|
|
Reprogramming of the pig primordial germ cells into pluripotent stem cells: a brief review |
Qijing LEI1, Qin PAN1, Shuai YU1, Na LI1, Shulin CHEN1, Kuldip SIDHU2( ), Jinlian HUA1( ) |
1. College of Veterinary Medicine/Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling 712100, China 2. Centre for Healthy Brain Ageing, UNSW Medicine, Randwick NSW 2031, Australia |
|
|
Abstract Primordial germ cells (PGCs) are regarded as unipotent cells that can produce only either spermatogonia or oocytes. However, PGCs can be converted into the pluripotent state by first dedifferentiation to embryonic germ cells and then by reprogramming to induce them to become pluripotent stem cells (iPSCs). These two stages can be completely implemented with mouse cells. However, authentic porcine iPSCs have not been established. Here, we discuss recent advances in the stem cell field for obtaining iPSCs from PGCs. This knowledge will provide some clues which will contribute to the regulation of reprogramming to pluripotency in farm species.
|
Keywords
pig
pluripotent stem cells
primordial germ cells
reprogramming
|
Corresponding Author(s):
Kuldip SIDHU,Jinlian HUA
|
Just Accepted Date: 16 April 2018
Online First Date: 16 May 2018
Issue Date: 25 February 2019
|
|
1 |
FBertocchini, S M Chuva de Sousa Lopes. Germline development in amniotes: a paradigm shift in primordial germ cell specification. BioEssays, 2016, 38(8): 791–800
https://doi.org/10.1002/bies.201600025
pmid: 27273724
|
2 |
TKimura, Y Kaga, YSekita, KFujikawa, TNakatani, MOdamoto, SFunaki, MIkawa, KAbe, T Nakano. Pluripotent stem cells derived from mouse primordial germ cells by small molecule compounds. Stem Cells, 2015, 33(1): 45–55
https://doi.org/10.1002/stem.1838
pmid: 25186651
|
3 |
KTakahashi, K Tanabe, MOhnuki, MNarita, TIchisaka, KTomoda, SYamanaka. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007, 131(5): 861–872
https://doi.org/10.1016/j.cell.2007.11.019
pmid: 18035408
|
4 |
I HPark, R Zhao, J AWest, AYabuuchi, HHuo, T A Ince, P H Lerou, M W Lensch, G Q Daley. Reprogramming of human somatic cells to pluripotency with defined factors. Nature, 2008, 451(7175): 141–146
https://doi.org/10.1038/nature06534
pmid: 18157115
|
5 |
MStadtfeld, M Nagaya, JUtikal, GWeir, K Hochedlinger. Induced pluripotent stem cells generated without viral integration. Science, 2008, 322(5903): 945–949
https://doi.org/10.1126/science.1162494
pmid: 18818365
|
6 |
YLi, Q Zhang, XYin, WYang, Y Du, PHou, JGe, C Liu, WZhang, XZhang, YWu, H Li, KLiu, CWu, Z Song, YZhao, YShi, H Deng. Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules. Cell Research, 2011, 21(1): 196–204
https://doi.org/10.1038/cr.2010.142
pmid: 20956998
|
7 |
TLin, R Ambasudhan, XYuan, WLi, S Hilcove, RAbujarour, XLin, H S Hahm, E Hao, AHayek, SDing. A chemical platform for improved induction of human iPSCs. Nature Methods, 2009, 6(11): 805–808
https://doi.org/10.1038/nmeth.1393
pmid: 19838168
|
8 |
YMatsui, K Zsebo, B LHogan. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell, 1992, 70(5): 841–847
https://doi.org/10.1016/0092-8674(92)90317-6
pmid: 1381289
|
9 |
F ABazley, C F Liu, X Yuan, HHao, A HAll, ADe Los Angeles, E TZambidis, J DGearhart, C LKerr. Direct reprogramming of human primordial germ cells into induced pluripotent stem cells: efficient generation of genetically engineered germ cells. Stem Cells and Development, 2015, 24(22): 2634–2648
https://doi.org/10.1089/scd.2015.0100
pmid: 26154167
|
10 |
TKobayashi, H Zhang, W W CTang, NIrie, S Withey, DKlisch, ASybirna, SDietmann, D AContreras, RWebb, C Allegrucci, RAlberio, M ASurani. Principles of early human development and germ cell program from conserved model systems. Nature, 2017, 546(7658): 416–420
https://doi.org/10.1038/nature22812
pmid: 28607482
|
11 |
AMcLaren. Primordial germ cells in the mouse. Developmental Biology, 2003, 262(1): 1–15
https://doi.org/10.1016/S0012-1606(03)00214-8
pmid: 14512014
|
12 |
YOhinata, B Payer, DO’Carroll, KAncelin, YOno, M Sano, S CBarton, TObukhanych, MNussenzweig, ATarakhovsky, MSaitou, M ASurani. Blimp1 is a critical determinant of the germ cell lineage in mice. Nature, 2005, 436(7048): 207–213
https://doi.org/10.1038/nature03813
pmid: 15937476
|
13 |
GNagamatsu, S Saito, KTakubo, TSuda. Integrative analysis of the acquisition of pluripotency in PGCs reveals the mutually exclusive roles of Blimp-1 and AKT signaling. Stem Cell Reports, 2015, 5(1): 111–124
https://doi.org/10.1016/j.stemcr.2015.05.007
pmid: 26050930
|
14 |
MYamaji, Y Seki, KKurimoto, YYabuta, MYuasa, MShigeta, KYamanaka, YOhinata, MSaitou. Critical function of Prdm14 for the establishment of the germ cell lineage in mice. Nature Genetics, 2008, 40(8): 1016–1022
https://doi.org/10.1038/ng.186
pmid: 18622394
|
15 |
KKlisch, D A Contreras, X Sun, RBrehm, MBergmann, RAlberio. The Sda/GM2-glycan is a carbohydrate marker of porcine primordial germ cells and of a subpopulation of spermatogonia in cattle, pigs, horses and llama. Reproduction, 2011, 142(5): 667–674
https://doi.org/10.1530/REP-11-0007
pmid: 21896636
|
16 |
YZhang, J Ma, HLi, JLv, R Wei, YCong, ZLiu. bFGF signaling-mediated reprogramming of porcine primordial germ cells. Cell and Tissue Research, 2016, 364(2): 429–441
https://doi.org/10.1007/s00441-015-2326-1
pmid: 26613602
|
17 |
SGoel, M Sugimoto, NMinami, MYamada, SKume, H Imai. Identification, isolation, and in vitro culture of porcine gonocytes. Biology of Reproduction, 2007, 77(1): 127–137
https://doi.org/10.1095/biolreprod.106.056879
pmid: 17377141
|
18 |
S M WHyldig, OOstrup, MVejlsted, P DThomsen. Changes of DNA methylation level and spatial arrangement of primordial germ cells in embryonic day 15 to embryonic day 28 pig embryos. Biology of Reproduction, 2011, 84(6): 1087–1093
https://doi.org/10.1095/biolreprod.110.086082
pmid: 21293033
|
19 |
S GPetkov, W A Reh, G B Anderson. Methylation changes in porcine primordial germ cells. Molecular Reproduction & Development, 2009, 76(1): 22
|
20 |
Hyldig S M, Croxall N, Contreras D A, Thomsen P D and Alberio R. Epigenetic reprogramming in the porcine germ line. BMC Developmental Biology, 2011, 11(1): 1–11
pmid: 21194500
|
21 |
MRuggiu, R Speed, MTaggart, S JMcKay, FKilanowski, PSaunders, JDorin, H JCooke. The mouse Dazla gene encodes a cytoplasmic protein essential for gametogenesis. Nature, 1997, 389(6646): 73–77
https://doi.org/10.1038/37987
pmid: 9288969
|
22 |
S STanaka, Y Toyooka, RAkasu, YKatoh-Fukui, YNakahara, RSuzuki, MYokoyama, TNoce. The mouse homolog of Drosophila Vasa is required for the development of male germ cells. Genes & Development, 2000, 14(7): 841–853
pmid: 10766740
|
23 |
SMasui, Y Nakatake, YToyooka, DShimosato, RYagi, K Takahashi, HOkochi, AOkuda, RMatoba, A ASharov, M SKo, HNiwa. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nature Cell Biology, 2007, 9(6): 625–635
https://doi.org/10.1038/ncb1589
pmid: 17515932
|
24 |
JSilva, J Nichols, T WTheunissen, GGuo, A L van Oosten, O Barrandon, JWray, SYamanaka, IChambers, ASmith. Nanog is the gateway to the pluripotent ground state. Cell, 2009, 138(4): 722–737
https://doi.org/10.1016/j.cell.2009.07.039
pmid: 19703398
|
25 |
J LResnick, L S Bixler, L Cheng, P JDonovan. Long-term proliferation of mouse primordial germ cells in culture. Nature, 1992, 359(6395): 550–551
https://doi.org/10.1038/359550a0
pmid: 1383830
|
26 |
PLopeziglesias, Y Alcaina, NTapia, DSabour, M JArauzobravo, DSainz de la Maza, EBerra, A NO’Mara, MNistal, SOrtega, P JDonovan, H RSchöler, M PDe Miguel, Sainz d l M D, Berra E, Nunezomara A, Nistal M and Ortega S. Hypoxia induces pluripotency in primordial germ cells by HIF1a stabilization and Oct4 deregulation. Antioxidants & Redox Signalling, 2015, 22(3): 205–223
https://doi.org/10.1089/ars.2014.5871
|
27 |
L RChen, Y L Shiue, L Bertolini, J FMedrano, R HBonDurant, G BAnderson. Establishment of pluripotent cell lines from porcine preimplantation embryos. Theriogenology, 1999, 52(2): 195–212
https://doi.org/10.1016/S0093-691X(99)00122-3
pmid: 10734388
|
28 |
IVassiliev, S Vassilieva, L F SBeebe, S JHarrison, S MMcIlfatrick, M BNottle. In vitro and in vivo characterization of putative porcine embryonic stem cells. Cellular Reprogramming, 2010, 12(2): 223–230
https://doi.org/10.1089/cell.2009.0053
pmid: 20677936
|
29 |
HShim, A Gutiérrez-Adán, L RChen, R HBonDurant, EBehboodi, G BAnderson. Isolation of pluripotent stem cells from cultured porcine primordial germ cells. Theriogenology, 1997, 57(5): 1089–1095
https://doi.org/10.1095/biolreprod57.5.1089
pmid: 9369175
|
30 |
J APiedrahita, KMoore, BOetama, C KLee, NScales, JRamsoondar, F WBazer, TOtt. Generation of transgenic porcine chimeras using primordial germ cell-derived colonies. Biology of Reproduction, 1998, 58(5): 1321–1329
https://doi.org/10.1095/biolreprod58.5.1321
pmid: 9603271
|
31 |
XDong, H Tsung, YMu, LLiu, H Chen, LZhang, HWang, S Feng. Generation of chimeric piglets by injection of embryonic germ cells from inbred Wuzhishan miniature pigs into blastocysts. Xenotransplantation, 2014, 21(2): 140–148
https://doi.org/10.1111/xen.12077
pmid: 24329557
|
32 |
F DWest, S L Terlouw, D J Kwon, J L Mumaw, S K Dhara, K Hasneen, J RDobrinsky, S LStice. Porcine induced pluripotent stem cells produce chimeric offspring. Stem Cells and Development, 2010, 19(8): 1211–1220
https://doi.org/10.1089/scd.2009.0458
pmid: 20380514
|
33 |
XDu, T Feng, DYu, YWu, H Zou, SMa, CFeng, Y Huang, HOuyang, XHu, D Pan, NLi, SWu. Barriers for deriving transgenefree pig iPS cells with episomal vectors. Stem Cells, 2015, 33(11): 3228–3238
https://doi.org/10.1002/stem.2089
pmid: 26138940
|
34 |
WChakritbudsabong, LSariya, SPamonsupornvichit, RPronarkngver, SChaiwattanarungruengpaisan, J NFerreira, PSetthawong, PPhakdeedindan, MTechakumphu, TTharasanit, SRungarunlert. Generation of a pig induced pluripotent stem cell (piPSC) line from embryonic fibroblasts by incorporating LIN28 to the four transcriptional factor-mediated reprogramming: VSMUi001-D. Stem Cell Research, 2017, 24: 21–24
https://doi.org/10.1016/j.scr.2017.08.005
pmid: 29034889
|
35 |
NMontserrat, E G Bahima, L Batlle, SHäfner, A MRodrigues, FGonzález, J CIzpisúa Belmonte. Generation of pig iPS cells: a model for cell therapy. Journal of Cardiovascular Translational Research, 2011, 4(2): 121–130
https://doi.org/10.1007/s12265-010-9233-3
pmid: 21088946
|
36 |
TEzashi, B P V L Telugu, A P Alexenko, S Sachdev, SSinha, R MRoberts. Derivation of induced pluripotent stem cells from pig somatic cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(27): 10993–10998
https://doi.org/10.1073/pnas.0905284106
pmid: 19541600
|
37 |
YWu, O Li, CHe, YLi, M Li, X LLiu, YWang, Y He. Generation and characterization of induced pluripotent stem cells from guinea pig fetal fibroblasts. Molecular Medicine Reports, 2017, 15(6): 3690–3698
https://doi.org/10.3892/mmr.2017.6431
pmid: 28393187
|
38 |
VHall. Porcine embryonic stem cells: a possible source for cell replacement therapy. Stem Cell Reviews, 2008, 4(4): 275–282
https://doi.org/10.1007/s12015-008-9040-2
pmid: 18770051
|
39 |
AOnishi, M Iwamoto, TAkita, SMikawa, KTakeda, TAwata, HHanada, A CPerry. Pig cloning by microinjection of fetal fibroblast nuclei. Science, 2000, 289(5482): 1188–1190
https://doi.org/10.1126/science.289.5482.1188
pmid: 10947985
|
40 |
I APolejaeva, S HChen, T DVaught, R LPage, JMullins, SBall, Y Dai, JBoone, SWalker, D LAyares, AColman, K HCampbell. Cloned pigs produced by nuclear transfer from adult somatic cells. Nature, 2000, 407(6800): 86–90
https://doi.org/10.1038/35024082
pmid: 10993078
|
41 |
NMaherali, R Sridharan, WXie, JUtikal, SEminli, KArnold, MStadtfeld, RYachechko, JTchieu, RJaenisch, KPlath, KHochedlinger. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell, 2007, 1(1): 55–70
https://doi.org/10.1016/j.stem.2007.05.014
pmid: 18371336
|
42 |
MWernig, A Meissner, RForeman, TBrambrink, MKu, K Hochedlinger, B EBernstein, RJaenisch. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 2007, 448(7151): 318–324
https://doi.org/10.1038/nature05944
pmid: 17554336
|
43 |
NPashai, H Hao, AAll, SGupta, RChaerkady, ADe Los Angeles, J DGearhart, C LKerr. Genome-wide profiling of pluripotent cells reveals a unique molecular signature of human embryonic germ cells. PLoS One, 2012, 7(6): e39088
https://doi.org/10.1371/journal.pone.0039088
pmid: 22737227
|
44 |
MSaitou, S Kagiwada, KKurimoto. Epigenetic reprogramming in mouse pre-implantation development and primordial germ cells. Development, 2012, 139(1): 15–31
https://doi.org/10.1242/dev.050849
pmid: 22147951
|
45 |
NMise, T Fuchikami, MSugimoto, SKobayakawa, FIke, T Ogawa, TTada, SKanaya, TNoce, K Abe. Differences and similarities in the developmental status of embryo-derived stem cells and primordial germ cells revealed by global expression profiling. Genes to Cells, 2008, 13(8): 863–877
https://doi.org/10.1111/j.1365-2443.2008.01211.x
pmid: 18782224
|
46 |
HNiwa, J Miyazaki, A GSmith. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genetics, 2000, 24(4): 372–376
https://doi.org/10.1038/74199
pmid: 10742100
|
47 |
SYamaguchi, H Kimura, MTada, NNakatsuji, TTada. Nanog expression in mouse germ cell development. Gene Expression Patterns Gep, 2005, 5(5): 639–646
https://doi.org/10.1016/j.modgep.2005.03.001
pmid: 15939376
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|