|
|
|
The development and application of genome editing technology in ruminants: a review |
Mengke YUAN1,2, Yuanpeng GAO1,2, Jing HAN1,2, Teng WU1,2, Jingcheng ZHANG1,2, Yongke WEI1,2, Yong ZHANG1,2( ) |
1. College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China 2. Key Laboratory of Animal Biotechnology (Ministry of Agriculture), Northwest A&F University, Yangling 712100, China |
|
|
|
|
Abstract Transgenic ruminants are a valuable resource for both animal breeding and biomedical research. The development of transgenic breeding is proceeding slowly, because it suffers from low efficiency of gene transfer and possible safety problems from uncontrolled random integration. However, new breeding methods combined with genome editing and somatic cell nuclear transfer or microinjection can offer an economic and efficient way to produce gene-edited ruminants, which can serve as bioreactors or have improved disease resistance, animal welfare and product quality. Recent advances in precise genome editing technologies, especially clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 nucleases, are enabling the systematic development of gene-edited ruminant production. This review covers the development of gene-edited ruminants, the particulars of site-specific engineered nucleases and the state of the art and new insights into practical applications and social acceptance of genome editing technology in ruminants. It is concluded that the production of gene-edited ruminants is feasible and through improvements in genome editing technology it is possible to help feed the world.
|
| Keywords
bioreactors
breeding
engineered endonucleases
genome editing
ruminants
|
|
Corresponding Author(s):
Yong ZHANG
|
|
Just Accepted Date: 19 December 2019
Online First Date: 13 January 2020
Issue Date: 28 April 2020
|
|
| 1 |
Y Gao, H Wu, Y Wang, X Liu, L Chen, Q Li, C Cui, X Liu, J Zhang, Y Zhang. Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects. Genome Biology, 2017, 18(1): 13
https://doi.org/10.1186/s13059-016-1144-4
pmid: 28143571
|
| 2 |
X Miao. Recent advances in the development of new transgenic animal technology. Cellular and Molecular Life Sciences, 2013, 70(5): 815–828
https://doi.org/10.1007/s00018-012-1081-7
pmid: 22833168
|
| 3 |
D F Carlson, C A Lancto, B Zang, E S Kim, M Walton, D Oldeschulte, C Seabury, T S Sonstegard, S C Fahrenkrug. Production of hornless dairy cattle from genome-edited cell lines. Nature Biotechnology, 2016, 34(5): 479–481
https://doi.org/10.1038/nbt.3560
pmid: 27153274
|
| 4 |
J Luo, Z Song, S Yu, D Cui, B Wang, F Ding, S Li, Y Dai, N Li. Efficient generation of myostatin (MSTN) biallelic mutations in cattle using zinc finger nucleases. PLoS One, 2014, 9(4): e95225
https://doi.org/10.1371/journal.pone.0095225
pmid: 24743319
|
| 5 |
R E Hammer, V G Pursel, C E Rexroad Jr, R J Wall, D J Bolt, K M Ebert, R D Palmiter, R L Brinster. Production of transgenic rabbits, sheep and pigs by microinjection. Nature, 1985, 315(6021): 680–683
https://doi.org/10.1038/315680a0
pmid: 3892305
|
| 6 |
S G Lillico, C Proudfoot, D F Carlson, D Stverakova, C Neil, C Blain, T J King, W A Ritchie, W Tan, A J Mileham, D G McLaren, S C Fahrenkrug, C B A Whitelaw. Live pigs produced from genome edited zygotes. Scientific Reports, 2013, 3(1): 2847
https://doi.org/10.1038/srep02847
pmid: 24108318
|
| 7 |
H Wu, Y Wang, Y Zhang, M Yang, J Lv, J Liu, Y Zhang. TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(13): E1530–E1539
https://doi.org/10.1073/pnas.1421587112
pmid: 25733846
|
| 8 |
M R Capecchi. How close are we to implementing gene targeting in animals other than the mouse? Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(3): 956–957
https://doi.org/10.1073/pnas.97.3.956
pmid: 10655465
|
| 9 |
A Baguisi, E Behboodi, D T Melican, J S Pollock, M M Destrempes, C Cammuso, J L Williams, S D Nims, C A Porter, P Midura, M J Palacios, S L Ayres, R S Denniston, M L Hayes, C A Ziomek, H M Meade, R A Godke, W G Gavin, E W Overström, Y Echelard. Production of goats by somatic cell nuclear transfer. Nature Biotechnology, 1999, 17(5): 456–461
https://doi.org/10.1038/8632
pmid: 10331804
|
| 10 |
J B Cibelli, S L Stice, P J Golueke, J J Kane, J Jerry, C Blackwell, F A Ponce de León, J M Robl. Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science, 1998, 280(5367): 1256–1258
https://doi.org/10.1126/science.280.5367.1256
pmid: 9596577
|
| 11 |
Y Kato, T Tani, Y Sotomaru, K Kurokawa, J Kato, H Doguchi, H Yasue, Y Tsunoda. Eight calves cloned from somatic cells of a single adult. Science, 1998, 282(5396): 2095–2098
https://doi.org/10.1126/science.282.5396.2095
pmid: 9851933
|
| 12 |
I Wilmut, A E Schnieke, J McWhir, A J Kind, K H S Campbell. Viable offspring derived from fetal and adult mammalian cells. Nature, 1997, 385(6619): 810–813
https://doi.org/10.1038/385810a0
pmid: 9039911
|
| 13 |
A E Schnieke, A J Kind, W A Ritchie, K Mycock, A R Scott, M Ritchie, I Wilmut, A Colman, K H S Campbell. Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science, 1997, 278(5346): 2130–2133
https://doi.org/10.1126/science.278.5346.2130
pmid: 9405350
|
| 14 |
L C Garas, J D Murray, E A Maga. Genetically engineered livestock: ethical use for food and medical models. Annual Review of Animal Biosciences, 2015, 3(1): 559–575
https://doi.org/10.1146/annurev-animal-022114-110739
pmid: 25387117
|
| 15 |
P D Hsu, E S Lander, F Zhang. Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014, 157(6): 1262–1278
https://doi.org/10.1016/j.cell.2014.05.010
pmid: 24906146
|
| 16 |
T Gaj, C A Gersbach, C F Barbas 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 2013, 31(7): 397–405
https://doi.org/10.1016/j.tibtech.2013.04.004
pmid: 23664777
|
| 17 |
A Kawahara, Y Hisano, S Ota, K Taimatsu. Site-specific integration of exogenous genes using genome editing technologies in zebrafish. International Journal of Molecular Sciences, 2016, 17(5): 727
https://doi.org/10.3390/ijms17050727
pmid: 27187373
|
| 18 |
K H Campbell, J McWhir, W A Ritchie, I Wilmut. Sheep cloned by nuclear transfer from a cultured cell line. Nature, 1996, 380(6569): 64–66
https://doi.org/10.1038/380064a0
pmid: 8598906
|
| 19 |
C B A Whitelaw, T P Sheets, S G Lillico, B P Telugu. Engineering large animal models of human disease. Journal of Pathology, 2016, 238(2): 247–256
https://doi.org/10.1002/path.4648
pmid: 26414877
|
| 20 |
K J McCreath, J Howcroft, K H S Campbell, A Colman, A E Schnieke, A J Kind. Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature, 2000, 405(6790): 1066–1069
https://doi.org/10.1038/35016604
pmid: 10890449
|
| 21 |
J San Filippo, P Sung, H Klein. Mechanism of eukaryotic homologous recombination. Annual Review of Biochemistry, 2008, 77(1): 229–257
https://doi.org/10.1146/annurev.biochem.77.061306.125255
pmid: 18275380
|
| 22 |
S Yu, J Luo, Z Song, F Ding, Y Dai, N Li. Highly efficient modification of β-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle. Cell Research, 2011, 21(11): 1638–1640
https://doi.org/10.1038/cr.2011.153
pmid: 21912434
|
| 23 |
Z Sun, M Wang, S Han, S Ma, Z Zou, F Ding, X Li, L Li, B Tang, H Wang, N Li, H Che, Y Dai. Production of hypoallergenic milk from DNA-free β-lactoglobulin (BLG) gene knockout cow using zinc-finger nucleases mRNA. Scientific Reports, 2018, 8(1): 15430
https://doi.org/10.1038/s41598-018-32024-x
pmid: 30337546
|
| 24 |
W Ni, J Qiao, S Hu, X Zhao, M Regouski, M Yang, I A Polejaeva, C Chen. Efficient gene knockout in goats using CRISPR/Cas9 system. PLoS One, 2014, 9(9): e106718
https://doi.org/10.1371/journal.pone.0106718
pmid: 25188313
|
| 25 |
W Zhou, Y Wan, R Guo, M Deng, K Deng, Z Wang, Y Zhang, F Wang. Generation of β-lactoglobulin knock-out goats using CRISPR/Cas9. PLoS One, 2017, 12(10): e0186056
https://doi.org/10.1371/journal.pone.0186056
pmid: 29016691
|
| 26 |
J Wei, S Wagner, P Maclean, B Brophy, S Cole, G Smolenski, D F Carlson, S C Fahrenkrug, D N Wells, G Laible. Cattle with a precise, zygote-mediated deletion safely eliminate the major milk allergen β-lactoglobulin. Scientific Reports, 2018, 8(1): 7661
https://doi.org/10.1038/s41598-018-25654-8
pmid: 29769555
|
| 27 |
X Liu, Y Wang, W Guo, B Chang, J Liu, Z Guo, F Quan, Y Zhang. Zinc-finger nickase-mediated insertion of the lysostaphin gene into the β-casein locus in cloned cows. Nature Communications, 2013, 4(1): 2565
https://doi.org/10.1038/ncomms3565
pmid: 24121612
|
| 28 |
P Rouet, F Smih, M Jasin. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(13): 6064–6068
https://doi.org/10.1073/pnas.91.13.6064
pmid: 8016116
|
| 29 |
J D Murray, E A Maga. Genetically engineered livestock for agriculture: a generation after the first transgenic animal research conference. Transgenic Research, 2016, 25(3): 321–327
https://doi.org/10.1007/s11248-016-9927-7
pmid: 26820413
|
| 30 |
L Li, L P Wu, S Chandrasegaran. Functional domains in Fok I restriction endonuclease. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(10): 4275–4279
https://doi.org/10.1073/pnas.89.10.4275
pmid: 1584761
|
| 31 |
N P Pavletich, C O Pabo. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science, 1991, 252(5007): 809–817
https://doi.org/10.1126/science.2028256
pmid: 2028256
|
| 32 |
J K Joung, J D Sander. TALENs: a widely applicable technology for targeted genome editing. Nature Reviews. Molecular Cell Biology, 2013, 14(1): 49–55
https://doi.org/10.1038/nrm3486
pmid: 23169466
|
| 33 |
E M Händel, S Alwin, T Cathomen. Expanding or restricting the target site repertoire of zinc-finger nucleases: the inter-domain linker as a major determinant of target site selectivity. Molecular Therapy, 2009, 17(1): 104–111
https://doi.org/10.1038/mt.2008.233
pmid: 19002164
|
| 34 |
J He, Q Li, S Fang, Y Guo, T Liu, J Ye, Z Yu, R Zhang, Y Zhao, X Hu, X Bai, X Chen, N Li. PKD1 mono-allelic knockout is sufficient to trigger renal cystogenesis in a mini-pig model. International Journal of Biological Sciences, 2015, 11(4): 361–369
https://doi.org/10.7150/ijbs.10858
pmid: 25798056
|
| 35 |
C Cui, Y Song, J Liu, H Ge, Q Li, H Huang, L Hu, H Zhu, Y Jin, Y Zhang. Gene targeting by TALEN-induced homologous recombination in goats directs production of β-lactoglobulin-free, high-human lactoferrin milk. Scientific Reports, 2015, 5(1): 10482
https://doi.org/10.1038/srep10482
pmid: 25994151
|
| 36 |
F E Moore, D Reyon, J D Sander, S A Martinez, J S Blackburn, C Khayter, C L Ramirez, J K Joung, D M Langenau. Improved somatic mutagenesis in zebrafish using transcription activator-like effector nucleases (TALENs). PLoS One, 2012, 7(5): e37877
https://doi.org/10.1371/journal.pone.0037877
pmid: 22655075
|
| 37 |
A Xiao, Y Wu, Z Yang, Y Hu, W Wang, Y Zhang, L Kong, G Gao, Z Zhu, S Lin, B Zhang. EENdb: a database and knowledge base of ZFNs and TALENs for endonuclease engineering. Nucleic Acids Research, 2013, 41(Database Issue): D415–D422
pmid: 23203870
|
| 38 |
L Cade, D Reyon, W Y Hwang, S Q Tsai, S Patel, C Khayter, J K Joung, J D Sander, R T Peterson, J R J Yeh. Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs. Nucleic Acids Research, 2012, 40(16): 8001–8010
https://doi.org/10.1093/nar/gks518
pmid: 22684503
|
| 39 |
V Pattanayak, C L Ramirez, J K Joung, D R Liu. Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nature Methods, 2011, 8(9): 765–770
https://doi.org/10.1038/nmeth.1670
pmid: 21822273
|
| 40 |
R Gabriel, A Lombardo, A Arens, J C Miller, P Genovese, C Kaeppel, A Nowrouzi, C C Bartholomae, J Wang, G Friedman, M C Holmes, P D Gregory, H Glimm, M Schmidt, L Naldini, C von Kalle. An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nature Biotechnology, 2011, 29(9): 816–823
https://doi.org/10.1038/nbt.1948
pmid: 21822255
|
| 41 |
J Grau, J Boch, S Posch. TALENoffer: genome-wide TALEN off-target prediction. Bioinformatics, 2013, 29(22): 2931–2932
https://doi.org/10.1093/bioinformatics/btt501
pmid: 23995255
|
| 42 |
E J Sontheimer, R Barrangou. The bacterial origins of the CRISPR genome-editing revolution. Human Gene Therapy, 2015, 26(7): 413–424
https://doi.org/10.1089/hum.2015.091
pmid: 26078042
|
| 43 |
E Deltcheva, K Chylinski, C M Sharma, K Gonzales, Y Chao, Z A Pirzada, M R Eckert, J Vogel, E Charpentier. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 2011, 471(7340): 602–607
https://doi.org/10.1038/nature09886
pmid: 21455174
|
| 44 |
M Jinek, K Chylinski, I Fonfara, M Hauer, J A Doudna, E Charpentier. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816–821
https://doi.org/10.1126/science.1225829
pmid: 22745249
|
| 45 |
M F Bolukbasi, A Gupta, S A Wolfe. Creating and evaluating accurate CRISPR-Cas9 scalpels for genomic surgery. Nature Methods, 2016, 13(1): 41–50
https://doi.org/10.1038/nmeth.3684
pmid: 26716561
|
| 46 |
L Cong, F A Ran, D Cox, S Lin, R Barretto, N Habib, P D Hsu, X Wu, W Jiang, L A Marraffini, F Zhang. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819–823
https://doi.org/10.1126/science.1231143
pmid: 23287718
|
| 47 |
P Mali, L Yang, K M Esvelt, J Aach, M Guell, J E DiCarlo, J E Norville, G M Church. RNA-guided human genome engineering via Cas9. Science, 2013, 339(6121): 823–826
https://doi.org/10.1126/science.1232033
pmid: 23287722
|
| 48 |
T Ma, J Tao, M Yang, C He, X Tian, X Zhang, J Zhang, S Deng, J Feng, Z Zhang, J Wang, P Ji, Y Song, P He, H Han, J Fu, Z Lian, G Liu. An AANAT/ASMT transgenic animal model constructed with CRISPR/Cas9 system serving as the mammary gland bioreactor to produce melatonin-enriched milk in sheep. Journal of Pineal Research, 2017, 63(1): e12406
https://doi.org/10.1111/jpi.12406
pmid: 28273380
|
| 49 |
J A Richt, P Kasinathan, A N Hamir, J Castilla, T Sathiyaseelan, F Vargas, J Sathiyaseelan, H Wu, H Matsushita, J Koster, S Kato, I Ishida, C Soto, J M Robl, Y Kuroiwa. Production of cattle lacking prion protein. Nature Biotechnology, 2007, 25(1): 132–138
https://doi.org/10.1038/nbt1271
pmid: 17195841
|
| 50 |
C Denning, S Burl, A Ainslie, J Bracken, A Dinnyes, J Fletcher, T King, M Ritchie, W A Ritchie, M Rollo, P de Sousa, A Travers, I Wilmut, A J Clark. Deletion of the α(1,3)galactosyl transferase (GGTA1) gene and the prion protein (PrP) gene in sheep. Nature Biotechnology, 2001, 19(6): 559–562
https://doi.org/10.1038/89313
pmid: 11385461
|
| 51 |
S Shanthalingam, A Tibary, J E Beever, P Kasinathan, W C Brown, S Srikumaran. Precise gene editing paves the way for derivation of Mannheimia haemolytica leukotoxin-resistant cattle. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(46): 13186–13190
https://doi.org/10.1073/pnas.1613428113
pmid: 27799556
|
| 52 |
J Zhang, M L Cui, Y W Nie, B Dai, F R Li, D J Liu, H Liang, M Cang. CRISPR/Cas9-mediated specific integration of fat-1 at the goat MSTN locus. FEBS Journal, 2018, 285(15): 2828–2839
https://doi.org/10.1111/febs.14520
pmid: 29802684
|
| 53 |
Y Zhang, Y Wang, B Yulin, B Tang, M Wang, C Zhang, W Zhang, J Jin, T Li, R Zhao, X Yu, Q Zuo, B Li. CRISPR/Cas9-mediated sheep MSTN gene knockout and promote sSMSCs differentiation. Journal of Cellular Biochemistry, 2018, 120(2): 1794–1806
https://doi.org/10.1002/jcb.27474
pmid: 30242885
|
| 54 |
L R Bertolini, H Meade, C R Lazzarotto, L T Martins, K C Tavares, M Bertolini, J D Murray. The transgenic animal platform for biopharmaceutical production. Transgenic Research, 2016, 25(3): 329–343
https://doi.org/10.1007/s11248-016-9933-9
pmid: 26820414
|
| 55 |
L M Houdebine. Production of pharmaceutical proteins by transgenic animals. Comparative Immunology, Microbiology and Infectious Diseases, 2009, 32(2): 107–121
https://doi.org/10.1016/j.cimid.2007.11.005
pmid: 18243312
|
| 56 |
M Yamasaki, T J Sendall, M C Pearce, J C Whisstock, J A Huntington. Molecular basis of α1-antitrypsin deficiency revealed by the structure of a domain-swapped trimer. EMBO Reports, 2011, 12(10): 1011–1017
