|
|
Genome-edited crops: how to move them from laboratory to market |
Kunling CHEN1, Caixia GAO1,2( ) |
1. State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China 2. College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, Beijing 100101, China |
|
|
Abstract Recent breakthroughs in CRISPR technology allow specific genome manipulation of almost all crops and have initiated a revolution in precision crop breeding. Rationally-based regulation and widespread public acceptance are needed to propel genome-edited crops from laboratory to market and to translate this innovative technology into agricultural productivity.
|
Keywords
CRISPR/Cas
genome editing
base editing
precision breeding
regulation
|
Corresponding Author(s):
Caixia GAO
|
Just Accepted Date: 13 February 2020
Online First Date: 02 March 2020
Issue Date: 28 April 2020
|
|
1 |
A Scheben, F Wolter, J Batley, H Puchta, D Edwards. Towards CRISPR/Cas crops—bringing together genomics and genome editing. New Phytologist, 2017, 216(3): 682–698
https://doi.org/10.1111/nph.14702
pmid: 28762506
|
2 |
M Pacher, H Puchta. From classical mutagenesis to nuclease-based breeding—directing natural DNA repair for a natural end-product. Plant Journal, 2017, 90(4): 819–833
https://doi.org/10.1111/tpj.13469
pmid: 28027431
|
3 |
J R Prado, G Segers, T Voelker, D Carson, R Dobert, J Phillips, K Cook, C Cornejo, J Monken, L Grapes, T Reynolds, S Martino-Catt. Genetically engineered crops: from idea to product. Annual Review of Plant Biology, 2014, 65(1): 769–790
https://doi.org/10.1146/annurev-arplant-050213-040039
pmid: 24579994
|
4 |
K Chen, Y Wang, R Zhang, H Zhang, C Gao. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annual Review of Plant Biology, 2019, 70(1): 667–697
https://doi.org/10.1146/annurev-arplant-050718-100049
pmid: 30835493
|
5 |
J F Li, J E Norville, J Aach, M McCormack, D Zhang, J Bush, G M Church, J Sheen. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology, 2013, 31(8): 688–691
https://doi.org/10.1038/nbt.2654
pmid: 23929339
|
6 |
V Nekrasov, B Staskawicz, D Weigel, J D Jones, S Kamoun. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature Biotechnology, 2013, 31(8): 691–693
https://doi.org/10.1038/nbt.2655
pmid: 23929340
|
7 |
Q Shan, Y Wang, J Li, Y Zhang, K Chen, Z Liang, K Zhang, J Liu, J J Xi, J L Qiu, C Gao. Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology, 2013, 31(8): 686–688
https://doi.org/10.1038/nbt.2650
pmid: 23929338
|
8 |
K Yin, C Gao, J L Qiu. Progress and prospects in plant genome editing. Nature Plants, 2017, 3(8): 17107
https://doi.org/10.1038/nplants.2017.107
pmid: 28758991
|
9 |
R Mishra, R K Joshi, K Zhao. Base editing in crops: current advances, limitations and future implications. Plant Biotechnology Journal, 2020, 18(1): 20–31
https://doi.org/10.1111/pbi.13225
pmid: 31365173
|
10 |
A V Anzalone, P B Randolph, J R Davis, A A Sousa, L W Koblan, J M Levy, P J Chen, C Wilson, G A Newby, A Raguram, D R Liu. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 2019, 576(7785): 149–157
https://doi.org/10.1038/s41586-019-1711-4
pmid: 31634902
|
11 |
J W Woo, J Kim, S I Kwon, C Corvalán, S W Cho, H Kim, S G Kim, S T Kim, S Choe, J S Kim. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nature Biotechnology, 2015, 33(11): 1162–1164
https://doi.org/10.1038/nbt.3389
pmid: 26479191
|
12 |
S Svitashev, C Schwartz, B Lenderts, J K Young, A Mark Cigan. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nature Communications, 2016, 7(1): 13274
https://doi.org/10.1038/ncomms13274
pmid: 27848933
|
13 |
Z Liang, K Chen, T Li, Y Zhang, Y Wang, Q Zhao, J Liu, H Zhang, C Liu, Y Ran, C Gao. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nature Communications, 2017, 8(1): 14261
https://doi.org/10.1038/ncomms14261
pmid: 28098143
|
14 |
Y Wang, X Cheng, Q Shan, Y Zhang, J Liu, C Gao, J L Qiu. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 2014, 32(9): 947–951
https://doi.org/10.1038/nbt.2969
pmid: 25038773
|
15 |
R Xu, Y Yang, R Qin, H Li, C Qiu, L Li, P Wei, J Yang. Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice. Journal of Genetics and Genomics, 2016, 43(8): 529–532
https://doi.org/10.1016/j.jgg.2016.07.003
pmid: 27543262
|
16 |
S Sánchez-León, J Gil-Humanes, C V Ozuna, M J Giménez, C Sousa, D F Voytas, F Barro. Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnology Journal, 2018, 16(4): 902–910
https://doi.org/10.1111/pbi.12837
pmid: 28921815
|
17 |
H Zhang, X Si, X Ji, R Fan, J Liu, K Chen, D Wang, C Gao. Genome editing of upstream open reading frames enables translational control in plants. Nature Biotechnology, 2018, 36(9): 894–898
https://doi.org/10.1038/nbt.4202
pmid: 30080209
|
18 |
R Oliva, C Ji, G Atienza-Grande, J C Huguet-Tapia, A Perez-Quintero, T Li, J S Eom, C Li, H Nguyen, B Liu, F Auguy, C Sciallano, V T Luu, G S Dossa, S Cunnac, S M Schmidt, I H Slamet-Loedin, C Vera Cruz, B Szurek, W B Frommer, F F White, B Yang. Broad-spectrum resistance to bacterial blight in rice using genome editing. Nature Biotechnology, 2019, 37(11): 1344–1350
https://doi.org/10.1038/s41587-019-0267-z
pmid: 31659337
|
19 |
I Khanday, D Skinner, B Yang, R Mercier, V Sundaresan. A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. Nature, 2019, 565(7737): 91–95
https://doi.org/10.1038/s41586-018-0785-8
pmid: 30542157
|
20 |
C Wang, Q Liu, Y Shen, Y Hua, J Wang, J Lin, M Wu, T Sun, Z Cheng, R Mercier, K Wang. Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nature Biotechnology, 2019, 37(3): 283–286
https://doi.org/10.1038/s41587-018-0003-0
pmid: 30610223
|
21 |
J Shi, H Gao, H Wang, H R Lafitte, R L Archibald, M Yang, S M Hakimi, H Mo, J E Habben. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnology Journal, 2017, 15(2): 207–216
https://doi.org/10.1111/pbi.12603
pmid: 27442592
|
22 |
Y Sun, X Zhang, C Wu, Y He, Y Ma, H Hou, X Guo, W Du, Y Zhao, L Xia. Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Molecular Plant, 2016, 9(4): 628–631
https://doi.org/10.1016/j.molp.2016.01.001
pmid: 26768120
|
23 |
J Li, X Meng, Y Zong, K Chen, H Zhang, J Liu, J Li, C Gao. Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9. Nature Plants, 2016, 2(10): 16139
https://doi.org/10.1038/nplants.2016.139
pmid: 27618611
|
24 |
R Zhang, J Liu, Z Chai, S Chen, Y Bai, Y Zong, K Chen, J Li, L Jiang, C Gao. Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing. Nature Plants, 2019, 5(5): 480–485
https://doi.org/10.1038/s41477-019-0405-0
pmid: 30988404
|
25 |
T Li, X Yang, Y Yu, X Si, X Zhai, H Zhang, W Dong, C Gao, C Xu. Domestication of wild tomato is accelerated by genome editing. Nature Biotechnology, 2018, 36(12): 1160–1163
https://doi.org/10.1038/nbt.4273
pmid: 30272676
|
26 |
Z H Lemmon, N T Reem, J Dalrymple, S Soyk, K E Swartwood, D Rodriguez-Leal, J Van Eck, Z B Lippman. Rapid improvement of domestication traits in an orphan crop by genome editing. Nature Plants, 2018, 4(10): 766–770
https://doi.org/10.1038/s41477-018-0259-x
pmid: 30287957
|
27 |
A Zsögön, T Čermák, E R Naves, M M Notini, K H Edel, S Weinl, L Freschi, D F Voytas, J Kudla, L E P Peres. De novo domestication of wild tomato using genome editing. Nature Biotechnology, 2018, 36(12): 1211–1216
https://doi.org/10.1038/nbt.4272
pmid: 30272678
|
28 |
T Ishii. Crop gene-editing: should we bypass or apply existing GMO policy? Trends in Plant Science, 2018, 23(11): 947–950
https://doi.org/10.1016/j.tplants.2018.09.001
pmid: 30241735
|
29 |
T Ishii, M Araki. A future scenario of the global regulatory landscape regarding genome-edited crops. GM Crops and Food: Biotechnology in Agriculture and the Food Chain, 2017, 8(1): 44–56
https://doi.org/10.1080/21645698.2016.1261787
pmid: 27960622
|
30 |
A I Whelan, M A Lema. Regulatory framework for gene editing and other new breeding techniques (NBTs) in Argentina. GM Crops and Food: Biotechnology in Agriculture and the Food Chain, 2015, 6(4): 253–265
https://doi.org/10.1080/21645698.2015.1114698
pmid: 26552666
|
31 |
L Zannoni. Evolving regulatory landscape for genome-edited plants. CRISPR Journal, 2019, 2(1): 3–8
https://doi.org/10.1089/crispr.2018.0016
pmid: 31021233
|
32 |
S J Smyth. Canadian regulatory perspectives on genome engineered crops. GM Crops and Food: Biotechnology in Agriculture and the Food Chain, 2017, 8(1): 35–43
https://doi.org/10.1080/21645698.2016.1257468
pmid: 27858499
|
33 |
Office of the Gene Technology Regulator (OGTR) of Australian Government of Department of Health. Overview of the Gene Technology Amendment (2019 Measures No. 1) Regulations 2001. Available at OGTR website on September 1, 2019
|
34 |
G Li, Y G Liu, Y Chen. Genome-editing technologies: the gap between application and policy. Science China Life Sciences, 2019, 62(11): 1534–1538
https://doi.org/10.1007/s11427-019-1566-1
pmid: 31686319
|
35 |
United States Department of Agriculture (USDA). Secretary Perdue Issues USDA Statement on Plant Breeding Innovation. Available at USDA website on March 28, 2018
|
36 |
J Cameron. 13 nations say it’s time to end ‘political posturing’ and embrace crop gene editing. Available at Genetic Literacy Project website on November 7, 2018
|
37 |
C Bruetschy. The EU regulatory framework on genetically modified organisms (GMOs). Transgenic Research, 2019, 28(Suppl 2): 169–174
https://doi.org/10.1007/s11248-019-00149-y
pmid: 31321701
|
38 |
S Huang, D Weigel, R N Beachy, J Li. A proposed regulatory framework for genome-edited crops. Nature Genetics, 2016, 48(2): 109–111
https://doi.org/10.1038/ng.3484
pmid: 26813761
|
39 |
A Scheben, D Edwards. Bottlenecks for genome-edited crops on the road from lab to farm. Genome Biology, 2018, 19(1): 178
https://doi.org/10.1186/s13059-018-1555-5
pmid: 30367679
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|