1012 https://doi.org/10.1016/j.cell.2004.11.011
 |  
															| 75 | HGuo,  B Hu,  LYan,   JYong,  Y Wu,  YGao,   FGuo,  Y Hou,  XFan,   JDong,  X Wang,  XZhu,   JYan,  Y Wei,  HJin,   WZhang,   LWen,  F Tang,  JQiao. DNA methylation and chromatin accessibility profiling of mouse and human fetal germ cells. Cell Research, 2017, 27(2): 165–183 https://doi.org/10.1038/cr.2016.128
 |  
															| 76 | HAzizi,  S Conrad,  UHinz,   BAsgari,   DNanus,   HPeterziel,   AHajizadeh Moghaddam,   HBaharvand,   T. SkutellaDerivation of pluripotent cells from mouse SSCs seems to be age dependent. Stem Cells International, 2016, 2016: 8216312 |  
															| 77 | KKo,  M J Arauzo-Bravo,  J Kim,  MStehling,   H RScholer. Conversion of adult mouse unipotent germline stem cells into pluripotent stem cells. Nature Protocols, 2010, 5(5): 921–928 https://doi.org/10.1038/nprot.2010.44
 |  
															| 78 | KGuan,  K Nayernia,  L SMaier,   SWagner,   RDressel,   J HLee,   JNolte,   FWolf,  M Li,  WEngel,   GHasenfuss. Pluripotency of spermatogonial stem cells from adult mouse testis. Nature, 2006, 440(7088): 1199–1203 https://doi.org/10.1038/nature04697
 |  
															| 79 | GBilousova,  D R Roop. Generation of functional multipotent keratinocytes from mouse induced pluripotent stem cells. Methods in Molecular Biology, 2013, 961: 337–350 https://doi.org/10.1007/978-1-62703-227-8_22
 |  
															| 80 | S FMoraveji,  F Attari,  AShahverdi,   HSepehri,   AFarrokhi,   S NHassani,   HFonoudi,   NAghdami,   HBaharvand. Inhibition of glycogen synthase kinase-3 promotes efficient derivation of pluripotent stem cells from neonatal mouse testis. Human Reproduction, 2012, 27(8): 2312–2324 https://doi.org/10.1093/humrep/des204
 |  
															| 81 | F JShen,  C Zhang,  S XYang,   Y HXiong,   W BLiao,   X JDu,   L LWang. Long-term culture and identification of spermatogonial stem cells from BALB/c mice in vitro. National Journal of Andrology, 2008, 14(11): 977–981 |  
															| 82 | MKanatsu-Shinohara,   NOgonuki,   KInoue,   HMiki,  A Ogura,  SToyokuni,   TShinohara. Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biology of Reproduction, 2003, 69(2): 612–616 https://doi.org/10.1095/biolreprod.103.017012
 |  
															| 83 | CZhang,  J Wu. Production of offspring from a germline stem cell line derived from prepubertal ovaries of germline reporter mice. Molecular Human Reproduction, 2016, 22(7): 457–464 https://doi.org/10.1093/molehr/gaw030
 |  
															| 84 | KZou,  L Hou,  KSun,   WXie,  J Wu. Improved efficiency of female germline stem cell purification using fragilis-based magnetic bead sorting. Stem Cells and Development, 2011, 20(12): 2197–2204 https://doi.org/10.1089/scd.2011.0091
 |  
															| 85 | HWang,  M Jiang,  HBi,   XChen,  L He,  XLi,   JWu. Conversion of female germline stem cells from neonatal and prepubertal mice into pluripotent stem cells. Journal of Molecular Cell Biology, 2014, 6(2): 164–171 https://doi.org/10.1093/jmcb/mju004
 |  
															| 86 | KTakahashi,  S Yamanaka. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4): 663–676 https://doi.org/10.1016/j.cell.2006.07.024
 |  
															| 87 | TEzashi,  B P Telugu,  R M Roberts. Induced pluripotent stem cells from pigs and other ungulate species: an alternative to embryonic stem cells? Reproduction in Domestic Animals, 2012, 47(Suppl 4): 92–97 https://doi.org/10.1111/j.1439-0531.2012.02061.x
 |  
															| 88 | KOkita,  S Yamanaka. Induced pluripotent stem cells: opportunities and challenges. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 2011, 366(1575): 2198–2207 |  
															| 89 | X YZhao,  W Li,  ZLv,   LLiu,  M Tong,  THai,   JHao,  C Guo,  QMa,   LWang,  F Zeng,  QZhou. iPS cells produce viable mice through tetraploid complementation. Nature, 2009, 461(7260): 86–90 https://doi.org/10.1038/nature08267
 |  
															| 90 | JLiu,  D Balehosur,  BMurray,   J MKelly,   HSumer,   P JVerma. Generation and characterization of reprogrammed sheep induced pluripotent stem cells. Theriogenology, 2012, 77(2): 338–346 e331 |  
															| 91 | LBao,  L He,  JChen,   ZWu,  J Liao,  LRao,   JRen,  H Li,  HZhu,   LQian,  Y Gu,  HDai,   XXu,  J Zhou,  WWang,   CCui,  L Xiao. Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors. Cell Research, 2011, 21(4): 600–608 https://doi.org/10.1038/cr.2011.6
 |  
															| 92 | NMontserrat,  L De Oñate,  EGarreta,   FGonzãlez,   AAdamo,   CEguizãbal,   SHäfner,   RVassena,   J C IBelmonte. Generation of feeder-free pig induced pluripotent stem cells without Pou5f1. Cell Transplantation, 2012, 21(5): 815–825 https://doi.org/10.3727/096368911X601019
 |  
															| 93 | M AEsteban,  M Peng,  ZDeli,   JCai,  J Yang,  JXu,   LLai,  D Pei. Porcine induced pluripotent stem cells may bridge the gap between mouse and human iPS. IUBMB Life, 2010, 62(4): 277–282 |  
															| 94 | XHan,  J Han,  FDing,   SCao,  S S Lim,  Y Dai,  RZhang,   YZhang,   BLim,  N Li. Generation of induced pluripotent stem cells from bovine embryonic fibroblast cells. Cell Research, 2011, 21(10): 1509–1512 https://doi.org/10.1038/cr.2011.125
 |  
															| 95 | BHuang,  T Li,  LAlonso-Gonzalez,   RGorre,   SKeatley,   AGreen,   PTurner,   P KKallingappa,   VVerma,   BOback. A virus-free poly-promoter vector induces pluripotency in quiescent bovine cells under chemically defined conditions of dual kinase inhibition. PLoS One, 2011, 6(9): e24501 https://doi.org/10.1371/journal.pone.0024501
 |  
															| 96 | ZSong,  J Cai,  YLiu,   DZhao,  J Yong,  SDuo,   XSong,  Y Guo,  YZhao,   HQin,  X Yin,  CWu,   JChe,  S Lu,  MDing,   HDeng. Efficient generation of hepatocyte-like cells from human induced pluripotent stem cells. Cell Research, 2009, 19(11): 1233–1242 https://doi.org/10.1038/cr.2009.107
 |  
															| 97 | S HFujishiro,   KNakano,   YMizukami,   TAzami,   YArai,  H Matsunari,  RIshino,   TNishimura,   MWatanabe,   TAbe,  Y Furukawa,  KUmeyama,   SYamanaka,   MEma,  H Nagashima,  YHanazono. Generation of naive-like porcine-induced pluripotent stem cells capable of contributing to embryonic and fetal development. Stem Cells and Development, 2013, 22(3): 473–482 https://doi.org/10.1089/scd.2012.0173
 |  
															| 98 | F DWest,  E W Uhl,  Y Liu,  HStowe,   YLu,  P Yu,  AGallegos-Cardenas,  S LPratt,   S LStice. Brief report: chimeric pigs produced from induced pluripotent stem cells demonstrate germline transmission and no evidence of tumor formation in young pigs. Stem Cells, 2011, 29(10): 1640–1643 https://doi.org/10.1002/stem.713
 |  
															| 99 | TZhao,  Z N Zhang,  Z Rong,  YXu. Immunogenicity of induced pluripotent stem cells. Nature, 2011, 474(7350): 212–215 https://doi.org/10.1038/nature10135
 |  
															| 100 | KOkita,  T Ichisaka,  SYamanaka. Generation of germline-competent induced pluripotent stem cells. Nature, 2007, 448(7151): 313–317 https://doi.org/10.1038/nature05934
 |  
															| 101 | I HPark,  N Arora,  HHuo,   NMaherali,   TAhfeldt,   AShimamura,   M WLensch,   CCowan,   KHochedlinger,   G QDaley. Disease-specific induced pluripotent stem cells. Cell, 2008, 134(5): 877–886 https://doi.org/10.1016/j.cell.2008.07.041
 |  
															| 102 | MWernig,  A Meissner,  RForeman,   TBrambrink,   MKu,  K Hochedlinger,  B EBernstein,   RJaenisch. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 2007, 448(7151): 318–324 https://doi.org/10.1038/nature05944
 |  
															| 103 | TBrambrink,  R Foreman,  G GWelstead,   C JLengner,   MWernig,   HSuh,  R Jaenisch. Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell, 2008, 2(2): 151–159 https://doi.org/10.1016/j.stem.2008.01.004
 |  
															| 104 | KOkita,  M Nakagawa,  HHyenjong,   TIchisaka,   SYamanaka. Generation of mouse induced pluripotent stem cells without viral vectors. Science, 2008, 322(5903): 949–953 https://doi.org/10.1126/science.1164270
 |  
															| 105 | JYu,  K Hu,  KSmuga-Otto,   STian,  R Stewart,  I ISlukvin,   J AThomson. Human induced pluripotent stem cells free of vector and transgene sequences. Science, 2009, 324(5928): 797–801 https://doi.org/10.1126/science.1172482
 |  
															| 106 | HZhou,  S Wu,  J YJoo,   SZhu,  D W Han,  T Lin,  STrauger,   GBien,  S Yao,  YZhu,   GSiuzdak,   H RScholer,   LDuan,  S Ding. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell, 2009, 4(5): 381–384 https://doi.org/10.1016/j.stem.2009.04.005
 |  
															| 107 | DKim,  C H Kim,  J I Moon,  Y G Chung,  M Y Chang,  B S Han,  S Ko,  EYang,   K YCha,   RLanza,   K SKim. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell, 2009, 4(6): 472–476 https://doi.org/10.1016/j.stem.2009.05.005
 |  
															| 108 | XLi,  D Liu,  YMa,   XDu,  J Jing,  LWang,   BXie,  D Sun,  SSun,   XJin,  X Zhang,  TZhao,   JGuan,  Z Yi,  WLai,   PZheng,   ZHuang,   YChang,   ZChai,  J Xu,  H.Deng Direct reprogramming of fibroblasts via a chemically induced XEN-like state. Cell Stem Cell, 2017, 21(2): 264–273 |  
															| 109 | YZhao,  T Zhao,  JGuan,   XZhang,   YFu,  J Ye,  JZhu,   GMeng,  J Ge,  SYang,   LCheng,   YDu,  C Zhao,  TWang,   LSu,  W Yang,  HDeng. A XEN-like state bridges somatic cells to pluripotency during chemical reprogramming. Cell, 2015, 163(7): 1678–1691 https://doi.org/10.1016/j.cell.2015.11.017
 |  
															| 110 | PLiu,  M Chen,  YLiu,   L SQi,   S. DingCRISPR-based chromatin remodeling of the endogenous Oct4 or Sox2 locus enables reprogramming to pluripotency. Cell Stem Cell, 2018, 22(2): 252–261 |  
															| 111 | YLiu,  Y Ma,  J YYang,   DCheng,   XLiu,  X Ma,  F DWest,   HWang. Comparative gene expression signature of pig, human and mouse induced pluripotent stem cell lines reveals insight into pig pluripotency gene networks. Stem Cell Reviews and Reports, 2014, 10(2): 162–176 https://doi.org/10.1007/s12015-013-9485-9
 |  
															| 112 | DCheng,  Y Guo,  ZLi,   YLiu,  X Gao,  YGao,   XCheng,   JHu,  H Wang. Porcine induced pluripotent stem cells require LIF and maintain their developmental potential in early stage of embryos. PLoS One, 2012, 7(12): e51778 https://doi.org/10.1371/journal.pone.0051778
 |  
															| 113 | V JHall,  J Christensen,  YGao,   M HSchmidt,   PHyttel. Porcine pluripotency cell signaling develops from the inner cell mass to the epiblast during early development. Developmental Dynamics, 2009, 238(8): 2014–2024 https://doi.org/10.1002/dvdy.22027
 |  
															| 114 | IVassiliev,  S Vassilieva,  L FBeebe,   S JHarrison,   S MMcIlfatrick,   M BNottle. In vitro and in vivo characterization of putative porcine embryonic stem cells. Cellular Reprogramming, 2010, 12(2): 223–230 https://doi.org/10.1089/cell.2009.0053
 |  
															| 115 | IVackova,  Z Novakova,  VKrylov,   KOkada,   TKott,  H Fulka,  JMotlik. Analysis of marker expression in porcine cell lines derived from blastocysts produced in vitro and in vivo. Journal of Reproduction and Development, 2011, 57(5): 594–603 https://doi.org/10.1262/jrd.10-184H
 |  
															| 116 | Lu Puy,  S M Chuva de Sousa Lopes,  H P Haagsman,  B A J Roelen. Analysis of co-expression of OCT4, NANOG and SOX2 in pluripotent cells of the porcine embryo, in vivo and in vitro. Theriogenology, 2011, 75(3): 513–526 https://doi.org/10.1016/j.theriogenology.2010.09.019
 |  
															| 117 | RAlberio,  N Croxall,  CAllegrucci. Pig epiblast stem cells depend on activin/nodal signaling for pluripotency and self-renewal. Stem Cells and Development, 2010, 19(10): 1627–1636 https://doi.org/10.1089/scd.2010.0012
 |  
															| 118 | SKim,  J H Kim,  E Lee,  Y WJeong,   M SHossein,   S MPark,   S WPark,   J YLee,   Y IJeong,   H SKim,   Y WKim,   S HHyun,   W SHwang. Establishment and characterization of embryonic stem-like cells from porcine somatic cell nuclear transfer blastocysts. Zygote, 2010, 18(2): 93–101 https://doi.org/10.1017/S0967199409990372
 |  
															| 119 | IVassiliev,  S Vassilieva,  K PTruong,   L FBeebe,   S MMcIlfatrick,   S JHarrison,   M BNottle. Isolation and in vitro characterization of putative porcine embryonic stem cells from cloned embryos treated with trichostatin A. Cellular Reprogramming, 2011, 13(3): 205–213 https://doi.org/10.1089/cell.2010.0102
 |  
															| 120 | S KJung,  H J Kim,  C L Kim,  J H Lee,  J Y You,  E S Lee,  J M Lim,  S J Yun,  J Y Song,  S H Cha. Enhancing effects of serum-rich and cytokine-supplemented culture conditions on developing blastocysts and deriving porcine parthenogenetic embryonic stem cells. Journal of Veterinary Science, 2014, 15(4): 519–528 https://doi.org/10.4142/jvs.2014.15.4.519
 |  
															| 121 | CSiriboon,  Y H Lin,  M Kere,  C DChen,   L RChen,   C HChen,   C FTu,   N WLo,   J CJu. Putative porcine embryonic stem cell lines derived from aggregated four-celled cloned embryos produced by oocyte bisection cloning. PLoS One, 2015, 10(2): e0118165 https://doi.org/10.1371/journal.pone.0118165
 |  
															| 122 | D KLee,  C H Park,  K H Choi,  Y I Jeong,  K J Uh,  J Y Hwang,  S G Lee,  C K Lee. Aggregation of cloned embryos in empty zona pellucida improves derivation efficiency of pig ES-like cells. Zygote, 2016, 24(6): 909–917 https://doi.org/10.1017/S0967199416000241
 |  
															| 123 | J RYang,  Y L Shiue,  C H Liao,  S Z Lin,  L R Chen. Establishment and characterization of novel porcine embryonic stem cell lines expressing hrGFP. Cloning and Stem Cells, 2009, 11(2): 235–244 https://doi.org/10.1089/clo.2008.0050
 |  
															| 124 | EKim,  S U Hwang,  H Yoo,  J DYoon,   YJeon,  H Kim,  E BJeung,   C KLee,   S HHyun. Putative embryonic stem cells derived from porcine cloned blastocysts using induced pluripotent stem cells as donors. Theriogenology, 2016, 85(4): 601–616 https://doi.org/10.1016/j.theriogenology.2015.09.051
 |  
															| 125 | GTan,  L Ren,  YHuang,   XTang,  Y Zhou,  DLi,   HSong,  H Ouyang,  DPang. Isolation and culture of embryonic stem-like cells from pig nuclear transfer blastocysts of different days. Zygote, 2012, 20(4): 347–352 https://doi.org/10.1017/S096719941100030X
 |  
															| 126 | QGu,  J Hao,  THai,   JWang,  Y Jia,  QKong,   CFeng,  B Xue,  BXie,   SLiu,  J Li,  YHe,   JSun,  L Liu,  LWang,   ZLiu,  Q Zhou. Efficient generation of mouse ESCs-like pig induced pluripotent stem cells. Protein & Cell, 2014, 5(5): 338–342 https://doi.org/10.1007/s13238-014-0043-2
 |  
															| 127 | M AEsteban,  J Xu,  JYang,   MPeng,  D Qin,  WLi,   ZJiang,   JChen,  K Deng,  MZhong,   JCai,  L Lai,  DPei. Generation of induced pluripotent stem cell lines from Tibetan miniature pig. Journal of Biological Chemistry, 2009, 284(26): 17634–17640 https://doi.org/10.1074/jbc.M109.008938
 |  
															| 128 | SPetkov,  S Glage,  MNowak-Imialek,   HNiemann. Long-term culture of porcine induced pluripotent stem-like cells under feeder-free conditions in the presence of histone deacetylase inhibitors. Stem Cells and Development, 2016, 25(5): 386–394 https://doi.org/10.1089/scd.2015.0317
 |  
															| 129 | K MPark,  J Lee,  K HHussein,   S HHong,   S RYang,   ELee,  H M Woo. Generation of liver-specific TGF-alpha/c-Myc-overexpressing porcine induced pluripotent stem-like cells and blastocyst formation using nuclear transfer. Journal of Veterinary Medical Science, 2016, 78(4): 709–713 https://doi.org/10.1292/jvms.15-0363
 |  
															| 130 | WZhang,  Y Pei,  LZhong,   BWen,  S Cao,  JHan. Pluripotent and metabolic features of two types of porcine iPSCs derived from defined mouse and human ES cell culture conditions. PLoS One, 2015, 10(4): e0124562 https://doi.org/10.1371/journal.pone.0124562
 |  
															| 131 | YLiu,  J Y Yang,  Y Lu,  PYu,   C RDove,   J MHutcheson,   J LMumaw,   S LStice,   F DWest. alpha-1,3-Galactosyltransferase knockout pig induced pluripotent stem cells: a cell source for the production of xenotransplant pigs. Cellular Reprogramming, 2013, 15(2): 107–116 |  
															| 132 | H TBui,  D N Kwon,  M H Kang,  M H Oh,  M R Park,  W J Park,  S S Paik,  N Van Thuan,  J HKim. Epigenetic reprogramming in somatic cells induced by extract from germinal vesicle stage pig oocytes. Development, 2012, 139(23): 4330–4340 https://doi.org/10.1242/dev.086116
 |  
															| 133 | D JKwon,  H Jeon,  K BOh,   S AOck,   G SIm,   S SLee,   S KIm,   J WLee,   S JOh,   J KPark,   SHwang. Generation of leukemia inhibitory factor-dependent induced pluripotent stem cells from the Massachusetts General Hospital miniature pig. BioMed research international, 2013, 2013: 140639 |  
															| 134 | Nontserrat,  E G Bahima,  L Batlle,  SHäfner,   A M CRodrigues,   FGonzález,   J C IBelmonte. Generation of pig iPS cells: a model for cell therapy. Journal of Cardiovascular Translational Research, 2011, 4(2): 121–130 https://doi.org/10.1007/s12265-010-9233-3
 |  
															| 135 | K MPark,  S H Cha,  C Ahn,  H MWoo. Generation of porcine induced pluripotent stem cells and evaluation of their major histocompatibility complex protein expression in vitro. Veterinary Research Communications, 2013, 37(4): 293–301 https://doi.org/10.1007/s11259-013-9574-x
 |  
															| 136 | ZWu,  J Chen,  JRen,   LBao,  J Liao,  CCui,   LRao,  H Li,  YGu,   HDai,  H Zhu,  XTeng,   LCheng,   LXiao. Generation of pig induced pluripotent stem cells with a drug-inducible system. Journal of Molecular Cell Biology, 2009, 1(1): 46–54 https://doi.org/10.1093/jmcb/mjp003
 |  
															| 137 | YZhang,  C Wei,  PZhang,   XLi,  T Liu,  YPu,   YLi,  Z Cao,  HCao,   YLiu,  X Zhang,  YZhang. Efficient reprogramming of naive-like induced pluripotent stem cells from porcine adipose-derived stem cells with a feeder-independent and serum-free system. PLoS One, 2014, 9(1): e85089 https://doi.org/10.1371/journal.pone.0085089
 |  
															| 138 | MGu,  P K Nguyen,  A S Lee,  D Xu,  SHu,   J RPlews,   LHan,  B C Huber,  W H Lee,  Y Gong,  P Ede Almeida,   JLyons,   FIkeno,   CPacharinsak,   A JConnolly,   S SGambhir,   R CRobbins,   M TLongaker,   J CWu. Microfluidic single-cell analysis shows that porcine induced pluripotent stem cell-derived endothelial cells improve myocardial function by paracrine activation. Circulation Research, 2012, 111(7): 882–893 https://doi.org/10.1161/CIRCRESAHA.112.269001
 |  
															| 139 | ACongras,  H Barasc,  KCanale-Tabet,   FPlisson-Petit,   CDelcros,   OFeraud,   NOudrhiri,   EHadadi,   FGriscelli,   ABennaceur-Griscelli,   ATurhan,   MAfanassieff,   SFerchaud,   APinton,   MYerle-Bouissou,   HAcloque. Non integrative strategy decreases chromosome instability and improves endogenous pluripotency genes reactivation in porcine induced pluripotent-like stem cells. Scientific Reports, 2016, 6(1): 27059 https://doi.org/10.1038/srep27059
 |  
															| 140 | J YYang,  J L Mumaw,  Y Liu,  S LStice,   F DWest. SSEA4-positive pig induced pluripotent stem cells are primed for differentiation into neural cells. Cell Transplantation, 2013, 22(6): 945–959 https://doi.org/10.3727/096368912X657279
 |  
															| 141 | S GPetkov,  G B Anderson. Culture of porcine embryonic germ cells in serum-supplemented and serum-free conditions: the effects of serum and growth factors on primary and long-term culture. Cloning and Stem Cells, 2008, 10(2): 263–276 https://doi.org/10.1089/clo.2007.0085
 |  
															| 142 | C KLee,  J A Piedrahita. Effects of growth factors and feeder cells on porcine primordial germ cells in vitro. Cloning, 2000, 2(4): 197–205 https://doi.org/10.1089/152045500454753
 |  
															| 143 | S GPetkov,  H Marks,  TKlein,   R SGarcia,   YGao,  H Stunnenberg,  PHyttel. In vitro culture and characterization of putative porcine embryonic germ cells derived from domestic breeds and Yucatan mini pig embryos at Days 20–24 of gestation. Stem Cell Research, 2011, 6(3): 226–237 https://doi.org/10.1016/j.scr.2011.01.003
 |  
															| 144 | RRui,  H Shim,  A LMoyer,   D LAnderson,   C TPenedo,   J DRowe,   R HBonDurant,   G BAnderson. Attempts to enhance production of porcine chimeras from embryonic germ cells and preimplantation embryos. Theriogenology, 2004, 61(7–8): 1225–1235 https://doi.org/10.1016/j.theriogenology.2003.06.007
 |  
															| 145 | H CTsung,  Z W Du,  R Rui,  X LLi,   L PBao,   JWu,  S M Bao,  Z Yao. The culture and establishment of embryonic germ (EG) cell lines from Chinese mini swine. Cell Research, 2003, 13(3): 195–202 https://doi.org/10.1038/sj.cr.7290164
 |  
															| 146 | GDurcova-Hills,  K Prelle,  SMuller,   MStojkovic,   JMotlik,   EWolf,  G Brem. Primary culture of porcine PGCs requires LIF and porcine membrane-bound stem cell factor. Zygote, 1998, 6(3): 271–275 https://doi.org/10.1017/S0967199498000215
 |  
															| 147 | W AKues,  D Herrmann,  BBarg-Kues,   SHaridoss,   MNowak-Imialek,   TBuchholz,   MStreeck,   AGrebe,   IGrabundzija,   SMerkert,   UMartin,   V JHall,   M ARasmussen,   ZIvics,   PHyttel,   HNiemann. Derivation and characterization of sleeping beauty transposon-mediated porcine induced pluripotent stem cells. Stem Cells and Development, 2013, 22(1): 124–135 https://doi.org/10.1089/scd.2012.0382
 |  
															| 148 | XLi,  Z Y Shan,  Y S Wu,  X H Shen,  C J Liu,  J L Shen,  Z H Liu,  L Lei. Generation of neural progenitors from induced Bama miniature pig pluripotent cells. Reproduction, 2014, 147(1): 65–72 https://doi.org/10.1530/REP-13-0196
 |  
															| 149 | MVejlsted,  Y Du,  GVajta,   PMaddox-Hyttel. Post-hatching development of the porcine and bovine embryo–defining criteria for expected development in vivo and in vitro. Theriogenology, 2006, 65(1): 153–165 https://doi.org/10.1016/j.theriogenology.2005.09.021
 |  
															| 150 | GBou,  S Liu,  MSun,   JZhu,  B Xue,  JGuo,   YZhao,  B Qu,  XWeng,   YWei,  L Lei,  ZLiu. CDX2 is essential for cell proliferation and polarity in porcine blastocysts. Development, 2017, 144(7): 1296–1306 https://doi.org/10.1242/dev.141085
 |  
															| 151 | NMaherali,  K Hochedlinger. Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell, 2008, 3(6): 595–605 https://doi.org/10.1016/j.stem.2008.11.008
 |  
															| 152 | V JHall,  J V Jacobsen,  M A Rasmussen,  P Hyttel. Ultrastructural and molecular distinctions between the porcine inner cell mass and epiblast reveal unique pluripotent cell states. Developmental Dynamics, 2010, 239(11): 2911–2920 https://doi.org/10.1002/dvdy.22424
 |  
															| 153 | V JHall,  P Hyttel. Breaking down pluripotency in the porcine embryo reveals both a premature and reticent stem cell state in the inner cell mass and unique expression profiles of the naive and primed stem cell states. Stem Cells and Development, 2014, 23(17): 2030–2045 https://doi.org/10.1089/scd.2013.0502
 |  
															| 154 | FWianny,  C Perreau,  M T Hochereau de Reviers. Proliferation and differentiation of porcine inner cell mass and epiblast in vitro. Biology of Reproduction, 1997, 57(4): 756–764 https://doi.org/10.1095/biolreprod57.4.756
 |  
															| 155 | JNichols,  A Smith. Naive and primed pluripotent states. Cell Stem Cell, 2009, 4(6): 487–492 https://doi.org/10.1016/j.stem.2009.05.015
 |  
															| 156 | C HPark,  K J Uh,  B P Mulligan,  E B Jeung,  S H Hyun,  T Shin,  HKa,   C KLee. Analysis of imprinted gene expression in normal fertilized and uniparental preimplantation porcine embryos. PLoS One, 2011, 6(7): e22216 https://doi.org/10.1371/journal.pone.0022216
 |  
															| 157 | J YHwang,  J N Oh,  C H Park,  D K Lee,  C K Lee. Dosage compensation of X-chromosome inactivation center-linked genes in porcine preimplantation embryos: non-chromosome-wide initiation of X-chromosome inactivation in blastocysts. Mechanisms of Development, 2015, 138(Pt 3): 246–255 https://doi.org/10.1016/j.mod.2015.10.005
 |  
															| 158 | X YZhao,  W Li,  ZLv,   LLiu,  M Tong,  THai,   JHao,  C L Guo,  Q W Ma,  L Wang,  FZeng,   QZhou. iPS cells produce viable mice through tetraploid complementation. Nature, 2009, 461(7260): 86–90 https://doi.org/10.1038/nature08267
 |  
															| 159 | LKang,  J Wang,  YZhang,   ZKou,  S Gao. iPS cells can support full-term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell, 2009, 5(2): 135–138 https://doi.org/10.1016/j.stem.2009.07.001
 |  
															| 160 | R NAravalli,  E N Cressman,  C J Steer. Hepatic differentiation of porcine induced pluripotent stem cells in vitro. Veterinary Journal, 2012, 194(3): 369–374 https://doi.org/10.1016/j.tvjl.2012.05.013
 |  
															| 161 | YZhao,  X Yin,  HQin,   FZhu,  H Liu,  WYang,   QZhang,   CXiang,   PHou,  Z Song,  YLiu,   JYong,  P Zhang,  JCai,   MLiu,  H Li,  YLi,   XQu,  K Cui,  WZhang,   TXiang,   YWu,  Y Zhao,  CLiu,   CYu,  K Yuan,  JLou,   MDing,  H Deng. Two supporting factors greatly improve the efficiency of human iPSC generation. Cell Stem Cell, 2008, 3(5): 475–479 https://doi.org/10.1016/j.stem.2008.10.002
 |  
															| 162 | SCong,  G Cao,  DLiu. Effects of different feeder layers on culture of bovine embryonic stem cell-like cells in vitro. Cytotechnology, 2014, 66(6): 995–1005 https://doi.org/10.1007/s10616-013-9653-4
 |  
															| 163 | VVerma,  B Huang,  P KKallingappa,   BOback. Dual kinase inhibition promotes pluripotency in finite bovine embryonic cell lines. Stem Cells and Development, 2013, 22(11): 1728–1742 https://doi.org/10.1089/scd.2012.0481
 |  
															| 164 | YGao,  Y Guo,  ADuan,   DCheng,   SZhang,   HWang. Optimization of culture conditions for maintaining porcine induced pluripotent stem cells. DNA and Cell Biology, 2014, 33(1): 1–11 https://doi.org/10.1089/dna.2013.2095
 |  
															| 165 | T RTalluri,  D Kumar,  SGlage,   WGarrels,   ZIvics,   KDebowski,   RBehr,  H Niemann,  W AKues. Derivation and characterization of bovine induced pluripotent stem cells by transposon-mediated reprogramming. Cellular Reprogramming, 2015, 17(2): 131–140 https://doi.org/10.1089/cell.2014.0080
 |  
															| 166 | RFang,  K Liu,  YZhao,   HLi,  D Zhu,  YDu,   CXiang,   XLi,  H Liu,  ZMiao,   XZhang,   YShi,  W Yang,  JXu,   HDeng. Generation of naive induced pluripotent stem cells from rhesus monkey fibroblasts. Cell Stem Cell, 2014, 15(4): 488–497 https://doi.org/10.1016/j.stem.2014.09.004
 |  
															| 167 | WZhang,  H Wang,  SZhang,   LZhong,   YWang,  Y Pei,  JHan,   SCao. Lipid supplement in the cultural condition facilitates the porcine iPSC derivation through cAMP/PKA/CREB signal pathway. International Journal of Molecular Sciences, 2018, 19(2): 509–515 https://doi.org/10.3390/ijms19020509
 |  
															| 168 | MMuñoz,  B Trigal,  IMolina,   CDiez,  J N Caamano,  E Gomez. Constraints to progress in embryonic stem cells from domestic species. Stem Cell Reviews and Reports, 2009, 5(1): 6–9 https://doi.org/10.1007/s12015-009-9052-6
 |  
															| 169 | T ABrevini,  S Antonini,  FCillo,   MCrestan,   FGandolfi. Porcine embryonic stem cells: facts, challenges and hopes. Theriogenology, 2007, 68(S1): S206–S213 https://doi.org/10.1016/j.theriogenology.2007.05.043
 |  
															| 170 | B PTelugu,  T Ezashi,  R MRoberts. The promise of stem cell research in pigs and other ungulate species. Stem Cell Reviews and Reports, 2010, 6(1): 31–41 https://doi.org/10.1007/s12015-009-9101-1
 |  
															| 171 | LYang,  M Guell,  DNiu,   HGeorge,   ELesha,   DGrishin,   JAach,  E Shrock,  WXu,   JPoci,  R Cortazio,  R AWilkinson,   J AFishman,   GChurch. Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science, 2015, 350(6264): 1101–1104 https://doi.org/10.1126/science.aad1191
 |  
															| 172 | LZhou,  W Wang,  YLiu,   J Fde Castro,   TEzashi,   B P V LTelugu,   R MRoberts,   H JKaplan,   D CDean. Differentiation of induced pluripotent stem cells of swine into rod photoreceptors and their integration into the retina. Stem Cells, 2011, 29(6): 972–980 https://doi.org/10.1002/stem.637
 |  
															| 173 | XLi,  F Zhang,  GSong,   WGu,  M Chen,  BYang,   DLi,  D Wang,  KCao. Intramyocardial injection of pig pluripotent stem cells improves left ventricular function and perfusion: a study in a porcine model of acute myocardial infarction. PLoS One, 2013, 8(6): e66688 https://doi.org/10.1371/journal.pone.0066688
 |  
															| 174 | YAo,  J D Mich-Basso,  B Lin,  LYang. High efficient differentiation of functional hepatocytes from porcine induced pluripotent stem cells. PLoS One, 2014, 9(6): e100417 https://doi.org/10.1371/journal.pone.0100417
 |  
															| 175 | H JSchuurman,   R NPierson. Progress towards clinical xenotransplantation. Frontiers in Bioscience-Landmark, 2008, 13(13): 204–220 https://doi.org/10.2741/2671
 |  
															| 176 | TFujimura,  Y Takahagi,  TShigehisa,   HNagashima,   SMiyagawa,   RShirakura,   HMurakami. Production of alpha 1,3-galactosyltransferase gene-deficient pigs by somatic cell nuclear transfer: a novel selection method for gal alpha 1,3-Gal antigen-deficient cells. Molecular Reproduction and Development, 2008, 75(9): 1372–1378 https://doi.org/10.1002/mrd.20890
 |  
															| 177 | J APiedrahita,   NOlby. Perspectives on transgenic livestock in agriculture and biomedicine: an update. Reproduction, Fertility, and Development, 2011, 23(1): 56–63 https://doi.org/10.1071/RD10246
 |  
															| 178 | NFan,  J Chen,  ZShang,   HDou,  G Ji,  QZou,   LWu,  L He,  FWang,   KLiu,  N Liu,  JHan,   QZhou,  D Pan,  DYang,   BZhao,  Z Ouyang,  ZLiu,   YZhao,  L Lin,  CZhong,   QWang,  S Wang,  YXu,   JLuan,  Y Liang,  ZYang,   JLi,  C Lu,  GVajta,   ZLi,  H Ouyang,  HWang,   YWang,  Y Yang,  ZLiu,   HWei,  Z Luan,  M AEsteban,   HDeng,  H Yang,  DPei,   NLi,  G Pei,  LLiu,   YDu,  L Xiao,  LLai. Piglets cloned from induced pluripotent stem cells. Cell Research, 2013, 23(1): 162–166 https://doi.org/10.1038/cr.2012.176
 |  
															| 179 | L ABlomberg,  B P Telugu. Twenty years of embryonic stem cell research in farm animals. Reproduction in Domestic Animals, 2012, 47(S4): 80–85 https://doi.org/10.1111/j.1439-0531.2012.02059.x
 |  
															| 180 | M AHandel,  J J Eppig,  J C Schimenti. Applying “gold standards” to in-vitro-derived germ cells. Cell, 2014, 157(6): 1257–1261 https://doi.org/10.1016/j.cell.2014.05.019
 |  
															| 181 | H TBui,  N Van Thuan,  D NKwon,   Y JChoi,   M HKang,   J WHan,   TKim,  J H Kim. Identification and characterization of putative stem cells in the adult pig ovary. Development, 2014, 141(11): 2235–2244 https://doi.org/10.1242/dev.104554
 |  
															| 182 | J MHickey,  T Chiurugwi,  IMackay,   WPowell,   J MHickey,   TChiurugwi,   IMackay,   WPowell,   AEggen,   AKilian,   CJones,   CCanales,   DGrattapaglia,   FBassi,   GAtlin,   GGorjanc,   IDawson,   IRabbi,   J MRibaut,   JRutkoski,   JBenzie,   JLightner,   JMwacharo,   JParmentier,   KRobbins,   LSkot,  M Wolfe,  MRouard,   MClark,   PAmer,  P Gardiner,  PHendre,   RMrode,   SSivasankar,   SRasmussen,   SGroh,  V Jackson,  WThomas,   YBeyene. Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery. Nature Genetics, 2017, 49(9): 1297–1303 https://doi.org/10.1038/ng.3920
 |  
															| 183 | YZhang,  J Ma,  HLi,   JLv,  R Wei,  YCong,   ZLiu. bFGF signaling-mediated reprogramming of porcine primordial germ cells. Cell and Tissue Research, 2016, 364(2): 429–441 https://doi.org/10.1007/s00441-015-2326-1
 |  
								            
												
											    	
											        	|  | Viewed |  
											        	|  |  |  
												        |  | Full text 
 | 
 
 |  
												        |  |  |  
												        |  | Abstract 
 | 
 |  
												        |  |  |  
												        |  | Cited |  |  
												        |  |  |  |  
													    |  | Shared |  |  
													    |  |  |  |  
													    |  | Discussed |  |  |  |  |