https://doi.org/10.1038/embor.2011.171
pmid: 21909074
|
| 57 |
B Wang, H Baldassarre, T Tao, M Gauthier, N Neveu, J F Zhou, M Leduc, F Duguay, A S Bilodeau, A Lazaris, C Keefer, C N Karatzas. Transgenic goats produced by DNA pronuclear microinjection of in vitro derived zygotes. Molecular Reproduction and Development, 2002, 63(4): 437–443
https://doi.org/10.1002/mrd.10199
pmid: 12412045
|
| 58 |
D Esslemont, M Kossaibati. Mastitis: how to get out of the dark ages. Veterinary Journal, 2002, 164(2): 85–86
https://doi.org/10.1053/tvjl.2002.0742
pmid: 12359461
|
| 59 |
P Rainard. Tackling mastitis in dairy cows. Nature Biotechnology, 2005, 23(4): 430–432
https://doi.org/10.1038/nbt0405-430
pmid: 15815667
|
| 60 |
R J Wall, A M Powell, M J Paape, D E Kerr, D D Bannerman, V G Pursel, K D Wells, N Talbot, H W Hawk. Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nature Biotechnology, 2005, 23(4): 445–451
https://doi.org/10.1038/nbt1078
pmid: 15806099
|
| 61 |
E R Oldham, M J Daley. Lysostaphin: use of a recombinant bactericidal enzyme as a mastitis therapeutic. Journal of Dairy Science, 1991, 74(12): 4175–4182
https://doi.org/10.3168/jds.S0022-0302(91)78612-8
pmid: 1787188
|
| 62 |
S E Lloyd, S Mead, J Collinge. Genetics of prion diseases. Current Opinion in Genetics & Development, 2013, 23(3): 345–351
https://doi.org/10.1016/j.gde.2013.02.012
pmid: 23518043
|
| 63 |
G A Wells, A C Scott, C T Johnson, R F Gunning, R D Hancock, M Jeffrey, M Dawson, R Bradley. A novel progressive spongiform encephalopathy in cattle. Veterinary Record, 1987, 121(18): 419–420
https://doi.org/10.1136/vr.121.18.419
pmid: 3424605
|
| 64 |
M Jeffrey, L González. Classical sheep transmissible spongiform encephalopathies: pathogenesis, pathological phenotypes and clinical disease. Neuropathology and Applied Neurobiology, 2007, 33(4): 373–394
https://doi.org/10.1111/j.1365-2990.2007.00868.x
pmid: 17617870
|
| 65 |
P Aguilar-Calvo, C García, J C Espinosa, O Andreoletti, J M Torres. Prion and prion-like diseases in animals. Virus Research, 2015, 207: 82–93
https://doi.org/10.1016/j.virusres.2014.11.026
pmid: 25444937
|
| 66 |
S B Prusiner, D Groth, A Serban, R Koehler, D Foster, M Torchia, D Burton, S L Yang, S J DeArmond. Ablation of the prion protein (PrP) gene in mice prevents scrapie and facilitates production of anti-PrP antibodies. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(22): 10608–10612
https://doi.org/10.1073/pnas.90.22.10608
pmid: 7902565
|
| 67 |
M A Breider, R D Walker, F M Hopkins, T W Schultz, T L Bowersock. Pulmonary lesions induced by Pasteurella haemolytica in neutrophil sufficient and neutrophil deficient calves. Canadian Journal of Veterinary Research, 1988, 52(2): 205–209
pmid: 3370555
|
| 68 |
M L Mueller, J B Cole, T S Sonstegard, A L Van Eenennaam. Comparison of gene editing versus conventional breeding to introgress the POLLED allele into the US dairy cattle population. Journal of Dairy Science, 2019, 102(5): 4215–4226
https://doi.org/10.3168/jds.2018-15892
pmid: 30852022
|
| 69 |
A Regalado. Gene-edited cattle have a major screwup in their DNA. MIT Technology Review, 2019 [Published Online]
|
| 70 |
L A Norris, S S Lee, K J Greenlees, D A Tadesse, M F Miller, H Lombard. Template plasmid integration in germline genome-edited cattle. BioRxiv, 2019 [Published Online] doi:10.1101/715482
|
| 71 |
B P Kleinstiver, V Pattanayak, M S Prew, S Q Tsai, N T Nguyen, Z Zheng, J K Joung. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature, 2016, 529(7587): 490–495
https://doi.org/10.1038/nature16526
pmid: 26735016
|
| 72 |
I M Slaymaker, L Gao, B Zetsche, D A Scott, W X Yan, F Zhang. Rationally engineered Cas9 nucleases with improved specificity. Science, 2016, 351(6268): 84–88
https://doi.org/10.1126/science.aad5227
pmid: 26628643
|
| 73 |
S Q Tsai, N T Nguyen, J Malagon-Lopez, V V Topkar, M J Aryee, J K Joung. CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets. Nature Methods, 2017, 14(6): 607–614
https://doi.org/10.1038/nmeth.4278
pmid: 28459458
|
| 74 |
S Q Tsai, Z Zheng, N T Nguyen, M Liebers, V V Topkar, V Thapar, N Wyvekens, C Khayter, A J Iafrate, L P Le, M J Aryee, J K Joung. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nature Biotechnology, 2015, 33(2): 187–197
https://doi.org/10.1038/nbt.3117
pmid: 25513782
|
| 75 |
B M Ehn, B Ekstrand, U Bengtsson, S Ahlstedt. Modification of IgE binding during heat processing of the cow’s milk allergen β-lactoglobulin. Journal of Agricultural and Food Chemistry, 2004, 52(5): 1398–1403
https://doi.org/10.1021/jf0304371
pmid: 14995152
|
| 76 |
B M Ehn, T Allmere, E Telemo, U Bengtsson, B Ekstrand. Modification of IgE binding to β-lactoglobulin by fermentation and proteolysis of cow’s milk. Journal of Agricultural and Food Chemistry, 2005, 53(9): 3743–3748
https://doi.org/10.1021/jf048121w
pmid: 15853429
|
| 77 |
L Grobet, L J Martin, D Poncelet, D Pirottin, B Brouwers, J Riquet, A Schoeberlein, S Dunner, F Ménissier, J Massabanda, R Fries, R Hanset, M Georges. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nature Genetics, 1997, 17(1): 71–74
https://doi.org/10.1038/ng0997-71
pmid: 9288100
|
| 78 |
A Dove. Milking the genome for profit. Nature Biotechnology, 2000, 18(10): 1045–1048
https://doi.org/10.1038/80231
pmid: 11017040
|
| 79 |
B Brophy, G Smolenski, T Wheeler, D Wells, P L’Huillier, G Laible. Cloned transgenic cattle produce milk with higher levels of β-casein and κ-casein. Nature Biotechnology, 2003, 21(2): 157–162
https://doi.org/10.1038/nbt783
pmid: 12548290
|
| 80 |
A Colman. Somatic cell nuclear transfer in mammals: progress and applications. Cloning, 1999–2000, 1(4): 185–200
https://doi.org/10.1089/15204559950019825
pmid: 16218819
|
| 81 |
J P Zhang, X L Li, G H Li, W Chen, C Arakaki, G D Botimer, D Baylink, L Zhang, W Wen, Y W Fu, J Xu, N Chun, W Yuan, T Cheng, X B Zhang. Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. Genome Biology, 2017, 18(1): 35
https://doi.org/10.1186/s13059-017-1164-8
pmid: 28219395
|
| 82 |
J Song, D Yang, J Xu, T Zhu, Y E Chen, J Zhang. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nature Communications, 2016, 7(1): 10548
https://doi.org/10.1038/ncomms10548
pmid: 26817820
|
| 83 |
S M Kipriyanov, G Moldenhauer, M Braunagel, U Reusch, B Cochlovius, F Le Gall, O A Kouprianova, C W Von der Lieth, M Little. Effect of domain order on the activity of bacterially produced bispecific single-chain Fv antibodies. Journal of Molecular Biology, 2003, 330(1): 99–111
https://doi.org/10.1016/S0022-2836(03)00526-6
pmid: 12818205
|
| 84 |
M Little, S M Kipriyanov, F Le Gall, G Moldenhauer. Of mice and men: hybridoma and recombinant antibodies. Immunology Today, 2000, 21(8): 364–370
https://doi.org/10.1016/S0167-5699(00)01668-6
pmid: 10916138
|
| 85 |
G Walsh. Biopharmaceutical benchmarks 2014. Nature Biotechnology, 2014, 32(10): 992–1000
https://doi.org/10.1038/nbt.3040
pmid: 25299917
|
| 86 |
L Grosse-Hovest, S Müller, R Minoia, E Wolf, V Zakhartchenko, H Wenigerkind, C Lassnig, U Besenfelder, M Müller, S D Lytton, G Jung, G Brem. Cloned transgenic farm animals produce a bispecific antibody for T cell-mediated tumor cell killing. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(18): 6858–6863
https://doi.org/10.1073/pnas.0308487101
pmid: 15105446
|
| 87 |
Z Fan, I V Perisse, C U Cotton, M Regouski, Q Meng, C Domb, A J Van Wettere, Z Wang, A Harris, K L White, I A Polejaeva. A sheep model of cystic fibrosis generated by CRISPR/Cas9 disruption of the CFTR gene. JCI Insight, 2018, 3(19): e123529
https://doi.org/10.1172/jci.insight.123529
pmid: 30282831
|
| 88 |
D K Williams, C Pinzón, S Huggins, J H Pryor, A Falck, F Herman, J Oldeschulte, M B Chavez, B L Foster, S H White, M E Westhusin, L J Suva, C R Long, D Gaddy. Genetic engineering a large animal model of human hypophosphatasia in sheep. Scientific Reports, 2018, 8(1): 16945
https://doi.org/10.1038/s41598-018-35079-y
pmid: 30446691
|
| 89 |
S J Du, Z Y Gong, G L Fletcher, M A Shears, M J King, D R Idler, C L Hew. Growth enhancement in transgenic Atlantic salmon by the use of an “all fish” chimeric growth hormone gene construct. Bio-Technology, 1992, 10(2): 176–181
pmid: 1368229
|
| 90 |
J Kling. First US approval for a transgenic animal drug. Nature Biotechnology, 2009, 27(4): 302–304
https://doi.org/10.1038/nbt0409-302
pmid: 19352350
|
| 91 |
H A van Veen, J Koiter, C J M Vogelezang, N van Wessel, T van Dam, I Velterop, K van Houdt, L Kupers, D Horbach, M Salaheddine, J H Nuijens, M L M Mannesse. Characterization of recombinant human C1 inhibitor secreted in milk of transgenic rabbits. Journal of Biotechnology, 2012, 162(2–3): 319–326
https://doi.org/10.1016/j.jbiotec.2012.09.005
pmid: 22995741
|
| 92 |
C Sheridan. FDA approves ‘farmaceutical’ drug from transgenic chickens. Nature Biotechnology, 2016, 34(2): 117–119
https://doi.org/10.1038/nbt0216-117
pmid: 26849497
|
| 93 |
A Bruce. Genome edited animals: learning from GM crops? Transgenic Research, 2017, 26(3): 385–398
https://doi.org/10.1007/s11248-017-0017-2
pmid: 28432545
|
| 94 |
T Ishii. Genome-edited livestock: ethics and social acceptance. Animal Frontiers, 2017, 7(2): 24–32
https://doi.org/10.2527/af.2017.0115
|
| 95 |
S Schicktanz. Ethical considerations of the human-animal-relationship under conditions of asymmetry and ambivalence. Journal of Agricultural & Environmental Ethics, 2006, 19(1): 7–16
https://doi.org/10.1007/s10806-005-4374-0
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|