Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2019, Vol. 6 Issue (1) : 61-65    https://doi.org/10.15302/J-FASE-2018227
RESEARCH ARTICLE
Effects of enucleation method on in vitro and in vivo development rate of cloned pig embryos
Chengcheng ZHAO1,2, Junsong SHI3, Rong ZHOU3, Ranbiao MAI3, Lvhua LUO3, Xiaoyan HE3, Hongmei JI3, Gengyuan CAI1,2, Dewu LIU1,2, Enqin ZHENG1,2, Zhenfang WU1,2(), Zicong LI2()
1. National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
2. Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
3. Guangdong Wens Foodstuff Group Co., Ltd., Yunfu 527400, China
 Download: PDF(121 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Enucleation is a crucial procedure for mammalian somatic cell nuclear transfer (SCNT), especially for domestic animal cloning. Oocytes of domestic animals such as pigs and cattle contain dark lipid droplets that hinder localization and removal of the nucleus. Using an oocyte enucleation technique that can obtain a high enucleation rate but has minimal negative effects on the reprogramming potential of oocyte for cloning is beneficial for enhancing the outcome of SCNT. In this study, we compared the pig cloning efficiency resulting from blind aspiration-based (BA-B) enucleation and spindle imaging system-assisted (SIS-A) enucleation, and compared the pig SCNT success rate associated with BA-B enucleation and blind aspiration plus post-enucleation staining-based (BAPPS-B) enucleation. SIS-A enucleation achieved a significantly higher oocyte enucleation success rate and tended to obtain a higher in vivo full term development rate of SCNT embryos than BA-B enucleation. BAPPS-B enucleation also obtained significantly higher in vitro as well as in vivo full term development efficiency of cloned porcine embryos than BA-B enucleation. These data indicate that SIS-A and BAPPS-B enucleation are better approaches for pig SCNT than BA-B enucleation.

Keywords cloning      enucleation      pig      SCNT     
Corresponding Author(s): Zhenfang WU,Zicong LI   
Just Accepted Date: 10 May 2018   Online First Date: 04 June 2018    Issue Date: 25 February 2019
 Cite this article:   
Chengcheng ZHAO,Junsong SHI,Rong ZHOU, et al. Effects of enucleation method on in vitro and in vivo development rate of cloned pig embryos[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 61-65.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2018227
https://academic.hep.com.cn/fase/EN/Y2019/V6/I1/61
Enucleation method Number of manipulated/successfully enucleated oocytes Enucleation rate/%
BA-B 384/319 83.07**
SIS-A 322/306 95.03**
Tab.1  Comparison of the success rates of BA-B and SIS-A enucleation
Enucleation method SCNT embryos Cleaved/% Blastocysts/% Total number of cells per blastocyst
BA-B 240 183 (76.25) 44 (18.33) 40±3.34
SIS-A 279 208 (74.55) 37 (13.26) 47±4.10
Tab.2  Comparison of in vitro development rate of pig SCNT embryos generated by BA-B and SIS-A enucleation
Enucleation method Total number of transferred SCNT embryos Total number/pregnant/farrowed recipients Pregnancy/farrowing rate/% Total number of cloned piglets born Development rate/%
BA-B 7469 33/23/14 69.70/42.42 64 0.86
SIS-A 6779 33/23/14 69.70/42.42 75 1.11*
Tab.3  Comparison of in vivo development rate of pig SCNT embryos generated by the BA-B and SIS-A enucleation
Enucleation method SCNT embryos Cleaved/% Blastocysts/% Total number of cells per blastocyst
BA-B 429 326 (75.99) 94 (21.91) 36±1.77*
BAPPS-B 501 362 (72.26) 89 (17.76) 41±1.69*
Tab.4  Comparison of in vitro development rate of pig SCNT embryos generated by the BA-B and BAPPS-B enucleation
Enucleation method Number of manipulated /successfully enucleated oocytes Total number of transferred SCNT embryos Total number/pregnant/farrowed recipients Pregnancy/farrowing rate/% Total number of born cloned piglets Development rate/%
BA-B 8023/not determined 7038 31/18/7 58.06/22.58* 24 0.34**
BAPPS-B 9049/7234 6735 31/21/15 67.74/48.39* 55 0.82**
Tab.5  Comparison of in vivo development rate of pig SCNT embryos generated by the BA-B an BAPPS-B enucleation
1 JMcGrath, D Solter. Nuclear transplantation in the mouse embryo by microsurgery and cell fusion. Science, 1983, 220(4603): 1300–1302
https://doi.org/10.1126/science.6857250 pmid: 6857250
2 R SPrather, M M Sims, N L First. Nuclear transplantation in early pig embryos. Biology of Reproduction, 1989, 41(3): 414–418
https://doi.org/10.1095/biolreprod41.3.414 pmid: 2590712
3 TDominko, A Chan, CSimerly, C MLuetjens, LHewitson, CMartinovich, GSchatten. Dynamic imaging of the metaphase II spindle and maternal chromosomesin bovine oocytes: implications for enucleation efficiency verification, avoidance of parthenogenesis, and successful embryogenesis. Biology of Reproduction, 2000, 62(1): 150–154
https://doi.org/10.1095/biolreprod62.1.150 pmid: 10611079
4 TTani, H Shimada, YKato, YTsunoda. Demecolcine-assisted enucleation for bovine cloning. Cloning and Stem Cells, 2006, 8(1): 61–66
https://doi.org/10.1089/clo.2006.8.61 pmid: 16571078
5 B GJeon, D H Betts, W A King, G J Rho. In vitro developmental potential of nuclear transfer embryos cloned with enucleation methods using pre-denuded bovine oocytes. Reproduction in Domestic Animals, 2011, 46(6): 1035–1042
https://doi.org/10.1111/j.1439-0531.2011.01781.x pmid: 21426416
6 E YKim, M J Park, H Y Park, E J Noh, E H Noh, K S Park, J B Lee, C J Jeong, K Z Riu, S P Park. Improved cloning efficiency and developmental potential in bovine somatic cell nuclear transfer with the oosight imaging system. Cellular Reprogramming, 2012, 14(4): 305–311
https://doi.org/10.1089/cell.2011.0103 pmid: 22816525
7 YLi, J Liu, JDai, FXing, Z Fang, TZhang, ZShi, D Zhang, XChen. Production of cloned miniature pigs by enucleation using the spindle view system. Annual meeting of Chinese experimental animal science. 2010, 45(4): 608–613
8 LLiu, R Oldenbourg, J RTrimarchi, D LKeefe. A reliable, noninvasive technique for spindle imaging and enucleation of mammalian oocytes. Nature Biotechnology, 2000, 18(2): 223–225
https://doi.org/10.1038/72692 pmid: 10657133
9 J NCaamaño, CMaside, M AGil, MMuñoz, CCuello, CDíez, J RSánchez-Osorio, DMartín, JGomis, J MVazquez, JRoca, S Carrocera, E AMartinez, EGómez. Use of polarized light microscopy in porcine reproductive technologies. Theriogenology, 2011, 76(4): 669–677
https://doi.org/10.1016/j.theriogenology.2011.03.020 pmid: 21601264
10 NChen, S L Liow, R B Abdullah, W K W Embong, W Y Yip, L G Tan, G Q Tong, S C Ng. Somatic cell nuclear transfer using transported in vitro-matured oocytes in cynomolgus monkey. Zygote, 2007, 15(1): 25–33 doi:10.1017/S0967199406003947
pmid: 17391543
11 J NCaamaño, MMuñoz, CDiez, E Gómez. Polarized light microscopy in mammalian oocytes. Reproduction in Domestic Animals, 2010, 45(S2): 49–56
https://doi.org/10.1111/j.1439-0531.2010.01621.x pmid: 20591065
12 J AByrne, D A Pedersen, L L Clepper, M Nelson, W GSanger, SGokhale, D PWolf, S MMitalipov. Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature, 2007, 450(7169): 497–502
https://doi.org/10.1038/nature06357 pmid: 18004281
13 S MMitalipov, QZhou, J A Byrne, W Z Ji, R B Norgren, D P Wolf. Reprogramming following somatic cell nuclear transfer in primates is dependent upon nuclear remodeling. Human Reproduction, 2007, 22(8): 2232–2242
https://doi.org/10.1093/humrep/dem136 pmid: 17562675
14 E SCritser, N L First. Use of a fluorescent stain for visualization of nuclear material in living oocytes and early embryos. Stain Technology, 1986, 61(1): 1–5
https://doi.org/10.3109/10520298609110697 pmid: 2420037
15 L CSmith. Membrane and intracellular effects of ultraviolet irradiation with Hoechst 33342 on bovine secondary oocytes matured in vitro. Journal of Reproduction and Fertility, 1993, 99(1): 39–44
https://doi.org/10.1530/jrf.0.0990039 pmid: 8283450
16 M AGil, C Maside, CCuello, IParrilla, J MVazquez, JRoca, E A Martinez. Effects of Hoechst 33342 staining and ultraviolet irradiation on mitochondrial distribution and DNA copy number in porcine oocytes and preimplantation embryos. Molecular Reproduction and Development, 2012, 79(9): 651–663
https://doi.org/10.1002/mrd.22071 pmid: 22777700
17 DIuso, M Czernik, FZacchini, GPtak, P Loi. A simplified approach for oocyte enucleation in mammalian cloning. Cellular Reprogramming, 2013, 15(6): 490–494
https://doi.org/10.1089/cell.2013.0051 pmid: 24219576
18 CMaside, M A Gil, C Cuello, JSanchez-Osorio, IParrilla, XLucas, J NCaamaño, J MVazquez, JRoca, E A Martinez. Effects of Hoechst 33342 staining and ultraviolet irradiation on the developmental competence of in vitro-matured porcine oocytes. Theriogenology, 2011, 76(9): 1667–1675
https://doi.org/10.1016/j.theriogenology.2011.06.032 pmid: 21872317
19 EGomez, C Diez, MMunoz, DMartin, SCarrocera, J NCaamano. Effects of polarized light Microscopy on the viability of in vitro matured bovine oocytes. 1st Joint International Meeting, 2008, 64–65
20 IMolina, M Muñoz, CDíez, EGómez, E AMartínez, DMartín, BTrigal, SCarrocera, M AGil, JSánchezosorio, J NCaamaño. 351 polarized light microscopy: detection of microtubules and its effects on the viability of in vitro-matured porcine oocytes. Reproduction, Fertility, and Development, 2009, 22(1): 332–332 doi:10.1071/RDv22n1Ab351
21 P ANavarro, L Liu, J RTrimarchi, R AFerriani, D LKeefe. Noninvasive imaging of spindle dynamics during mammalian oocyte activation. Fertility and Sterility, 2005, 83(4 S1): 1197–1205
https://doi.org/10.1016/j.fertnstert.2004.07.983 pmid: 15831293
22 YYang, J J Dai, T Y Zhang, H L Wu, X J Chen, D F Zhang, H D Ma. Application of spindle-view in the enucleation porcine of oocytes. Chinese Journal of Biotechnology, 2007, 23(6): 1140–1145
pmid: 18257251
23 M EWesthusin, M JLevanduski, RScarborough, C RLooney, K RBondioli. Viable embryos and normal calves after nuclear transfer into Hoechst stained enucleated demi-oocytes of cows. Journal of Reproduction and Fertility, 1992, 95(2): 475–480
https://doi.org/10.1530/jrf.0.0950475 pmid: 1381440
24 XYang, L Zhang, AKovács, CTobback, R HFoote. Potential of hypertonic medium treatment for embryo micromanipulation: II. Assessment of nuclear transplantation methodology, isolation, subzona insertion, and electrofusion of blastomeres to intact or functionally enucleated oocytes in rabbits. Molecular Reproduction and Development, 1990, 27(2): 118–129
https://doi.org/10.1002/mrd.1080270206 pmid: 2248775
25 YTsunoda, Y Shioda, MOnodera, KNakamura, TUchida. Differential sensitivity of mouse pronuclei and zygote cytoplasm to Hoechst staining and ultraviolet irradiation. Journal of Reproduction and Fertility, 1988, 82(1): 173–178
https://doi.org/10.1530/jrf.0.0820173 pmid: 2448454
[1] Ruigao SONG, Yu WANG, Yanfang WANG, Jianguo ZHAO. Base editing in pigs for precision breeding[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 161-170.
[2] Chris PROUDFOOT, Gus MCFARLANE, Bruce WHITELAW, Simon LILLICO. Livestock breeding for the 21st century: the promise of the editing revolution[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 129-135.
[3] Zachariah MCLEAN, Björn OBACK, Götz LAIBLE. Embryo-mediated genome editing for accelerated genetic improvement of livestock[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 148-160.
[4] Ning WANG, Sile WANG, Yaxian WANG, Yuanxing CAI, Fan YANG, Huayan WANG. SALL4 maintains self-renewal of porcine pluripotent stem cells through downregulation of OTX2[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 81-92.
[5] Yong JIN, Manling ZHANG, Xinrong JU, Shuang LIANG, Qiang XIONG, Lihua ZHAO, Xiaowei NIE, Daorong HOU, Qiang LIU, Junzheng WANG, Chenyu WANG, Xiaokang LI, Lining ZHANG, Xiaorui LIU, Ying WANG, Haiyuan YANG, Yifan DAI, Rongfeng LI. Factors influencing the somatic cell nuclear transfer efficiency in pigs[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 73-80.
[6] Jianwen CHEN, Kaiyuan PAN, Zhen CHEN, Biao DING, Dandan SONG, Wenbin BAO, Yunhai ZHANG. Construction of multiple shRNA vectors targeting PEDV and TGEV and production of transgenic SCNT porcine embryos in vitro[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 66-72.
[7] Zheng AO, Chengfa ZHAO, Yanmin GAN, Xiao WU, Junsong SHI, Enqin ZHENG, Dewu LIU, Gengyuan CAI, Zhenfang WU, Zicong LI. Comparison of birth weight and umbilical and placental characteristics of cloned and artificial insemination-derived piglets[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 54-60.
[8] Yanna DANG, Kun ZHANG. Factors affecting early embryonic development in cattle: relevance for bovine cloning[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 33-41.
[9] Jianyong HAN, Yi-Liang MIAO, Jinlian HUA, Yan LI, Xue ZHANG, Jilong ZHOU, Na LI, Ying ZHANG, Jinying ZHANG, Zhonghua LIU. Porcine pluripotent stem cells: progress, challenges and prospects[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 8-27.
[10] Qijing LEI, Qin PAN, Shuai YU, Na LI, Shulin CHEN, Kuldip SIDHU, Jinlian HUA. Reprogramming of the pig primordial germ cells into pluripotent stem cells: a brief review[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 28-32.
[11] Lei CHEN, Shilin TIAN, Long JIN, Zongyi GUO, Dan ZHU, Lan JING, Tiandong CHE, Qianzi TANG, Siqing CHEN, Liang ZHANG, Tinghuan ZHANG, Zuohua LIU, Jinyong WANG, Mingzhou LI. Genome-wide analysis reveals selection for Chinese Rongchang pigs[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 319-326.
[12] Haiyan WANG, Qiaoxia ZHANG, Lilin YIN, Xiangdong LIU, Shuhong ZHAO, Mengjin ZHU, Changchun LI. Transcriptomic basis of neutrophil ratio variation induced by poly I:C stimulation in porcine peripheral blood[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 342-352.
[13] Longchao ZHANG, Jingwei YUE, Xin LIU, Jing LIANG, Kebin ZHAO, Hua YAN, Na LI, Lei PU, Yuebo ZHANG, Huibi SHI, Ligang WANG, Lixian WANG. Genome-wide search for candidate genes determining vertebrae number in pigs[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 327-334.
[14] Xingwang WANG, Rongrong DING, Jianping QUAN, Linxue YANG, Ming YANG, Enqin ZHENG, Dewu LIU, Gengyuan CAI, Zhenfang WU, Jie YANG. Genome-wide association analysis reveals genetic loci and candidate genes associated with intramuscular fat in Duroc pigs[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 335-341.
[15] Wen LUO, Bahareldin A. ABDALLA, Qinghua NIE, Xiquan ZHANG. The genetic regulation of skeletal muscle development: insights from chicken studies[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 295-304.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed