Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2020, Vol. 7 Issue (2) : 171-180    https://doi.org/10.15302/J-FASE-2019302
REVIEW
The development and application of genome editing technology in ruminants: a review
Mengke YUAN1,2, Yuanpeng GAO1,2, Jing HAN1,2, Teng WU1,2, Jingcheng ZHANG1,2, Yongke WEI1,2, Yong ZHANG1,2()
1. College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
2. Key Laboratory of Animal Biotechnology (Ministry of Agriculture), Northwest A&F University, Yangling 712100, China
 Download: PDF(416 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Transgenic ruminants are a valuable resource for both animal breeding and biomedical research. The development of transgenic breeding is proceeding slowly, because it suffers from low efficiency of gene transfer and possible safety problems from uncontrolled random integration. However, new breeding methods combined with genome editing and somatic cell nuclear transfer or microinjection can offer an economic and efficient way to produce gene-edited ruminants, which can serve as bioreactors or have improved disease resistance, animal welfare and product quality. Recent advances in precise genome editing technologies, especially clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 nucleases, are enabling the systematic development of gene-edited ruminant production. This review covers the development of gene-edited ruminants, the particulars of site-specific engineered nucleases and the state of the art and new insights into practical applications and social acceptance of genome editing technology in ruminants. It is concluded that the production of gene-edited ruminants is feasible and through improvements in genome editing technology it is possible to help feed the world.

Keywords bioreactors      breeding      engineered endonucleases      genome editing      ruminants     
Corresponding Author(s): Yong ZHANG   
Just Accepted Date: 19 December 2019   Online First Date: 13 January 2020    Issue Date: 28 April 2020
 Cite this article:   
Mengke YUAN,Yuanpeng GAO,Jing HAN, et al. The development and application of genome editing technology in ruminants: a review[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 171-180.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2019302
https://academic.hep.com.cn/fase/EN/Y2020/V7/I2/171
Fig.1  Simplified diagram of the two methods for generating gene-edited cows via somatic cell nuclear transfer (SCNT) (a, b) and microinjection (c). OPU, ovum pick-up; GV, germinal vesicle; MII, metaphase II.
Technology Advantages Disadvantages
SCNT Predictable offspring genotype Higher rate of midwifery
Consistent expression of target gene Lower production efficiency* (1%–20%)
100% gene editing efficiency Not induced at term
Saving time and costs Increased developmental defects
Allows selection of gender and elite genetic background Greater risk of recessive genetic diseases
Microinjection Relatively lower rate of midwifery Chimerism
15%–40% higher production efficiency Not particularly useful for insertion of exogenous gene
Easy to perform micromanipulation Low number of zygotes
Modified genes nonhereditary
Tab.1  Advantages and disadvantages of somatic cell nuclear transfer (SCNT) and microinjection technology for gene-edited cows
Application Species Target Trait/Goal Methods Time Reference
Bioreactors Sheep Insertion of AAT Treatment of α1-antitrypsin (AAT) deficiency HR/SCNT 2000 [20]
Sheep Insertion of AANAT and ASMT Melatonin-enriched milk CRISPR/Cas9 and zygote injection 2017 [48]
Disease resistance Cows Insertion of lysostaphin Lysostaphin milk ZFNickase/SCNT 2013 [27]
Cattle KO of PrP Lacking prion protein HR/SCNT 2007 [49]
Sheep KO of PrP Lacking prion protein HR/SCNT 2001 [50]
Cattle Substitution of CD18 Abolish cytolysis of leukocytes ZFNs/SCNT 2016 [51]
Cattle Insertion of NRAMP1 Tuberculosis-resistant Cas9 nickase/SCNT 2017 [1]
Cattle Insertion of SP110 Tuberculosis-resistant TALE nickase/SCNT 2015 [7]
Animal welfare Cattle Introgression of POLLED allele Polled dairy cattle TALEN/SCNT 2016 [3]
Milk Cattle BLG biallelic mutations Modification of BLG ZFNs/SCNT 2011 [22]
Cows BLG biallelic KO BLG-free milk ZFNs/SCNT 2018 [23]
Cattle BLG KO Milk free of mature BLG TALEN and zygote injection 2018 [26]
Goats BLG KO BLG abolished CRISPR/Cas9 and zygote injection 2017 [25]
Goats BLG-KO and hLF-KI BLG-free and high-hLF milk TALEN/SCNT 2015 [35]
Meat Cattle MSTN biallelic mutations Double-muscled phenotype ZFNs/SCNT 2014 [4]
Goats MSTN biallelic KO Disruption of MSTN expression CRISPR/Cas9 and SCNT 2014 [24]
Goats MSTN-KO and fat-1 KI Muscle fibers stronger CRISPR/Cas9 and SCNT 2018 [52]
Sheep MSTN-KO Muscle fibers stronger CRISPR/Cas9 and SCNT 2018 [53]
Tab.2  Application of genome editing in ruminants
1 Y Gao, H Wu, Y Wang, X Liu, L Chen, Q Li, C Cui, X Liu, J Zhang, Y Zhang. Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects. Genome Biology, 2017, 18(1): 13
https://doi.org/10.1186/s13059-016-1144-4 pmid: 28143571
2 X Miao. Recent advances in the development of new transgenic animal technology. Cellular and Molecular Life Sciences, 2013, 70(5): 815–828
https://doi.org/10.1007/s00018-012-1081-7 pmid: 22833168
3 D F Carlson, C A Lancto, B Zang, E S Kim, M Walton, D Oldeschulte, C Seabury, T S Sonstegard, S C Fahrenkrug. Production of hornless dairy cattle from genome-edited cell lines. Nature Biotechnology, 2016, 34(5): 479–481
https://doi.org/10.1038/nbt.3560 pmid: 27153274
4 J Luo, Z Song, S Yu, D Cui, B Wang, F Ding, S Li, Y Dai, N Li. Efficient generation of myostatin (MSTN) biallelic mutations in cattle using zinc finger nucleases. PLoS One, 2014, 9(4): e95225
https://doi.org/10.1371/journal.pone.0095225 pmid: 24743319
5 R E Hammer, V G Pursel, C E Rexroad Jr, R J Wall, D J Bolt, K M Ebert, R D Palmiter, R L Brinster. Production of transgenic rabbits, sheep and pigs by microinjection. Nature, 1985, 315(6021): 680–683
https://doi.org/10.1038/315680a0 pmid: 3892305
6 S G Lillico, C Proudfoot, D F Carlson, D Stverakova, C Neil, C Blain, T J King, W A Ritchie, W Tan, A J Mileham, D G McLaren, S C Fahrenkrug, C B A Whitelaw. Live pigs produced from genome edited zygotes. Scientific Reports, 2013, 3(1): 2847
https://doi.org/10.1038/srep02847 pmid: 24108318
7 H Wu, Y Wang, Y Zhang, M Yang, J Lv, J Liu, Y Zhang. TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(13): E1530–E1539
https://doi.org/10.1073/pnas.1421587112 pmid: 25733846
8 M R Capecchi. How close are we to implementing gene targeting in animals other than the mouse? Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(3): 956–957
https://doi.org/10.1073/pnas.97.3.956 pmid: 10655465
9 A Baguisi, E Behboodi, D T Melican, J S Pollock, M M Destrempes, C Cammuso, J L Williams, S D Nims, C A Porter, P Midura, M J Palacios, S L Ayres, R S Denniston, M L Hayes, C A Ziomek, H M Meade, R A Godke, W G Gavin, E W Overström, Y Echelard. Production of goats by somatic cell nuclear transfer. Nature Biotechnology, 1999, 17(5): 456–461
https://doi.org/10.1038/8632 pmid: 10331804
10 J B Cibelli, S L Stice, P J Golueke, J J Kane, J Jerry, C Blackwell, F A Ponce de León, J M Robl. Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science, 1998, 280(5367): 1256–1258
https://doi.org/10.1126/science.280.5367.1256 pmid: 9596577
11 Y Kato, T Tani, Y Sotomaru, K Kurokawa, J Kato, H Doguchi, H Yasue, Y Tsunoda. Eight calves cloned from somatic cells of a single adult. Science, 1998, 282(5396): 2095–2098
https://doi.org/10.1126/science.282.5396.2095 pmid: 9851933
12 I Wilmut, A E Schnieke, J McWhir, A J Kind, K H S Campbell. Viable offspring derived from fetal and adult mammalian cells. Nature, 1997, 385(6619): 810–813
https://doi.org/10.1038/385810a0 pmid: 9039911
13 A E Schnieke, A J Kind, W A Ritchie, K Mycock, A R Scott, M Ritchie, I Wilmut, A Colman, K H S Campbell. Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science, 1997, 278(5346): 2130–2133
https://doi.org/10.1126/science.278.5346.2130 pmid: 9405350
14 L C Garas, J D Murray, E A Maga. Genetically engineered livestock: ethical use for food and medical models. Annual Review of Animal Biosciences, 2015, 3(1): 559–575
https://doi.org/10.1146/annurev-animal-022114-110739 pmid: 25387117
15 P D Hsu, E S Lander, F Zhang. Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014, 157(6): 1262–1278
https://doi.org/10.1016/j.cell.2014.05.010 pmid: 24906146
16 T Gaj, C A Gersbach, C F Barbas 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 2013, 31(7): 397–405
https://doi.org/10.1016/j.tibtech.2013.04.004 pmid: 23664777
17 A Kawahara, Y Hisano, S Ota, K Taimatsu. Site-specific integration of exogenous genes using genome editing technologies in zebrafish. International Journal of Molecular Sciences, 2016, 17(5): 727
https://doi.org/10.3390/ijms17050727 pmid: 27187373
18 K H Campbell, J McWhir, W A Ritchie, I Wilmut. Sheep cloned by nuclear transfer from a cultured cell line. Nature, 1996, 380(6569): 64–66
https://doi.org/10.1038/380064a0 pmid: 8598906
19 C B A Whitelaw, T P Sheets, S G Lillico, B P Telugu. Engineering large animal models of human disease. Journal of Pathology, 2016, 238(2): 247–256
https://doi.org/10.1002/path.4648 pmid: 26414877
20 K J McCreath, J Howcroft, K H S Campbell, A Colman, A E Schnieke, A J Kind. Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature, 2000, 405(6790): 1066–1069
https://doi.org/10.1038/35016604 pmid: 10890449
21 J San Filippo, P Sung, H Klein. Mechanism of eukaryotic homologous recombination. Annual Review of Biochemistry, 2008, 77(1): 229–257
https://doi.org/10.1146/annurev.biochem.77.061306.125255 pmid: 18275380
22 S Yu, J Luo, Z Song, F Ding, Y Dai, N Li. Highly efficient modification of β-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle. Cell Research, 2011, 21(11): 1638–1640
https://doi.org/10.1038/cr.2011.153 pmid: 21912434
23 Z Sun, M Wang, S Han, S Ma, Z Zou, F Ding, X Li, L Li, B Tang, H Wang, N Li, H Che, Y Dai. Production of hypoallergenic milk from DNA-free β-lactoglobulin (BLG) gene knockout cow using zinc-finger nucleases mRNA. Scientific Reports, 2018, 8(1): 15430
https://doi.org/10.1038/s41598-018-32024-x pmid: 30337546
24 W Ni, J Qiao, S Hu, X Zhao, M Regouski, M Yang, I A Polejaeva, C Chen. Efficient gene knockout in goats using CRISPR/Cas9 system. PLoS One, 2014, 9(9): e106718
https://doi.org/10.1371/journal.pone.0106718 pmid: 25188313
25 W Zhou, Y Wan, R Guo, M Deng, K Deng, Z Wang, Y Zhang, F Wang. Generation of β-lactoglobulin knock-out goats using CRISPR/Cas9. PLoS One, 2017, 12(10): e0186056
https://doi.org/10.1371/journal.pone.0186056 pmid: 29016691
26 J Wei, S Wagner, P Maclean, B Brophy, S Cole, G Smolenski, D F Carlson, S C Fahrenkrug, D N Wells, G Laible. Cattle with a precise, zygote-mediated deletion safely eliminate the major milk allergen β-lactoglobulin. Scientific Reports, 2018, 8(1): 7661
https://doi.org/10.1038/s41598-018-25654-8 pmid: 29769555
27 X Liu, Y Wang, W Guo, B Chang, J Liu, Z Guo, F Quan, Y Zhang. Zinc-finger nickase-mediated insertion of the lysostaphin gene into the β-casein locus in cloned cows. Nature Communications, 2013, 4(1): 2565
https://doi.org/10.1038/ncomms3565 pmid: 24121612
28 P Rouet, F Smih, M Jasin. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(13): 6064–6068
https://doi.org/10.1073/pnas.91.13.6064 pmid: 8016116
29 J D Murray, E A Maga. Genetically engineered livestock for agriculture: a generation after the first transgenic animal research conference. Transgenic Research, 2016, 25(3): 321–327
https://doi.org/10.1007/s11248-016-9927-7 pmid: 26820413
30 L Li, L P Wu, S Chandrasegaran. Functional domains in Fok I restriction endonuclease. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(10): 4275–4279
https://doi.org/10.1073/pnas.89.10.4275 pmid: 1584761
31 N P Pavletich, C O Pabo. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science, 1991, 252(5007): 809–817
https://doi.org/10.1126/science.2028256 pmid: 2028256
32 J K Joung, J D Sander. TALENs: a widely applicable technology for targeted genome editing. Nature Reviews. Molecular Cell Biology, 2013, 14(1): 49–55
https://doi.org/10.1038/nrm3486 pmid: 23169466
33 E M Händel, S Alwin, T Cathomen. Expanding or restricting the target site repertoire of zinc-finger nucleases: the inter-domain linker as a major determinant of target site selectivity. Molecular Therapy, 2009, 17(1): 104–111
https://doi.org/10.1038/mt.2008.233 pmid: 19002164
34 J He, Q Li, S Fang, Y Guo, T Liu, J Ye, Z Yu, R Zhang, Y Zhao, X Hu, X Bai, X Chen, N Li. PKD1 mono-allelic knockout is sufficient to trigger renal cystogenesis in a mini-pig model. International Journal of Biological Sciences, 2015, 11(4): 361–369
https://doi.org/10.7150/ijbs.10858 pmid: 25798056
35 C Cui, Y Song, J Liu, H Ge, Q Li, H Huang, L Hu, H Zhu, Y Jin, Y Zhang. Gene targeting by TALEN-induced homologous recombination in goats directs production of β-lactoglobulin-free, high-human lactoferrin milk. Scientific Reports, 2015, 5(1): 10482
https://doi.org/10.1038/srep10482 pmid: 25994151
36 F E Moore, D Reyon, J D Sander, S A Martinez, J S Blackburn, C Khayter, C L Ramirez, J K Joung, D M Langenau. Improved somatic mutagenesis in zebrafish using transcription activator-like effector nucleases (TALENs). PLoS One, 2012, 7(5): e37877
https://doi.org/10.1371/journal.pone.0037877 pmid: 22655075
37 A Xiao, Y Wu, Z Yang, Y Hu, W Wang, Y Zhang, L Kong, G Gao, Z Zhu, S Lin, B Zhang. EENdb: a database and knowledge base of ZFNs and TALENs for endonuclease engineering. Nucleic Acids Research, 2013, 41(Database Issue): D415–D422
pmid: 23203870
38 L Cade, D Reyon, W Y Hwang, S Q Tsai, S Patel, C Khayter, J K Joung, J D Sander, R T Peterson, J R J Yeh. Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs. Nucleic Acids Research, 2012, 40(16): 8001–8010
https://doi.org/10.1093/nar/gks518 pmid: 22684503
39 V Pattanayak, C L Ramirez, J K Joung, D R Liu. Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nature Methods, 2011, 8(9): 765–770
https://doi.org/10.1038/nmeth.1670 pmid: 21822273
40 R Gabriel, A Lombardo, A Arens, J C Miller, P Genovese, C Kaeppel, A Nowrouzi, C C Bartholomae, J Wang, G Friedman, M C Holmes, P D Gregory, H Glimm, M Schmidt, L Naldini, C von Kalle. An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nature Biotechnology, 2011, 29(9): 816–823
https://doi.org/10.1038/nbt.1948 pmid: 21822255
41 J Grau, J Boch, S Posch. TALENoffer: genome-wide TALEN off-target prediction. Bioinformatics, 2013, 29(22): 2931–2932
https://doi.org/10.1093/bioinformatics/btt501 pmid: 23995255
42 E J Sontheimer, R Barrangou. The bacterial origins of the CRISPR genome-editing revolution. Human Gene Therapy, 2015, 26(7): 413–424
https://doi.org/10.1089/hum.2015.091 pmid: 26078042
43 E Deltcheva, K Chylinski, C M Sharma, K Gonzales, Y Chao, Z A Pirzada, M R Eckert, J Vogel, E Charpentier. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 2011, 471(7340): 602–607
https://doi.org/10.1038/nature09886 pmid: 21455174
44 M Jinek, K Chylinski, I Fonfara, M Hauer, J A Doudna, E Charpentier. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816–821
https://doi.org/10.1126/science.1225829 pmid: 22745249
45 M F Bolukbasi, A Gupta, S A Wolfe. Creating and evaluating accurate CRISPR-Cas9 scalpels for genomic surgery. Nature Methods, 2016, 13(1): 41–50
https://doi.org/10.1038/nmeth.3684 pmid: 26716561
46 L Cong, F A Ran, D Cox, S Lin, R Barretto, N Habib, P D Hsu, X Wu, W Jiang, L A Marraffini, F Zhang. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819–823
https://doi.org/10.1126/science.1231143 pmid: 23287718
47 P Mali, L Yang, K M Esvelt, J Aach, M Guell, J E DiCarlo, J E Norville, G M Church. RNA-guided human genome engineering via Cas9. Science, 2013, 339(6121): 823–826
https://doi.org/10.1126/science.1232033 pmid: 23287722
48 T Ma, J Tao, M Yang, C He, X Tian, X Zhang, J Zhang, S Deng, J Feng, Z Zhang, J Wang, P Ji, Y Song, P He, H Han, J Fu, Z Lian, G Liu. An AANAT/ASMT transgenic animal model constructed with CRISPR/Cas9 system serving as the mammary gland bioreactor to produce melatonin-enriched milk in sheep. Journal of Pineal Research, 2017, 63(1): e12406
https://doi.org/10.1111/jpi.12406 pmid: 28273380
49 J A Richt, P Kasinathan, A N Hamir, J Castilla, T Sathiyaseelan, F Vargas, J Sathiyaseelan, H Wu, H Matsushita, J Koster, S Kato, I Ishida, C Soto, J M Robl, Y Kuroiwa. Production of cattle lacking prion protein. Nature Biotechnology, 2007, 25(1): 132–138
https://doi.org/10.1038/nbt1271 pmid: 17195841
50 C Denning, S Burl, A Ainslie, J Bracken, A Dinnyes, J Fletcher, T King, M Ritchie, W A Ritchie, M Rollo, P de Sousa, A Travers, I Wilmut, A J Clark. Deletion of the α(1,3)galactosyl transferase (GGTA1) gene and the prion protein (PrP) gene in sheep. Nature Biotechnology, 2001, 19(6): 559–562
https://doi.org/10.1038/89313 pmid: 11385461
51 S Shanthalingam, A Tibary, J E Beever, P Kasinathan, W C Brown, S Srikumaran. Precise gene editing paves the way for derivation of Mannheimia haemolytica leukotoxin-resistant cattle. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(46): 13186–13190
https://doi.org/10.1073/pnas.1613428113 pmid: 27799556
52 J Zhang, M L Cui, Y W Nie, B Dai, F R Li, D J Liu, H Liang, M Cang. CRISPR/Cas9-mediated specific integration of fat-1 at the goat MSTN locus. FEBS Journal, 2018, 285(15): 2828–2839
https://doi.org/10.1111/febs.14520 pmid: 29802684
53 Y Zhang, Y Wang, B Yulin, B Tang, M Wang, C Zhang, W Zhang, J Jin, T Li, R Zhao, X Yu, Q Zuo, B Li. CRISPR/Cas9-mediated sheep MSTN gene knockout and promote sSMSCs differentiation. Journal of Cellular Biochemistry, 2018, 120(2): 1794–1806
https://doi.org/10.1002/jcb.27474 pmid: 30242885
54 L R Bertolini, H Meade, C R Lazzarotto, L T Martins, K C Tavares, M Bertolini, J D Murray. The transgenic animal platform for biopharmaceutical production. Transgenic Research, 2016, 25(3): 329–343
https://doi.org/10.1007/s11248-016-9933-9 pmid: 26820414
55 L M Houdebine. Production of pharmaceutical proteins by transgenic animals. Comparative Immunology, Microbiology and Infectious Diseases, 2009, 32(2): 107–121
https://doi.org/10.1016/j.cimid.2007.11.005 pmid: 18243312
56 M Yamasaki, T J Sendall, M C Pearce, J C Whisstock, J A Huntington. Molecular basis of α1-antitrypsin deficiency revealed by the structure of a domain-swapped trimer. EMBO Reports, 2011, 12(10): 1011–1017
https://doi.org/10.1038/embor.2011.171 pmid: 21909074
57 B Wang, H Baldassarre, T Tao, M Gauthier, N Neveu, J F Zhou, M Leduc, F Duguay, A S Bilodeau, A Lazaris, C Keefer, C N Karatzas. Transgenic goats produced by DNA pronuclear microinjection of in vitro derived zygotes. Molecular Reproduction and Development, 2002, 63(4): 437–443
https://doi.org/10.1002/mrd.10199 pmid: 12412045
58 D Esslemont, M Kossaibati. Mastitis: how to get out of the dark ages. Veterinary Journal, 2002, 164(2): 85–86
https://doi.org/10.1053/tvjl.2002.0742 pmid: 12359461
59 P Rainard. Tackling mastitis in dairy cows. Nature Biotechnology, 2005, 23(4): 430–432
https://doi.org/10.1038/nbt0405-430 pmid: 15815667
60 R J Wall, A M Powell, M J Paape, D E Kerr, D D Bannerman, V G Pursel, K D Wells, N Talbot, H W Hawk. Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nature Biotechnology, 2005, 23(4): 445–451
https://doi.org/10.1038/nbt1078 pmid: 15806099
61 E R Oldham, M J Daley. Lysostaphin: use of a recombinant bactericidal enzyme as a mastitis therapeutic. Journal of Dairy Science, 1991, 74(12): 4175–4182
https://doi.org/10.3168/jds.S0022-0302(91)78612-8 pmid: 1787188
62 S E Lloyd, S Mead, J Collinge. Genetics of prion diseases. Current Opinion in Genetics & Development, 2013, 23(3): 345–351
https://doi.org/10.1016/j.gde.2013.02.012 pmid: 23518043
63 G A Wells, A C Scott, C T Johnson, R F Gunning, R D Hancock, M Jeffrey, M Dawson, R Bradley. A novel progressive spongiform encephalopathy in cattle. Veterinary Record, 1987, 121(18): 419–420
https://doi.org/10.1136/vr.121.18.419 pmid: 3424605
64 M Jeffrey, L González. Classical sheep transmissible spongiform encephalopathies: pathogenesis, pathological phenotypes and clinical disease. Neuropathology and Applied Neurobiology, 2007, 33(4): 373–394
https://doi.org/10.1111/j.1365-2990.2007.00868.x pmid: 17617870
65 P Aguilar-Calvo, C García, J C Espinosa, O Andreoletti, J M Torres. Prion and prion-like diseases in animals. Virus Research, 2015, 207: 82–93
https://doi.org/10.1016/j.virusres.2014.11.026 pmid: 25444937
66 S B Prusiner, D Groth, A Serban, R Koehler, D Foster, M Torchia, D Burton, S L Yang, S J DeArmond. Ablation of the prion protein (PrP) gene in mice prevents scrapie and facilitates production of anti-PrP antibodies. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(22): 10608–10612
https://doi.org/10.1073/pnas.90.22.10608 pmid: 7902565
67 M A Breider, R D Walker, F M Hopkins, T W Schultz, T L Bowersock. Pulmonary lesions induced by Pasteurella haemolytica in neutrophil sufficient and neutrophil deficient calves. Canadian Journal of Veterinary Research, 1988, 52(2): 205–209
pmid: 3370555
68 M L Mueller, J B Cole, T S Sonstegard, A L Van Eenennaam. Comparison of gene editing versus conventional breeding to introgress the POLLED allele into the US dairy cattle population. Journal of Dairy Science, 2019, 102(5): 4215–4226
https://doi.org/10.3168/jds.2018-15892 pmid: 30852022
69 A Regalado. Gene-edited cattle have a major screwup in their DNA. MIT Technology Review, 2019 [Published Online]
70 L A Norris, S S Lee, K J Greenlees, D A Tadesse, M F Miller, H Lombard. Template plasmid integration in germline genome-edited cattle. BioRxiv, 2019 [Published Online] doi:10.1101/715482
71 B P Kleinstiver, V Pattanayak, M S Prew, S Q Tsai, N T Nguyen, Z Zheng, J K Joung. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature, 2016, 529(7587): 490–495
https://doi.org/10.1038/nature16526 pmid: 26735016
72 I M Slaymaker, L Gao, B Zetsche, D A Scott, W X Yan, F Zhang. Rationally engineered Cas9 nucleases with improved specificity. Science, 2016, 351(6268): 84–88
https://doi.org/10.1126/science.aad5227 pmid: 26628643
73 S Q Tsai, N T Nguyen, J Malagon-Lopez, V V Topkar, M J Aryee, J K Joung. CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets. Nature Methods, 2017, 14(6): 607–614
https://doi.org/10.1038/nmeth.4278 pmid: 28459458
74 S Q Tsai, Z Zheng, N T Nguyen, M Liebers, V V Topkar, V Thapar, N Wyvekens, C Khayter, A J Iafrate, L P Le, M J Aryee, J K Joung. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nature Biotechnology, 2015, 33(2): 187–197
https://doi.org/10.1038/nbt.3117 pmid: 25513782
75 B M Ehn, B Ekstrand, U Bengtsson, S Ahlstedt. Modification of IgE binding during heat processing of the cow’s milk allergen β-lactoglobulin. Journal of Agricultural and Food Chemistry, 2004, 52(5): 1398–1403
https://doi.org/10.1021/jf0304371 pmid: 14995152
76 B M Ehn, T Allmere, E Telemo, U Bengtsson, B Ekstrand. Modification of IgE binding to β-lactoglobulin by fermentation and proteolysis of cow’s milk. Journal of Agricultural and Food Chemistry, 2005, 53(9): 3743–3748
https://doi.org/10.1021/jf048121w pmid: 15853429
77 L Grobet, L J Martin, D Poncelet, D Pirottin, B Brouwers, J Riquet, A Schoeberlein, S Dunner, F Ménissier, J Massabanda, R Fries, R Hanset, M Georges. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nature Genetics, 1997, 17(1): 71–74
https://doi.org/10.1038/ng0997-71 pmid: 9288100
78 A Dove. Milking the genome for profit. Nature Biotechnology, 2000, 18(10): 1045–1048
https://doi.org/10.1038/80231 pmid: 11017040
79 B Brophy, G Smolenski, T Wheeler, D Wells, P L’Huillier, G Laible. Cloned transgenic cattle produce milk with higher levels of β-casein and κ-casein. Nature Biotechnology, 2003, 21(2): 157–162
https://doi.org/10.1038/nbt783 pmid: 12548290
80 A Colman. Somatic cell nuclear transfer in mammals: progress and applications. Cloning, 1999–2000, 1(4): 185–200
https://doi.org/10.1089/15204559950019825 pmid: 16218819
81 J P Zhang, X L Li, G H Li, W Chen, C Arakaki, G D Botimer, D Baylink, L Zhang, W Wen, Y W Fu, J Xu, N Chun, W Yuan, T Cheng, X B Zhang. Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. Genome Biology, 2017, 18(1): 35
https://doi.org/10.1186/s13059-017-1164-8 pmid: 28219395
82 J Song, D Yang, J Xu, T Zhu, Y E Chen, J Zhang. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nature Communications, 2016, 7(1): 10548
https://doi.org/10.1038/ncomms10548 pmid: 26817820
83 S M Kipriyanov, G Moldenhauer, M Braunagel, U Reusch, B Cochlovius, F Le Gall, O A Kouprianova, C W Von der Lieth, M Little. Effect of domain order on the activity of bacterially produced bispecific single-chain Fv antibodies. Journal of Molecular Biology, 2003, 330(1): 99–111
https://doi.org/10.1016/S0022-2836(03)00526-6 pmid: 12818205
84 M Little, S M Kipriyanov, F Le Gall, G Moldenhauer. Of mice and men: hybridoma and recombinant antibodies. Immunology Today, 2000, 21(8): 364–370
https://doi.org/10.1016/S0167-5699(00)01668-6 pmid: 10916138
85 G Walsh. Biopharmaceutical benchmarks 2014. Nature Biotechnology, 2014, 32(10): 992–1000
https://doi.org/10.1038/nbt.3040 pmid: 25299917
86 L Grosse-Hovest, S Müller, R Minoia, E Wolf, V Zakhartchenko, H Wenigerkind, C Lassnig, U Besenfelder, M Müller, S D Lytton, G Jung, G Brem. Cloned transgenic farm animals produce a bispecific antibody for T cell-mediated tumor cell killing. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(18): 6858–6863
https://doi.org/10.1073/pnas.0308487101 pmid: 15105446
87 Z Fan, I V Perisse, C U Cotton, M Regouski, Q Meng, C Domb, A J Van Wettere, Z Wang, A Harris, K L White, I A Polejaeva. A sheep model of cystic fibrosis generated by CRISPR/Cas9 disruption of the CFTR gene. JCI Insight, 2018, 3(19): e123529
https://doi.org/10.1172/jci.insight.123529 pmid: 30282831
88 D K Williams, C Pinzón, S Huggins, J H Pryor, A Falck, F Herman, J Oldeschulte, M B Chavez, B L Foster, S H White, M E Westhusin, L J Suva, C R Long, D Gaddy. Genetic engineering a large animal model of human hypophosphatasia in sheep. Scientific Reports, 2018, 8(1): 16945
https://doi.org/10.1038/s41598-018-35079-y pmid: 30446691
89 S J Du, Z Y Gong, G L Fletcher, M A Shears, M J King, D R Idler, C L Hew. Growth enhancement in transgenic Atlantic salmon by the use of an “all fish” chimeric growth hormone gene construct. Bio-Technology, 1992, 10(2): 176–181
pmid: 1368229
90 J Kling. First US approval for a transgenic animal drug. Nature Biotechnology, 2009, 27(4): 302–304
https://doi.org/10.1038/nbt0409-302 pmid: 19352350
91 H A van Veen, J Koiter, C J M Vogelezang, N van Wessel, T van Dam, I Velterop, K van Houdt, L Kupers, D Horbach, M Salaheddine, J H Nuijens, M L M Mannesse. Characterization of recombinant human C1 inhibitor secreted in milk of transgenic rabbits. Journal of Biotechnology, 2012, 162(2–3): 319–326
https://doi.org/10.1016/j.jbiotec.2012.09.005 pmid: 22995741
92 C Sheridan. FDA approves ‘farmaceutical’ drug from transgenic chickens. Nature Biotechnology, 2016, 34(2): 117–119
https://doi.org/10.1038/nbt0216-117 pmid: 26849497
93 A Bruce. Genome edited animals: learning from GM crops? Transgenic Research, 2017, 26(3): 385–398
https://doi.org/10.1007/s11248-017-0017-2 pmid: 28432545
94 T Ishii. Genome-edited livestock: ethics and social acceptance. Animal Frontiers, 2017, 7(2): 24–32
https://doi.org/10.2527/af.2017.0115
95 S Schicktanz. Ethical considerations of the human-animal-relationship under conditions of asymmetry and ambivalence. Journal of Agricultural & Environmental Ethics, 2006, 19(1): 7–16
https://doi.org/10.1007/s10806-005-4374-0
[1] Kunling CHEN, Caixia GAO. Genome-edited crops: how to move them from laboratory to market[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 181-187.
[2] Zachariah MCLEAN, Björn OBACK, Götz LAIBLE. Embryo-mediated genome editing for accelerated genetic improvement of livestock[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 148-160.
[3] Haoyi WANG, Sen WU, Mario R. CAPECCHI, Rudolf JAENISCH. A brief review of genome editing technology for generating animal models[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 123-128.
[4] Dongdong LI, Meng WANG, Xianyan KUANG, Wenxin LIU. Genetic study and molecular breeding for high phosphorus use efficiency in maize[J]. Front. Agr. Sci. Eng. , 2019, 6(4): 366-379.
[5] Carlos GUZMÁN, Karim AMMAR, Velu GOVINDAN, Ravi SINGH. Genetic improvement of wheat grain quality at CIMMYT[J]. Front. Agr. Sci. Eng. , 2019, 6(3): 265-272.
[6] Hongxiang MA, Xu ZHANG, Jinbao YAO, Shunhe CHENG. Breeding for the resistance to Fusarium head blight of wheat in China[J]. Front. Agr. Sci. Eng. , 2019, 6(3): 251-264.
[7] Alexey MORGOUNOV, Fatih OZDEMIR, Mesut KESER, Beyhan AKIN, Thomas PAYNE, Hans-Joachim BRAUN. International Winter Wheat Improvement Program: history, activities, impact and future[J]. Front. Agr. Sci. Eng. , 2019, 6(3): 240-250.
[8] Zhonghu HE, Xianchun XIA, Yong ZHANG, Yan ZHANG, Yonggui XIAO, Xinmin CHEN, Simin LI, Yuanfeng HAO, Awais RASHEED, Zhiyong XIN, Qiaosheng ZHUANG, Ennian YANG, Zheru FAN, Jun YAN, Ravi SINGH, Hans-Joachim BRAUN. China-CIMMYT collaboration enhances wheat improvement in China[J]. Front. Agr. Sci. Eng. , 2019, 6(3): 233-239.
[9] Jianwen CHEN, Kaiyuan PAN, Zhen CHEN, Biao DING, Dandan SONG, Wenbin BAO, Yunhai ZHANG. Construction of multiple shRNA vectors targeting PEDV and TGEV and production of transgenic SCNT porcine embryos in vitro[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 66-72.
[10] Chuanping YANG. Research progress on genetic improvement of Betula platyphylla Suk.[J]. Front. Agr. Sci. Eng. , 2017, 4(4): 391-401.
[11] Wenteng XU, Songlin CHEN. Genomics and genetic breeding in aquatic animals: progress and prospects[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 305-318.
[12] Huimin KANG, Lei ZHOU, Jianfeng LIU. Statistical considerations for genomic selection[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 268-278.
[13] Yueyi CHEN,Xinsheng GAO,Xiaofei ZHANG,Weimin TIAN. Relationship between the number of tapping-induced secondary laticifer lines and rubber yield among Hevea germplasm[J]. Front. Agr. Sci. Eng. , 2016, 3(4): 363-367.
[14] Wei HUA,Jing LIU,Hanzhong WANG. Molecular regulation and genetic improvement of seed oil content in Brassica napus L.[J]. Front. Agr. Sci. Eng. , 2016, 3(3): 186-194.
[15] Shihua CHENG,Xiaodeng ZHAN,Liyong CAO. Breeding strategies for increasing yield potential in super hybrid rice[J]. Front. Agr. Sci. Eng. , 2015, 2(4): 277-282.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed