Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2020, Vol. 7 Issue (2) : 129-135    https://doi.org/10.15302/J-FASE-2019304
REVIEW
Livestock breeding for the 21st century: the promise of the editing revolution
Chris PROUDFOOT, Gus MCFARLANE, Bruce WHITELAW, Simon LILLICO()
The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
 Download: PDF(246 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In recent years there has been a veritable explosion in the use of genome editors to create site-specific changes, both in vitro and in vivo, to the genomes of a multitude of species for both basic research and biotechnology. Livestock, which form a vital component of most societies, are no exception. While selective breeding has been hugely successful at enhancing some production traits, the rate of progress is often slow and is limited to variants that exist within the breeding population. Genome editing provides the potential to move traits between breeds, in a single generation, with no impact on existing productivity or to develop de novo phenotypes that tackle intractable issues such as disease. As such, genome editors provide huge potential for ongoing livestock development programs in light of increased demand and disease challenge. This review will highlight some of the more notable agricultural applications of this technology in livestock.

Keywords cattle      pig      sheep      chicken      aquaculture      CRISPR     
Corresponding Author(s): Simon LILLICO   
Just Accepted Date: 06 December 2019   Online First Date: 02 January 2020    Issue Date: 28 April 2020
 Cite this article:   
Chris PROUDFOOT,Gus MCFARLANE,Bruce WHITELAW, et al. Livestock breeding for the 21st century: the promise of the editing revolution[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 129-135.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2019304
https://academic.hep.com.cn/fase/EN/Y2020/V7/I2/129
Fig.1  Genome editing in livestock. Genome editing has been reported in many major livestock species, enabling enhancement of the genetics underlying traits associated with welfare, production and disease resistance.
1 R Torres-Perez, J A Garcia-Martin, L Montoliu, J C Oliveros, F Pazos. WeReview: CRISPR tools—live repository of computational tools for assisting CRISPR/Cas experiments. Bioengineering, 2019, 6(3): 63
https://doi.org/10.3390/bioengineering6030063 pmid: 31349743
2 K Chaudhary, A Chattopadhyay, D Pratap. The evolution of CRISPR/Cas9 and their cousins: hope or hype? Biotechnology Letters, 2018, 40(3): 465–477
https://doi.org/10.1007/s10529-018-2506-7 pmid: 29344851
3 A Pickar-Oliver, C A Gersbach. The next generation of CRISPR-Cas technologies and applications. Nature Reviews: Molecular Cell Biology, 2019, 20(8): 490–507
https://doi.org/10.1038/s41580-019-0131-5 pmid: 31147612
4 M Christian, T Cermak, E L Doyle, C Schmidt, F Zhang, A Hummel, A J Bogdanove, D F Voytas. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics, 2010, 186(2): 757–761
https://doi.org/10.1534/genetics.110.120717 pmid: 20660643
5 M Jinek, K Chylinski, I Fonfara, M Hauer, J A Doudna, E Charpentier. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816–821
https://doi.org/10.1126/science.1225829 pmid: 22745249
6 L Cong, F A Ran, D Cox, S Lin, R Barretto, N Habib, P D Hsu, X Wu, W Jiang, L A Marraffini, F Zhang. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819–823
https://doi.org/10.1126/science.1231143 pmid: 23287718
7 P Mali, L Yang, K M Esvelt, J Aach, M Guell, J E DiCarlo, J E Norville, G M Church. RNA-guided human genome engineering via Cas9. Science, 2013, 339(6121): 823–826
https://doi.org/10.1126/science.1232033 pmid: 23287722
8 J Hauschild, B Petersen, Y Santiago, A L Queisser, J W Carnwath, A Lucas-Hahn, L Zhang, X Meng, P D Gregory, R Schwinzer, G J Cost, H Niemann. Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(29): 12013–12017
https://doi.org/10.1073/pnas.1106422108 pmid: 21730124
9 S G Lillico, C Proudfoot, D F Carlson, D Stverakova, C Neil, C Blain, T J King, W A Ritchie, W Tan, A J Mileham, D G McLaren, S C Fahrenkrug, C B Whitelaw. Live pigs produced from genome edited zygotes. Scientific Reports, 2013, 3(1): 2847
https://doi.org/10.1038/srep02847 pmid: 24108318
10 K E Park, A V Kaucher, A Powell, M S Waqas, S E Sandmaier, M J Oatley, C H Park, A Tibary, D M Donovan, L A Blomberg, S G Lillico, C B Whitelaw, A Mileham, B P Telugu, J M Oatley. Generation of germline ablated male pigs by CRISPR/Cas9 editing of the NANOS2 gene. Scientific Reports, 2017, 7(1): 40176
https://doi.org/10.1038/srep40176 pmid: 28071690
11 Z He, T Zhang, L Jiang, M Zhou, D Wu, J Mei, Y Cheng. Use of CRISPR/Cas9 technology efficiently targetted goat myostatin through zygotes microinjection resulting in double-muscled phenotype in goats. Bioscience Reports, 2018, 38(6): BSR20180742
https://doi.org/10.1042/BSR20180742 pmid: 30201688
12 T P Sheets, C H Park, K E Park, A Powell, D M Donovan, B P Telugu. Somatic cell nuclear transfer followed by CRIPSR/Cas9 microinjection results in highly efficient genome editing in cloned pigs. International Journal of Molecular Sciences, 2016, 17(12): 2031
https://doi.org/10.3390/ijms17122031 pmid: 27918485
13 D F Carlson, C A Lancto, B Zang, E S Kim, M Walton, D Oldeschulte, C Seabury, T S Sonstegard, S C Fahrenkrug. Production of hornless dairy cattle from genome-edited cell lines. Nature Biotechnology, 2016, 34(5): 479–481
https://doi.org/10.1038/nbt.3560 pmid: 27153274
14 S Zhou, H Yu, X Zhao, B Cai, Q Ding, Y Huang, Y Li, Y Li, Y Niu, A Lei, Q Kou, X Huang, B Petersen, B Ma, Y Chen, X Wang. Generation of gene-edited sheep with a defined Booroola fecundity gene (FecBB) mutation in bone morphogenetic protein receptor type 1B (BMPR1B) via clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) 9. Reproduction, Fertility, and Development, 2018, 30(12): 1616–1621
https://doi.org/10.1071/RD18086 pmid: 31039970
15 S G Lillico, C Proudfoot, T J King, W Tan, L Zhang, R Mardjuki, D E Paschon, E J Rebar, F D Urnov, A J Mileham, D G McLaren, C B Whitelaw. Mammalian interspecies substitution of immune modulatory alleles by genome editing. Scientific Reports, 2016, 6(1): 21645
https://doi.org/10.1038/srep21645 pmid: 26898342
16 W Tan, D F Carlson, C A Lancto, J R Garbe, D A Webster, P B Hackett, S C Fahrenkrug. Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(41): 16526–16531
https://doi.org/10.1073/pnas.1310478110 pmid: 24014591
17 A E Young, T A Mansour, B R McNabb, J R Owen, J F Trott, C T Brown, A L van Eenennaam. Genomic and phenotypic analyses of six offspring of a genome-edited hornless bull. Nature Biotechnology, 2019 [Published Online] doi: 10.1038/s41587-019-0266-0
pmid: 31591551
18 L Grobet, L J Royo Martin, D Poncelet, D Pirottin, B Brouwers, J Riquet, A Schoeberlein, S Dunner, F Ménissier, J Massabanda, R Fries, R Hanset, M Georges. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nature Genetics, 1997, 17(1): 71–74
https://doi.org/10.1038/ng0997-71 pmid: 9288100
19 A Clop, F Marcq, H Takeda, D Pirottin, X Tordoir, B Bibé, J Bouix, F Caiment, J M Elsen, F Eychenne, C Larzul, E Laville, F Meish, D Milenkovic, J Tobin, C Charlier, M Georges. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nature Genetics, 2006, 38(7): 813–818
https://doi.org/10.1038/ng1810 pmid: 16751773
20 C Proudfoot, D F Carlson, R Huddart, C R Long, J H Pryor, T J King, S G Lillico, A J Mileham, D G McLaren, C B A Whitelaw, S C Fahrenkrug. Genome edited sheep and cattle. Transgenic Research, 2015, 24(1): 147–153
https://doi.org/10.1007/s11248-014-9832-x pmid: 25204701
21 M Crispo, A P Mulet, L Tesson, N Barrera, F Cuadro, P C dos Santos-Neto, T H Nguyen, A Crénéguy, L Brusselle, I Anegón, A Menchaca. Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes. PLoS One, 2015, 10(8): e0136690
https://doi.org/10.1371/journal.pone.0136690 pmid: 26305800
22 K Wang, H Ouyang, Z Xie, C Yao, N Guo, M Li, H Jiao, D Pang. Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system. Scientific Reports, 2015, 5(1): 16623
https://doi.org/10.1038/srep16623 pmid: 26564781
23 G H Davis. Fecundity genes in sheep. Animal Reproduction Science, 2004, 82–83: 247–253
https://doi.org/10.1016/j.anireprosci.2004.04.001 pmid: 15271457
24 C Yue, W L Bai, Y Y Zheng, T Y Hui, J M Sun, D Guo, S L Guo, Z Y Wang. Correlation analysis of candidate gene SNP for high-yield in Liaoning cashmere goats with litter size and cashmere performance. Animal Biotechnology, 2019 [Published Online] doi: 10.1080/10495398.2019.1652188
pmid: 31424321
25 J Wei, S Wagner, P Maclean, B Brophy, S Cole, G Smolenski, D F Carlson, S C Fahrenkrug, D N Wells, G Laible. Cattle with a precise, zygote-mediated deletion safely eliminate the major milk allergen β-lactoglobulin. Scientific Reports, 2018, 8(1): 7661
https://doi.org/10.1038/s41598-018-25654-8 pmid: 29769555
26 C Cui, Y Song, J Liu, H Ge, Q Li, H Huang, L Hu, H Zhu, Y Jin, Y Zhang. Gene targeting by TALEN-induced homologous recombination in goats directs production of β-lactoglobulin-free, high-human lactoferrin milk. Scientific Reports, 2015, 5(1): 10482
https://doi.org/10.1038/srep10482 pmid: 25994151
27 W Zhou, Y Wan, R Guo, M Deng, K Deng, Z Wang, Y Zhang, F Wang. Generation of β-lactoglobulin knock-out goats using CRISPR/Cas9. PLoS One, 2017, 12(10): e0186056
https://doi.org/10.1371/journal.pone.0186056 pmid: 29016691
28 Y Nan, C Wu, G Gu, W Sun, Y J Zhang, E M Zhou. Improved vaccine against PRRSV: current progress and future perspective. Frontiers in Microbiology, 2017, 8: 1635
https://doi.org/10.3389/fmicb.2017.01635 pmid: 28894443
29 J G Calvert, D E Slade, S L Shields, R Jolie, R M Mannan, R G Ankenbauer, S K Welch. CD163 expression confers susceptibility to porcine reproductive and respiratory syndrome viruses. Journal of Virology, 2007, 81(14): 7371–7379
https://doi.org/10.1128/JVI.00513-07 pmid: 17494075
30 K M Whitworth, R R Rowland, C L Ewen, B R Trible, M A Kerrigan, A G Cino-Ozuna, M S Samuel, J E Lightner, D G McLaren, A J Mileham, K D Wells, R S Prather. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nature Biotechnology, 2016, 34(1): 20–22
https://doi.org/10.1038/nbt.3434 pmid: 26641533
31 C Burkard, T Opriessnig, A J Mileham, T Stadejek, T Ait-Ali, S G Lillico, C B A Whitelaw, A L Archibald. Pigs lacking the scavenger receptor cysteine-rich domain 5 of CD163 are resistant to porcine reproductive and respiratory syndrome virus 1 infection. Journal of Virology, 2018, 92(16): e0045-18
https://doi.org/10.1128/JVI.00415-18 pmid: 29925651
32 B Delmas, J Gelfi, R L’Haridon, L K Vogel, H Sjöström, O Norén, H Laude. Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV. Nature, 1992, 357(6377): 417–420
https://doi.org/10.1038/357417a0 pmid: 1350661
33 C L Yeager, R A Ashmun, R K Williams, C B Cardellichio, L H Shapiro, A T Look, K V Holmes. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature, 1992, 357(6377): 420–422
https://doi.org/10.1038/357420a0 pmid: 1350662
34 K M Whitworth, R R R Rowland, V Petrovan, M Sheahan, A G Cino-Ozuna, Y Fang, R Hesse, A Mileham, M S Samuel, K D Wells, R S Prather. Resistance to coronavirus infection in amino peptidase N-deficient pigs. Transgenic Research, 2019, 28(1): 21–32
https://doi.org/10.1007/s11248-018-0100-3 pmid: 30315482
35 J S Oh, D S Song, B K Park. Identification of a putative cellular receptor 150 kDa polypeptide for porcine epidemic diarrhea virus in porcine enterocytes. Journal of Veterinary Science, 2003, 4(3): 269–275
https://doi.org/10.4142/jvs.2003.4.3.269 pmid: 14685034
36 A N Kamau, J E Park, E S Park, J E Yu, J Rho, H J Shin. Porcine amino peptidase N domain VII has critical role in binding and entry of porcine epidemic diarrhea virus. Virus Research, 2017, 227: 150–157
https://doi.org/10.1016/j.virusres.2016.10.004 pmid: 27732876
37 K Shirato, M Maejima, M T Islam, A Miyazaki, M Kawase, S Matsuyama, F Taguchi. Porcine aminopeptidase N is not a cellular receptor of porcine epidemic diarrhea virus, but promotes its infectivity via aminopeptidase activity. Journal of General Virology, 2016, 97(10): 2528–2539
https://doi.org/10.1099/jgv.0.000563 pmid: 27449937
38 W Li, R Luo, Q He, F J M van Kuppeveld, P J M Rottier, B J Bosch. Aminopeptidase N is not required for porcine epidemic diarrhea virus cell entry. Virus Research, 2017, 235: 6–13
https://doi.org/10.1016/j.virusres.2017.03.018 pmid: 28363778
39 R L Gratacap, A Wargelius, R B Edvardsen, R D Houston. Potential of genome editing to improve aquaculture breeding and production. Trends in Genetics, 2019, 35(9): 672–684
https://doi.org/10.1016/j.tig.2019.06.006 pmid: 31331664
40 M Li, H Yang, J Zhao, L Fang, H Shi, M Li, Y Sun, X Zhang, D Jiang, L Zhou, D Wang. Efficient and heritable gene targeting in tilapia by CRISPR/Cas9. Genetics, 2014, 197(2): 591–599
https://doi.org/10.1534/genetics.114.163667 pmid: 24709635
41 S M Santos Nassif Lacerda, G M J Costa, M A da Silva, P H Almeida Campos-Junior, T M Segatelli, M T D Peixoto, R R Resende, L R de França. Phenotypic characterization and in vitro propagation and transplantation of the Nile tilapia (Oreochromis niloticus) spermatogonial stem cells. General and Comparative Endocrinology, 2013, 192: 95–106
https://doi.org/10.1016/j.ygcen.2013.06.013 pmid: 23792279
42 K Khalil, M Elayat, E Khalifa, S Daghash, A Elaswad, M Miller, H Abdelrahman, Z Ye, R Odin, D Drescher, K Vo, K Gosh, W Bugg, D Robinson, R Dunham. Generation of myostatin gene-edited channel catfish (Ictalurus punctatus) via zygote injection of CRISPR/Cas9 system. Scientific Reports, 2017, 7(1): 7301
43 Z Zhong, P Niu, M Wang, G Huang, S Xu, Y Sun, X Xu, Y Hou, X Sun, Y Yan, H Wang. Targeted disruption of sp7 and myostatin with CRISPR-Cas9 results in severe bone defects and more muscular cells in common carp. Scientific Reports, 2016, 6(1): 22953
https://doi.org/10.1038/srep22953 pmid: 26976234
44 C Wang, Y L Chen, W P Bian, S L Xie, G L Qi, L Liu, P R Strauss, J X Zou, D S Pei. Deletion of MSTNa and MSTNb impairs the immune system and affects growth performance in zebrafish. Fish & Shellfish Immunology, 2018, 72: 572–580
https://doi.org/10.1016/j.fsi.2017.11.040 pmid: 29175471
45 A Wargelius, S Leininger, K O Skaftnesmo, L Kleppe, E Andersson, G L Taranger, R W Schulz, R B Edvardsen. Dnd knockout ablates germ cells and demonstrates germ cell independent sex differentiation in Atlantic salmon. Scientific Reports, 2016, 6(1): 21284
https://doi.org/10.1038/srep21284 pmid: 26888627
46 J Zhang, F Song, Y Sun, K Yu, J Xiang. CRISPR/Cas9-mediated deletion of EcMIH shortens metamorphosis time from mysis larva to postlarva of Exopalaemon carinicauda. Fish & Shellfish Immunology, 2018, 77: 244–251
https://doi.org/10.1016/j.fsi.2018.04.002 pmid: 29621632
47 H Yu, H Li, Q Li, R Xu, C Yue, S Du. Targeted gene disruption in pacific oyster based on CRISPR/Cas9 ribonucleoprotein complexes. Marine Biotechnology, 2019, 21(3): 301–309
https://doi.org/10.1007/s10126-019-09885-y pmid: 30810831
48 M C van de Lavoir, J H Diamond, P A Leighton, C Mather-Love, B S Heyer, R Bradshaw, A Kerchner, L T Hooi, T M Gessaro, S E Swanberg, M E Delany, R J Etches. Germline transmission of genetically modified primordial germ cells. Nature, 2006, 441(7094): 766–769
https://doi.org/10.1038/nature04831 pmid: 16760981
49 L Taylor, D F Carlson, S Nandi, A Sherman, S C Fahrenkrug, M J McGrew. Efficient TALEN-mediated gene targeting of chicken primordial germ cells. Development, 2017, 144(5): 928–934
https://doi.org/10.1242/dev.145367 pmid: 28174243
50 M E Woodcock, A A Gheyas, A S Mason, S Nandi, L Taylor, A Sherman, J Smith, D W Burt, R Hawken, M J McGrew. Reviving rare chicken breeds using genetically engineered sterility in surrogate host birds. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(42): 20930–20937
https://doi.org/10.1073/pnas.1906316116 pmid: 31575742
51 J Jenko, G Gorjanc, M A Cleveland, R K Varshney, C B A Whitelaw, J A Woolliams, J M Hickey. Potential of promotion of alleles by genome editing to improve quantitative traits in livestock breeding programs. Genetics, Selection, Evolution, 2015, 47(1): 55
https://doi.org/10.1186/s12711-015-0135-3 pmid: 26133579
52 S Eriksson, E Jonas, L Rydhmer, H Röcklinsberg. Invited review: breeding and ethical perspectives on genetically modified and genome edited cattle. Journal of Dairy Science, 2018, 101(1): 1–17
https://doi.org/10.3168/jds.2017-12962 pmid: 29102147
53 E McConnachie, M J Hötzel, J A Robbins, A Shriver, D M Weary, M A G von Keyserlingk. Public attitudes towards genetically modified polled cattle. PLoS One, 2019, 14(5): e0216542
https://doi.org/10.1371/journal.pone.0216542 pmid: 31075123
54 M C Yunes, D L Teixeira, M A G von Keyserlingk, M J Hötzel. Is gene editing an acceptable alternative to castration in pigs? PLoS One, 2019, 14(6): e0218176
https://doi.org/10.1371/journal.pone.0218176 pmid: 31233520
55 J McPhetres, B T Rutjens, N Weinstein, J A Brisson. Modifying attitudes about modified foods: increased knowledge leads to more positive attitudes. Journal of Environmental Psychology, 2019, 64: 21–29
https://doi.org/10.1016/j.jenvp.2019.04.012
[1] Kunling CHEN, Caixia GAO. Genome-edited crops: how to move them from laboratory to market[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 181-187.
[2] Ruigao SONG, Yu WANG, Yanfang WANG, Jianguo ZHAO. Base editing in pigs for precision breeding[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 161-170.
[3] Jan Pieter VAN DER BERG, Gijs A. KLETER, Evy BATTAGLIA, Martien A. M. GROENEN, Esther J. KOK. Developments in genetic modification of cattle and implications for regulation, safety and traceability[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 136-147.
[4] Zachariah MCLEAN, Björn OBACK, Götz LAIBLE. Embryo-mediated genome editing for accelerated genetic improvement of livestock[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 148-160.
[5] Haoyi WANG, Sen WU, Mario R. CAPECCHI, Rudolf JAENISCH. A brief review of genome editing technology for generating animal models[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 123-128.
[6] Ning WANG, Sile WANG, Yaxian WANG, Yuanxing CAI, Fan YANG, Huayan WANG. SALL4 maintains self-renewal of porcine pluripotent stem cells through downregulation of OTX2[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 81-92.
[7] Yong JIN, Manling ZHANG, Xinrong JU, Shuang LIANG, Qiang XIONG, Lihua ZHAO, Xiaowei NIE, Daorong HOU, Qiang LIU, Junzheng WANG, Chenyu WANG, Xiaokang LI, Lining ZHANG, Xiaorui LIU, Ying WANG, Haiyuan YANG, Yifan DAI, Rongfeng LI. Factors influencing the somatic cell nuclear transfer efficiency in pigs[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 73-80.
[8] Jianwen CHEN, Kaiyuan PAN, Zhen CHEN, Biao DING, Dandan SONG, Wenbin BAO, Yunhai ZHANG. Construction of multiple shRNA vectors targeting PEDV and TGEV and production of transgenic SCNT porcine embryos in vitro[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 66-72.
[9] Chengcheng ZHAO, Junsong SHI, Rong ZHOU, Ranbiao MAI, Lvhua LUO, Xiaoyan HE, Hongmei JI, Gengyuan CAI, Dewu LIU, Enqin ZHENG, Zhenfang WU, Zicong LI. Effects of enucleation method on in vitro and in vivo development rate of cloned pig embryos[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 61-65.
[10] Zheng AO, Chengfa ZHAO, Yanmin GAN, Xiao WU, Junsong SHI, Enqin ZHENG, Dewu LIU, Gengyuan CAI, Zhenfang WU, Zicong LI. Comparison of birth weight and umbilical and placental characteristics of cloned and artificial insemination-derived piglets[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 54-60.
[11] Jianyong HAN, Yi-Liang MIAO, Jinlian HUA, Yan LI, Xue ZHANG, Jilong ZHOU, Na LI, Ying ZHANG, Jinying ZHANG, Zhonghua LIU. Porcine pluripotent stem cells: progress, challenges and prospects[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 8-27.
[12] Qijing LEI, Qin PAN, Shuai YU, Na LI, Shulin CHEN, Kuldip SIDHU, Jinlian HUA. Reprogramming of the pig primordial germ cells into pluripotent stem cells: a brief review[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 28-32.
[13] Cécile DURANTON, Cory MATTHEW. Impact of introducing a herb pasture area into a New Zealand sheep and beef hill country farm system: a modeling analysis[J]. Front. Agr. Sci. Eng. , 2018, 5(1): 87-97.
[14] Wenteng XU, Songlin CHEN. Genomics and genetic breeding in aquatic animals: progress and prospects[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 305-318.
[15] Lei CHEN, Shilin TIAN, Long JIN, Zongyi GUO, Dan ZHU, Lan JING, Tiandong CHE, Qianzi TANG, Siqing CHEN, Liang ZHANG, Tinghuan ZHANG, Zuohua LIU, Jinyong WANG, Mingzhou LI. Genome-wide analysis reveals selection for Chinese Rongchang pigs[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 319-326.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed