Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2019, Vol. 6 Issue (1) : 28-32    https://doi.org/10.15302/J-FASE-2018222
REVIEW
Reprogramming of the pig primordial germ cells into pluripotent stem cells: a brief review
Qijing LEI1, Qin PAN1, Shuai YU1, Na LI1, Shulin CHEN1, Kuldip SIDHU2(), Jinlian HUA1()
1. College of Veterinary Medicine/Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling 712100, China
2. Centre for Healthy Brain Ageing, UNSW Medicine, Randwick NSW 2031, Australia
 Download: PDF(251 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Primordial germ cells (PGCs) are regarded as unipotent cells that can produce only either spermatogonia or oocytes. However, PGCs can be converted into the pluripotent state by first dedifferentiation to embryonic germ cells and then by reprogramming to induce them to become pluripotent stem cells (iPSCs). These two stages can be completely implemented with mouse cells. However, authentic porcine iPSCs have not been established. Here, we discuss recent advances in the stem cell field for obtaining iPSCs from PGCs. This knowledge will provide some clues which will contribute to the regulation of reprogramming to pluripotency in farm species.

Keywords pig      pluripotent stem cells      primordial germ cells      reprogramming     
Corresponding Author(s): Kuldip SIDHU,Jinlian HUA   
Just Accepted Date: 16 April 2018   Online First Date: 16 May 2018    Issue Date: 25 February 2019
 Cite this article:   
Qijing LEI,Qin PAN,Shuai YU, et al. Reprogramming of the pig primordial germ cells into pluripotent stem cells: a brief review[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 28-32.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2018222
https://academic.hep.com.cn/fase/EN/Y2019/V6/I1/28
Cell type Cell source Induction/culture system Differentiation potential Reference
ESCs Blastocysts days 6–8 (in vivo) STO feeder layer+ FCS Chimera [27]
Blastocysts day 7 (in vitro) MEF+ bFGF+ EGF+ LIF+ activin+ 10% KSR Chimera [28]
EGCs PGC-derived cells STO feeder layer+ LIF+ 15% FBS Chimera [29]
PGC-derived cells STO feeder layer+ 15% FBS+ LIF+ bFGF Chimera [30]
PGC-derived cells STO feeder layer+ 10% FCS+ bFGF+ SCF+ LIF Chimera [31]
iPSCs Porcine mesenchymal stem cells Transduction with Oct4, Sox2, Nanog, Klf4, Lin28 and cMyc Chimera [32]
Tab.1  Differentiation potential of pig pluripotent stem cells
Fig.1  Differentiation fate of pig pluripotent stem cells
1 FBertocchini, S M Chuva de Sousa Lopes. Germline development in amniotes: a paradigm shift in primordial germ cell specification. BioEssays, 2016, 38(8): 791–800
https://doi.org/10.1002/bies.201600025 pmid: 27273724
2 TKimura, Y Kaga, YSekita, KFujikawa, TNakatani, MOdamoto, SFunaki, MIkawa, KAbe, T Nakano. Pluripotent stem cells derived from mouse primordial germ cells by small molecule compounds. Stem Cells, 2015, 33(1): 45–55
https://doi.org/10.1002/stem.1838 pmid: 25186651
3 KTakahashi, K Tanabe, MOhnuki, MNarita, TIchisaka, KTomoda, SYamanaka. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007, 131(5): 861–872
https://doi.org/10.1016/j.cell.2007.11.019 pmid: 18035408
4 I HPark, R Zhao, J AWest, AYabuuchi, HHuo, T A Ince, P H Lerou, M W Lensch, G Q Daley. Reprogramming of human somatic cells to pluripotency with defined factors. Nature, 2008, 451(7175): 141–146
https://doi.org/10.1038/nature06534 pmid: 18157115
5 MStadtfeld, M Nagaya, JUtikal, GWeir, K Hochedlinger. Induced pluripotent stem cells generated without viral integration. Science, 2008, 322(5903): 945–949
https://doi.org/10.1126/science.1162494 pmid: 18818365
6 YLi, Q Zhang, XYin, WYang, Y Du, PHou, JGe, C Liu, WZhang, XZhang, YWu, H Li, KLiu, CWu, Z Song, YZhao, YShi, H Deng. Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules. Cell Research, 2011, 21(1): 196–204
https://doi.org/10.1038/cr.2010.142 pmid: 20956998
7 TLin, R Ambasudhan, XYuan, WLi, S Hilcove, RAbujarour, XLin, H S Hahm, E Hao, AHayek, SDing. A chemical platform for improved induction of human iPSCs. Nature Methods, 2009, 6(11): 805–808
https://doi.org/10.1038/nmeth.1393 pmid: 19838168
8 YMatsui, K Zsebo, B LHogan. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell, 1992, 70(5): 841–847
https://doi.org/10.1016/0092-8674(92)90317-6 pmid: 1381289
9 F ABazley, C F Liu, X Yuan, HHao, A HAll, ADe Los Angeles, E TZambidis, J DGearhart, C LKerr. Direct reprogramming of human primordial germ cells into induced pluripotent stem cells: efficient generation of genetically engineered germ cells. Stem Cells and Development, 2015, 24(22): 2634–2648
https://doi.org/10.1089/scd.2015.0100 pmid: 26154167
10 TKobayashi, H Zhang, W W CTang, NIrie, S Withey, DKlisch, ASybirna, SDietmann, D AContreras, RWebb, C Allegrucci, RAlberio, M ASurani. Principles of early human development and germ cell program from conserved model systems. Nature, 2017, 546(7658): 416–420
https://doi.org/10.1038/nature22812 pmid: 28607482
11 AMcLaren. Primordial germ cells in the mouse. Developmental Biology, 2003, 262(1): 1–15
https://doi.org/10.1016/S0012-1606(03)00214-8 pmid: 14512014
12 YOhinata, B Payer, DO’Carroll, KAncelin, YOno, M Sano, S CBarton, TObukhanych, MNussenzweig, ATarakhovsky, MSaitou, M ASurani. Blimp1 is a critical determinant of the germ cell lineage in mice. Nature, 2005, 436(7048): 207–213
https://doi.org/10.1038/nature03813 pmid: 15937476
13 GNagamatsu, S Saito, KTakubo, TSuda. Integrative analysis of the acquisition of pluripotency in PGCs reveals the mutually exclusive roles of Blimp-1 and AKT signaling. Stem Cell Reports, 2015, 5(1): 111–124
https://doi.org/10.1016/j.stemcr.2015.05.007 pmid: 26050930
14 MYamaji, Y Seki, KKurimoto, YYabuta, MYuasa, MShigeta, KYamanaka, YOhinata, MSaitou. Critical function of Prdm14 for the establishment of the germ cell lineage in mice. Nature Genetics, 2008, 40(8): 1016–1022
https://doi.org/10.1038/ng.186 pmid: 18622394
15 KKlisch, D A Contreras, X Sun, RBrehm, MBergmann, RAlberio. The Sda/GM2-glycan is a carbohydrate marker of porcine primordial germ cells and of a subpopulation of spermatogonia in cattle, pigs, horses and llama. Reproduction, 2011, 142(5): 667–674
https://doi.org/10.1530/REP-11-0007 pmid: 21896636
16 YZhang, J Ma, HLi, JLv, R Wei, YCong, ZLiu. bFGF signaling-mediated reprogramming of porcine primordial germ cells. Cell and Tissue Research, 2016, 364(2): 429–441
https://doi.org/10.1007/s00441-015-2326-1 pmid: 26613602
17 SGoel, M Sugimoto, NMinami, MYamada, SKume, H Imai. Identification, isolation, and in vitro culture of porcine gonocytes. Biology of Reproduction, 2007, 77(1): 127–137
https://doi.org/10.1095/biolreprod.106.056879 pmid: 17377141
18 S M WHyldig, OOstrup, MVejlsted, P DThomsen. Changes of DNA methylation level and spatial arrangement of primordial germ cells in embryonic day 15 to embryonic day 28 pig embryos. Biology of Reproduction, 2011, 84(6): 1087–1093
https://doi.org/10.1095/biolreprod.110.086082 pmid: 21293033
19 S GPetkov, W A Reh, G B Anderson. Methylation changes in porcine primordial germ cells. Molecular Reproduction & Development, 2009, 76(1): 22
20 Hyldig S M, Croxall N, Contreras D A, Thomsen P D and Alberio R. Epigenetic reprogramming in the porcine germ line. BMC Developmental Biology, 2011, 11(1): 1–11
pmid: 21194500
21 MRuggiu, R Speed, MTaggart, S JMcKay, FKilanowski, PSaunders, JDorin, H JCooke. The mouse Dazla gene encodes a cytoplasmic protein essential for gametogenesis. Nature, 1997, 389(6646): 73–77
https://doi.org/10.1038/37987 pmid: 9288969
22 S STanaka, Y Toyooka, RAkasu, YKatoh-Fukui, YNakahara, RSuzuki, MYokoyama, TNoce. The mouse homolog of Drosophila Vasa is required for the development of male germ cells. Genes & Development, 2000, 14(7): 841–853
pmid: 10766740
23 SMasui, Y Nakatake, YToyooka, DShimosato, RYagi, K Takahashi, HOkochi, AOkuda, RMatoba, A ASharov, M SKo, HNiwa. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nature Cell Biology, 2007, 9(6): 625–635
https://doi.org/10.1038/ncb1589 pmid: 17515932
24 JSilva, J Nichols, T WTheunissen, GGuo, A L van Oosten, O Barrandon, JWray, SYamanaka, IChambers, ASmith. Nanog is the gateway to the pluripotent ground state. Cell, 2009, 138(4): 722–737
https://doi.org/10.1016/j.cell.2009.07.039 pmid: 19703398
25 J LResnick, L S Bixler, L Cheng, P JDonovan. Long-term proliferation of mouse primordial germ cells in culture. Nature, 1992, 359(6395): 550–551
https://doi.org/10.1038/359550a0 pmid: 1383830
26 PLopeziglesias, Y Alcaina, NTapia, DSabour, M JArauzobravo, DSainz de la Maza, EBerra, A NO’Mara, MNistal, SOrtega, P JDonovan, H RSchöler, M PDe Miguel, Sainz d l M D, Berra E, Nunezomara A, Nistal M and Ortega S. Hypoxia induces pluripotency in primordial germ cells by HIF1a stabilization and Oct4 deregulation. Antioxidants & Redox Signalling, 2015, 22(3): 205–223
https://doi.org/10.1089/ars.2014.5871
27 L RChen, Y L Shiue, L Bertolini, J FMedrano, R HBonDurant, G BAnderson. Establishment of pluripotent cell lines from porcine preimplantation embryos. Theriogenology, 1999, 52(2): 195–212
https://doi.org/10.1016/S0093-691X(99)00122-3 pmid: 10734388
28 IVassiliev, S Vassilieva, L F SBeebe, S JHarrison, S MMcIlfatrick, M BNottle. In vitro and in vivo characterization of putative porcine embryonic stem cells. Cellular Reprogramming, 2010, 12(2): 223–230
https://doi.org/10.1089/cell.2009.0053 pmid: 20677936
29 HShim, A Gutiérrez-Adán, L RChen, R HBonDurant, EBehboodi, G BAnderson. Isolation of pluripotent stem cells from cultured porcine primordial germ cells. Theriogenology, 1997, 57(5): 1089–1095
https://doi.org/10.1095/biolreprod57.5.1089 pmid: 9369175
30 J APiedrahita, KMoore, BOetama, C KLee, NScales, JRamsoondar, F WBazer, TOtt. Generation of transgenic porcine chimeras using primordial germ cell-derived colonies. Biology of Reproduction, 1998, 58(5): 1321–1329
https://doi.org/10.1095/biolreprod58.5.1321 pmid: 9603271
31 XDong, H Tsung, YMu, LLiu, H Chen, LZhang, HWang, S Feng. Generation of chimeric piglets by injection of embryonic germ cells from inbred Wuzhishan miniature pigs into blastocysts. Xenotransplantation, 2014, 21(2): 140–148
https://doi.org/10.1111/xen.12077 pmid: 24329557
32 F DWest, S L Terlouw, D J Kwon, J L Mumaw, S K Dhara, K Hasneen, J RDobrinsky, S LStice. Porcine induced pluripotent stem cells produce chimeric offspring. Stem Cells and Development, 2010, 19(8): 1211–1220
https://doi.org/10.1089/scd.2009.0458 pmid: 20380514
33 XDu, T Feng, DYu, YWu, H Zou, SMa, CFeng, Y Huang, HOuyang, XHu, D Pan, NLi, SWu. Barriers for deriving transgenefree pig iPS cells with episomal vectors. Stem Cells, 2015, 33(11): 3228–3238
https://doi.org/10.1002/stem.2089 pmid: 26138940
34 WChakritbudsabong, LSariya, SPamonsupornvichit, RPronarkngver, SChaiwattanarungruengpaisan, J NFerreira, PSetthawong, PPhakdeedindan, MTechakumphu, TTharasanit, SRungarunlert. Generation of a pig induced pluripotent stem cell (piPSC) line from embryonic fibroblasts by incorporating LIN28 to the four transcriptional factor-mediated reprogramming: VSMUi001-D. Stem Cell Research, 2017, 24: 21–24
https://doi.org/10.1016/j.scr.2017.08.005 pmid: 29034889
35 NMontserrat, E G Bahima, L Batlle, SHäfner, A MRodrigues, FGonzález, J CIzpisúa Belmonte. Generation of pig iPS cells: a model for cell therapy. Journal of Cardiovascular Translational Research, 2011, 4(2): 121–130
https://doi.org/10.1007/s12265-010-9233-3 pmid: 21088946
36 TEzashi, B P V L Telugu, A P Alexenko, S Sachdev, SSinha, R MRoberts. Derivation of induced pluripotent stem cells from pig somatic cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(27): 10993–10998
https://doi.org/10.1073/pnas.0905284106 pmid: 19541600
37 YWu, O Li, CHe, YLi, M Li, X LLiu, YWang, Y He. Generation and characterization of induced pluripotent stem cells from guinea pig fetal fibroblasts. Molecular Medicine Reports, 2017, 15(6): 3690–3698
https://doi.org/10.3892/mmr.2017.6431 pmid: 28393187
38 VHall. Porcine embryonic stem cells: a possible source for cell replacement therapy. Stem Cell Reviews, 2008, 4(4): 275–282
https://doi.org/10.1007/s12015-008-9040-2 pmid: 18770051
39 AOnishi, M Iwamoto, TAkita, SMikawa, KTakeda, TAwata, HHanada, A CPerry. Pig cloning by microinjection of fetal fibroblast nuclei. Science, 2000, 289(5482): 1188–1190
https://doi.org/10.1126/science.289.5482.1188 pmid: 10947985
40 I APolejaeva, S HChen, T DVaught, R LPage, JMullins, SBall, Y Dai, JBoone, SWalker, D LAyares, AColman, K HCampbell. Cloned pigs produced by nuclear transfer from adult somatic cells. Nature, 2000, 407(6800): 86–90
https://doi.org/10.1038/35024082 pmid: 10993078
41 NMaherali, R Sridharan, WXie, JUtikal, SEminli, KArnold, MStadtfeld, RYachechko, JTchieu, RJaenisch, KPlath, KHochedlinger. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell, 2007, 1(1): 55–70
https://doi.org/10.1016/j.stem.2007.05.014 pmid: 18371336
42 MWernig, A Meissner, RForeman, TBrambrink, MKu, K Hochedlinger, B EBernstein, RJaenisch. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 2007, 448(7151): 318–324
https://doi.org/10.1038/nature05944 pmid: 17554336
43 NPashai, H Hao, AAll, SGupta, RChaerkady, ADe Los Angeles, J DGearhart, C LKerr. Genome-wide profiling of pluripotent cells reveals a unique molecular signature of human embryonic germ cells. PLoS One, 2012, 7(6): e39088
https://doi.org/10.1371/journal.pone.0039088 pmid: 22737227
44 MSaitou, S Kagiwada, KKurimoto. Epigenetic reprogramming in mouse pre-implantation development and primordial germ cells. Development, 2012, 139(1): 15–31
https://doi.org/10.1242/dev.050849 pmid: 22147951
45 NMise, T Fuchikami, MSugimoto, SKobayakawa, FIke, T Ogawa, TTada, SKanaya, TNoce, K Abe. Differences and similarities in the developmental status of embryo-derived stem cells and primordial germ cells revealed by global expression profiling. Genes to Cells, 2008, 13(8): 863–877
https://doi.org/10.1111/j.1365-2443.2008.01211.x pmid: 18782224
46 HNiwa, J Miyazaki, A GSmith. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genetics, 2000, 24(4): 372–376
https://doi.org/10.1038/74199 pmid: 10742100
47 SYamaguchi, H Kimura, MTada, NNakatsuji, TTada. Nanog expression in mouse germ cell development. Gene Expression Patterns Gep, 2005, 5(5): 639–646
https://doi.org/10.1016/j.modgep.2005.03.001 pmid: 15939376
[1] Ruigao SONG, Yu WANG, Yanfang WANG, Jianguo ZHAO. Base editing in pigs for precision breeding[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 161-170.
[2] Chris PROUDFOOT, Gus MCFARLANE, Bruce WHITELAW, Simon LILLICO. Livestock breeding for the 21st century: the promise of the editing revolution[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 129-135.
[3] Ning WANG, Sile WANG, Yaxian WANG, Yuanxing CAI, Fan YANG, Huayan WANG. SALL4 maintains self-renewal of porcine pluripotent stem cells through downregulation of OTX2[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 81-92.
[4] Yong JIN, Manling ZHANG, Xinrong JU, Shuang LIANG, Qiang XIONG, Lihua ZHAO, Xiaowei NIE, Daorong HOU, Qiang LIU, Junzheng WANG, Chenyu WANG, Xiaokang LI, Lining ZHANG, Xiaorui LIU, Ying WANG, Haiyuan YANG, Yifan DAI, Rongfeng LI. Factors influencing the somatic cell nuclear transfer efficiency in pigs[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 73-80.
[5] Jianwen CHEN, Kaiyuan PAN, Zhen CHEN, Biao DING, Dandan SONG, Wenbin BAO, Yunhai ZHANG. Construction of multiple shRNA vectors targeting PEDV and TGEV and production of transgenic SCNT porcine embryos in vitro[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 66-72.
[6] Chengcheng ZHAO, Junsong SHI, Rong ZHOU, Ranbiao MAI, Lvhua LUO, Xiaoyan HE, Hongmei JI, Gengyuan CAI, Dewu LIU, Enqin ZHENG, Zhenfang WU, Zicong LI. Effects of enucleation method on in vitro and in vivo development rate of cloned pig embryos[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 61-65.
[7] Zheng AO, Chengfa ZHAO, Yanmin GAN, Xiao WU, Junsong SHI, Enqin ZHENG, Dewu LIU, Gengyuan CAI, Zhenfang WU, Zicong LI. Comparison of birth weight and umbilical and placental characteristics of cloned and artificial insemination-derived piglets[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 54-60.
[8] Jianyong HAN, Yi-Liang MIAO, Jinlian HUA, Yan LI, Xue ZHANG, Jilong ZHOU, Na LI, Ying ZHANG, Jinying ZHANG, Zhonghua LIU. Porcine pluripotent stem cells: progress, challenges and prospects[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 8-27.
[9] Xiuchun TIAN. The past, present and future of bovine pluripotent stem cells: a brief overview[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 3-7.
[10] Lei CHEN, Shilin TIAN, Long JIN, Zongyi GUO, Dan ZHU, Lan JING, Tiandong CHE, Qianzi TANG, Siqing CHEN, Liang ZHANG, Tinghuan ZHANG, Zuohua LIU, Jinyong WANG, Mingzhou LI. Genome-wide analysis reveals selection for Chinese Rongchang pigs[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 319-326.
[11] Haiyan WANG, Qiaoxia ZHANG, Lilin YIN, Xiangdong LIU, Shuhong ZHAO, Mengjin ZHU, Changchun LI. Transcriptomic basis of neutrophil ratio variation induced by poly I:C stimulation in porcine peripheral blood[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 342-352.
[12] Longchao ZHANG, Jingwei YUE, Xin LIU, Jing LIANG, Kebin ZHAO, Hua YAN, Na LI, Lei PU, Yuebo ZHANG, Huibi SHI, Ligang WANG, Lixian WANG. Genome-wide search for candidate genes determining vertebrae number in pigs[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 327-334.
[13] Xingwang WANG, Rongrong DING, Jianping QUAN, Linxue YANG, Ming YANG, Enqin ZHENG, Dewu LIU, Gengyuan CAI, Zhenfang WU, Jie YANG. Genome-wide association analysis reveals genetic loci and candidate genes associated with intramuscular fat in Duroc pigs[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 335-341.
[14] Wen LUO, Bahareldin A. ABDALLA, Qinghua NIE, Xiquan ZHANG. The genetic regulation of skeletal muscle development: insights from chicken studies[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 295-304.
[15] Shaohua WANG,Kun ZHANG,Yunping DAI. Advances in genetic engineering of domestic animals[J]. Front. Agr. Sci. Eng. , 2016, 3(1): 1-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed