1. Key Laboratory of Crop Heterosis and Utilization (Ministry of Education)/Beijing Key Laboratory of Crop Genetic Improvement/National Maize Improvement Center, China Agricultural University, Beijing 100193, China 2. Department of Biological and Environmental Sciences, Alabama A&M University, Normal, AL 35762, USA
Phosphorus is the second most important macronutrient after nitrogen and it has many vital functions in the life of plants. Most soils have a low available P content, which has become a key limiting factor for increasing crop production. Also, low P use efficiency (PUE) of crops in conjunction with excessive application of P fertilizers has resulted in serious environmental problems. Thus, dissecting the genetic architecture of crop PUE, mining related quantitative trait loci (QTL) and using molecular breeding methods to improve high PUE germplasm are of great significance and serve as an efficient approach for the development of sustainable agriculture. In this review, molecular and phenotypic characteristics of maize inbred lines with high PUE, related QTL and genes as well as low-P responses are summarized. Based on this, a breeding strategy applying genomic selection as the core, and integrating the existing genetic information and molecular breeding techniques is proposed for breeding high PUE maize inbred lines and hybrids.
Just Accepted Date: 08 August 2019Online First Date: 24 September 2019Issue Date: 29 November 2019
Cite this article:
Dongdong LI,Meng WANG,Xianyan KUANG, et al. Genetic study and molecular breeding for high phosphorus use efficiency in maize[J]. Front. Agr. Sci. Eng. ,
2019, 6(4): 366-379.
Six RFLP marker loci related to biomass under P deficiency were identified
[54]
Hydroponic
Mo17/B73
RIL
167 RFLP, SSR and isozyme markers
197
RDW, RV
Substantial variation between maize lines for growth with low P and response to mycorrhizal fungi
[55]
Hydroponic
Mo17/B73
RIL
196 RFLP, SSR and isozyme markers
160
LRL, LRN
Eight QTL were identified for root-related traits
[56]
Cigar roll culture system
Mo17/B73
RIL
196 RFLP, SSR and isozyme markers
160
RHL, TT, SDW, SPC
QTL located at npi409–nc007 on Chr5 related to root hair length plasticity were found with low and normal P
[57]
Cigar roll culture system
Mo17/B73
RIL
196 RFLP, SSR and isozyme markers
160
SRL, SRN
Two coincident QTL flanked by umc34–bn112.09 on chromosome 2 and by bn112.09–umc131 on chromosome 2
[58]
Field
082/Ye107
F2:3
275SSR+ 146AFLP
241
PH, SDW, RDW, TPC, APA, H+, et al.
Five common regions for same QTL were found in the interval bnlg1556–bnlg1564, mmc0341–umc1101, mmc0282–phi333597, bnlg1346–bnlg1695 and bnlg118a–umc2136
[59]
Hydroponic
082/Ye107
F2:3
275SSR+ 146AFLP
241
SPUE, WPUE, RSR
SPUE and WPUE under LP were controlled by one QTL at interval of bnlg1518–bnlg1526 (bins 10.04)
[60]
Field
178/5003
F2:3
207SSR
210
GY, HGW, EL, RN, KNPR, ED
Consistent QTL at umc2215–bnlg1429, umc1464–umc1829 and umc1645–bnlg1839 on chromosome 1, 5 and 10
[61]
Field
082/Ye107
F2:3
275SSR+ 146AFLP
241
Biomass, the leaf age, PH
Two important QTL located at bnlg1832–P2M8-j in chromosome 1 and umc1102–P1M7-d in chromosome 3
[62]
Field
082/Ye107
F2:3
275SSR+ 146AFLP
241
H+ secretion
Large effect QTL related to H+ secretion was mined at bnlg2228–bnlg100 (bin 1.08) interval
[63]
Field
082/Ye107
F2:3
275SSR+ 146AFLP
241
FRN, TL, SDR, RDW and TPC
QTL affecting root weight were detected at the dupssr15 locus region (bin 6.06)
[64]
Field
Ye478/Wu312
RIL
184SSR
218
PH, EH, KNPE, HGW, GY
Seven QTL related grain yield under LP were identified
[39]
Field
Ye478/Wu312
RIL
184SSR
218
LL, LW, LA, GY, chlorophyll, FT, ASI
Overlapping QTL were located at chromosome bin 2.03–2.04, bin 2.06–2.08, bin 4.01–4.02, bin 5.03–5.04, bin 6.07 and bin 9.03
[65]
Field
178/5003
NIL
9SSR
/
KNPR
A QTL increasing kernel number under LP called qKN was finally localized to a region of ~480 kb on chromosome 10
[66]
Field
082/Ye107
BC3F2
12SRR
1441
APA
A QTL denoted as AP9 showed a stable expression under different environments on chromosome 9
[67]
Field
L3/L22
RIL backcrossed with parents
60SSR+ 332KASP
140
GY, PutE, PupE
Approximately 80% of the QTLs mapped for PupE co-localized with those for PUE
[22]
Field
082/Ye107
F2:3
295SSR
180
APR, APS
One stable QTL for APR located in bnlg1350-bnlg1449 on chromosome 3 and two stable QTL located at umc2083–umc1972 on chromosome 1 and umc2111–dupssr on chromosome 5 for APS.
[68]
Hydroponic
L3/L22
RIL
60SSR+ 332SNP
145
TRL, RD, RAS, TSDW, TPC
Four ZmPSTOL candidate genes co-localized with QTLs for root morphology, biomass accumulation and-or P content
[57]
Hydroponic
Ye478/Wu312
RIL and BC4F3
184SSR, 143SSR, respectively
218 and 187, respectively
PUE and RSA-related traits
Two QTL clusters, Cl-bin3.04a and Cl-bin3.04b for PUE and RSA-related traits were found
[26]
Paper roll, hydroponics, vermiculite culture
Ye478/Wu312
RIL
184SSR
218
RSA and PUE-related traits
Six chromosome regions of bin 1.04/1.05, 1.06, 2.04/2.05, 3.04, 4.05 and 5.04/5.05 were identified for RSA traits
[18]
Tab.1 QTL mapping information for PUE-related traits in maize
Fig.1 Distribution of low-P tolerance ranking of temperate and tropical/subtropical subpopulations. (a) Histogram of tolerance ranking of temperate (left) and tropical/subtropical (right); (b) boxplot of tolerance ranking of the two subpopulations. Significance test was based on Student’s t-test. Data sources from Zhang et al.[41].
Fig.2 A strategy for breeding high PUE inbred lines and hybrids.
1
T Maharajan, S A Ceasar, T P Ajeesh krishna, M Ramakrishnan, V Duraipandiyan, A D Naif Abdulla, S Ignacimuthu, T P Ajeesh krishna, M Ramakrishnan, V Duraipandiyan, A D Naif Abdulla, S Ignacimuthu. Utilization of molecular markers for improving the phosphorus efficiency in crop plants. Plant Breeding, 2018, 137(1): 10–26 https://doi.org/10.1111/pbr.12537
2
J Pang, M H Ryan, H Lambers, K H Siddique. Phosphorus acquisition and utilisation in crop legumes under global change. Current Opinion in Plant Biology, 2018, 45(Pt B): 248–254 https://doi.org/10.1016/j.pbi.2018.05.012
pmid: 29853281
3
S V Mapare, P L Yu, A Sarkar, S C Mukhopadhyay. A review of sensor technology for in-field phosphate monitoring. In: Seventh International Conference on Sensing Technology. Wellington, New Zealand: IEEE, 2013, 411–418
4
K C Ruttenberg. The global phosphorus cycle. Treatise on geochemistry, 2003, 8: 585–643
5
T S George, C D Giles, D Menezes-Blackburn, L M Condron, A C Gama-Rodrigues, D Jaisi, F Lang, A L Neal, M I Stutter, D S Almeida, R Bol, K G Cabugao, L Celi, J B Cotner, G Feng, D S Goll, M Hallama, J Krueger, C Plassard, A Rosling, T Darch, T Fraser, R Giesler, A E Richardson, F Tamburini, C A Shand, D G Lumsdon, H Zhang, M S A Blackwell, C Wearing, M M Mezeli, R Almås, Y Audette, I Bertrand, E Beyhaut, G Boitt, N Bradshaw, C A Brearley, T W Bruulsema, P Ciais, V Cozzolino, P C Duran, M L Mora, A B de Menezes, R J Dodd, K Dunfield, C Engl, J J Frazão, G Garland, J L González Jiménez, J Graca, S J Granger, A F Harrison, C Heuck, E Q Hou, P J Johnes, K Kaiser, H A Kjær, E Klumpp, A L Lamb, K A Macintosh, E B Mackay, J McGrath, C McIntyre, T McLaren, E Mészáros, A Missong, M Mooshammer, C P Negrón, L A Nelson, V Pfahler, P Poblete-Grant, M Randall, A Seguel, K Seth, A C Smith, M M Smits, J A Sobarzo, M Spohn, K Tawaraya, M Tibbett, P Voroney, H Wallander, L Wang, J Wasaki, P M Haygarth. Organic phosphorus in the terrestrial environment: a perspective on the state of the art and future priorities. Plant and Soil, 2018, 427(1–2): 191–208 https://doi.org/10.1007/s11104-017-3391-x
6
A A Negm, A Z M Abouzeid. Utilization of solid wastes from phosphate processing plants. Physicochemical Problems of Mineral Processing, 2008, 42: 5–16
7
W K Dodds, M R Whiles. Freshwater Ecology. 2 ed. Chapter 14: Nitrogen, sulfur, phosphorus, and other nutrients. 2012: 345–373. doi: 10.1016/B978-0-12-374724-2.00014-3
8
J Gerke. The acquisition of phosphate by higher plants: effect of carboxylate release by the roots. A critical review. Journal of Plant Nutrition and Soil Science, 2015, 178(3): 351–364 https://doi.org/10.1002/jpln.201400590
9
P Wu, H Shou, G Xu, X Lian. Improvement of phosphorus efficiency in rice on the basis of understanding phosphate signaling and homeostasis. Current Opinion in Plant Biology, 2013, 16(2): 205–212 https://doi.org/10.1016/j.pbi.2013.03.002
pmid: 23566853
10
C P Vance, C Uhde-Stone, D L Allan. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist, 2003, 157(3): 423–447 https://doi.org/10.1046/j.1469-8137.2003.00695.x
J Shen, L Yuan, J Zhang, H Li, Z Bai, X Chen, W Zhang, F Zhang. Phosphorus dynamics: from soil to plant. Plant Physiology, 2011, 156(3): 997–1005 https://doi.org/10.1104/pp.111.175232
pmid: 21571668
13
R Gamuyao, J H Chin, J Pariasca-Tanaka, P Pesaresi, S Catausan, C Dalid, I Slamet-Loedin, E M Tecson-Mendoza, M Wissuwa, S Heuer. The protein kinase PSTOL1 from traditional rice confers tolerance of phosphorus deficiency. Nature, 2012, 488(7412): 535–539 https://doi.org/10.1038/nature11346
pmid: 22914168
14
H P Weikard. Phosphorus recycling and food security in the long run: a conceptual modelling approach. Food Security, 2016, 8(2): 405–414 https://doi.org/10.1007/s12571-016-0551-4
15
Y Zhang, F J Chen, X X Li, C J Li. Higher leaf area and post-silking P uptake conferred by introgressed DNA segments in the backcross maize line 224. Field Crops Research, 2013, 151: 78–84 https://doi.org/10.1016/j.fcr.2013.07.017
16
A Baker, S A Ceasar, A J Palmer, J B Paterson, W Qi, S P Muench, S A Baldwin. Replace, reuse, recycle: improving the sustainable use of phosphorus by plants. Journal of Experimental Botany, 2015, 66(12): 3523–3540 https://doi.org/10.1093/jxb/erv210
pmid: 25944926
17
T Maharajan, S A Ceasar, T P Ajeesh krishna, M Ramakrishnan, V Duraipandiyan, A D Naif Abdulla, S Ignacimuthu. Utilization of molecular markers for improving the phosphorus efficiency in crop plants. Plant Breeding, 2018, 137(1): 10–26 https://doi.org/10.1111/pbr.12537
18
Z Liu, K Gao, S Shan, R Gu, Z Wang, E J Craft, G Mi, L Yuan, F Chen. Comparative analysis of root traits and the associated QTLs for maize seedlings grown in paper roll, hydroponics and vermiculite culture system. Frontiers of Plant Science, 2017, 8: 436 https://doi.org/10.3389/fpls.2017.00436
pmid: 28424719
19
A B M Khaldun, M T Islam, B Sheikh, M Rahman. Integration of omics approaches for low-phosphorus tolerance in maize. In: Zargar S M, Vandna R, eds. Plant omics and crop breeding. Palm Bay, USA: Apple Academic Press, 2017, 260–287
20
X R Wang, J B Shen, H Liao. Acquisition or utilization, which is more critical for enhancing phosphorus efficiency in modern crops? Plant Science, 2010, 179(4): 302–306 https://doi.org/10.1016/j.plantsci.2010.06.007
21
Y Yuan, M Gao, M Zhang, H Zheng, X Zhou, Y Guo, Y Zhao, F Kong, S Li. QTL mapping for phosphorus efficiency and morphological traits at seedling and maturity stages in wheat. Frontiers of Plant Science, 2017, 8: 614 https://doi.org/10.3389/fpls.2017.00614
pmid: 28484481
22
F F Mendes, L J M Guimarães, J C Souza, P E O Guimarães, J V Magalhaes, A A F Garcia, S N Parentoni, C T Guimaraes. Genetic architecture of phosphorus use efficiency in tropical maize cultivated in a low-P soil. Crop Science, 2014, 54(4): 1530–1538 https://doi.org/10.2135/cropsci2013.11.0755
23
S Morais de Sousa, R T Clark, F F Mendes, A Carlos De Oliveira, M J Vilaça De Vasconcelos, S N Parentoni, L V Kochian, C T Guimarães, J V Magalhães. A role for root morphology and related candidate genes in P acquisition efficiency in maize. Functional Plant Biology, 2012, 39(11): 925–935 https://doi.org/10.1071/FP12022
24
D L López-Arredondo, M A Leyva-González, S I González-Morales, J López-Bucio, L Herrera-Estrella. Phosphate nutrition: improving low-phosphate tolerance in crops. Annual Review of Plant Biology, 2014, 65(1): 95–123 https://doi.org/10.1146/annurev-arplant-050213-035949
pmid: 24579991
25
W Wang, G D Ding, P J White, X H Wang, K M Jin, F S Xu, L Shi. Mapping and cloning of quantitative trait loci for phosphorus efficiency in crops: opportunities and challenges. Plant and Soil, 2019, 439(1–2): 91–112 https://doi.org/10.1007/s11104-018-3706-6
26
R Gu, F Chen, L Long, H Cai, Z Liu, J Yang, L Wang, H Li, J Li, W Liu, G Mi, F Zhang, L Yuan. Enhancing phosphorus uptake efficiency through QTL-based selection for root system architecture in maize. Journal of Genetics and Genomics, 2016, 43(11): 663–672 https://doi.org/10.1016/j.jgg.2016.11.002
pmid: 27889500
27
S N Parentoni, C L Souza Júnior. Phosphorus acquisition and internal utilization efficiency in tropical maize genotypes. Pesquisa Agropecuária Brasileira, 2008, 43(7): 893–901 https://doi.org/10.1590/S0100-204X2008000700014
28
G G B Manske, J I Ortiz-Monasterio, M van Ginkel, R M González, R A Fischer, S Rajaram, P L G Vlek. Importance of P uptake efficiency versus P utilization for wheat yield in acid and calcareous soils in Mexico. European Journal of Agronomy, 2001, 14(4): 261–274 https://doi.org/10.1016/S1161-0301(00)00099-X
29
T Galindo-Castañeda, K M Brown, J P Lynch. Reduced root cortical burden improves growth and grain yield under low phosphorus availability in maize. Plant, Cell & Environment, 2018, 41(7): 1579–1592 https://doi.org/10.1111/pce.13197
pmid: 29574982
30
J S Bayuelo-Jiménez, M Gallardo-Valdéz, V A Pérez-Decelis, L Magdaleno-Armas, I Ochoa, J P Lynch. Genotypic variation for root traits of maize (Zea mays L.) from the Purhepecha Plateau under contrasting phosphorus availability. Field Crops Research, 2011, 121(3): 350–362 https://doi.org/10.1016/j.fcr.2011.01.001
31
M A Miguel, A Widrig, R F Vieira, K M Brown, J P Lynch. Basal root whorl number: a modulator of phosphorus acquisition in common bean (Phaseolus vulgaris). Annals of Botany, 2013, 112(6): 973–982 https://doi.org/10.1093/aob/mct164
pmid: 23925972
32
B N Devaiah, V K Nagarajan, K G Raghothama. Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6. Plant Physiology, 2007, 145(1): 147–159 https://doi.org/10.1104/pp.107.101691
pmid: 17631527
33
H Rouached, A B Arpat, Y Poirier. Regulation of phosphate starvation responses in plants: signaling players and cross-talks. Molecular Plant, 2010, 3(2): 288–299 https://doi.org/10.1093/mp/ssp120
pmid: 20142416
34
D Baek, H C Park, M C Kim, D J Yun. The role of ArabidopsisMYB2 in miR399f-mediated phosphate-starvation response. Plant Signaling & Behavior, 2013, 8(3): e23488 https://doi.org/10.4161/psb.23488
pmid: 23333957
35
K Zhang, H Liu, J Song, W Wu, K Li, J Zhang. Physiological and comparative proteome analyses reveal low-phosphate tolerance and enhanced photosynthesis in a maize mutant owing to reinforced inorganic phosphate recycling. BMC Plant Biology, 2016, 16(1): 129 https://doi.org/10.1186/s12870-016-0825-1
pmid: 27277671
36
T Bera, E S Mclamore, B Wasik, B Rathinasabapathi, G Liu. Identification of a maize (Zea mays L.) inbred line adapted to low-P conditions via analyses of phosphorus utilization, root acidification, and calcium influx. Journal of Plant Nutrition and Soil Science, 2018, 181(2): 275–286 https://doi.org/10.1002/jpln.201700319
37
B Péret, T Desnos, R Jost, S Kanno, O Berkowitz, L Nussaume. Root architecture responses: in search of phosphate. Plant Physiology, 2014, 166(4): 1713–1723 https://doi.org/10.1104/pp.114.244541
pmid: 25341534
38
R Bustos, G Castrillo, F Linhares, M I Puga, V Rubio, J Pérez-Pérez, R Solano, A Leyva, J Paz-Ares. A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLOS Genetics, 2010, 6(9): e1001102 https://doi.org/10.1371/journal.pgen.1001102
pmid: 20838596
39
H G Cai, Q Chu, R L Gu, L X Yuan, J C Liu, X Z Zhang, F J Chen, G H Mi, F S Zhang. Identification of QTLs for plant height, ear height and grain yield in maize (Zea mays L.) in response to nitrogen and phosphorus supply. Plant Breeding, 2012, 131(4): 502–510 https://doi.org/10.1111/j.1439-0523.2012.01963.x
40
C Xu, H Zhang, J Sun, Z Guo, C Zou, W X Li, C Xie, C Huang, R Xu, H Liao, J Wang, X Xu, S Wang, Y Xu. Genome-wide association study dissects yield components associated with low-phosphorus stress tolerance in maize. Theoretical and Applied Genetics, 2018, 131(8): 1699–1714 https://doi.org/10.1007/s00122-018-3108-4
pmid: 29754325
41
H Zhang, R Xu, C Xie, C Huang, H Liao, Y Xu, J Wang, W X Li. Large-scale evaluation of maize germplasm for low-phosphorus tolerance. PLoS One, 2015, 10(5): e0124212 https://doi.org/10.1371/journal.pone.0124212
pmid: 25938641
42
L M Pan, Z Q Yin, Y Q Huang, J T Chen, L Y Zhu, Y F Zhao, J J Guo. QTL for maize grain yield identified by QTL mapping in six environments and consensus loci for grain weight detected by meta-analysis. Plant Breeding, 2017, 136(6): 820–833 https://doi.org/10.1111/pbr.12524
43
N Raboanatahiry, H Chao, H Dalin, S Pu, W Yan, L Yu, B Wang, M Li. QTL alignment for seed yield and yield related traits in Brassica napus. Frontiers of Plant Science, 2018, 9: 1127 https://doi.org/10.3389/fpls.2018.01127
pmid: 30116254
44
K Matsubara, J I Yonemaru, N Kobayashi, T Ishii, E Yamamoto, R Mizobuchi, H Tsunematsu, T Yamamoto, H Kato, M Yano. A follow-up study for biomass yield QTLs in rice. PLoS One, 2018, 13(10): e0206054 https://doi.org/10.1371/journal.pone.0206054
pmid: 30352074
45
C Calderón-Vázquez, R J H Sawers, L Herrera-Estrella. Phosphate deprivation in maize: genetics and genomics. Plant Physiology, 2011, 156(3): 1067–1077 https://doi.org/10.1104/pp.111.174987
pmid: 21617030
46
C Calderon-Vazquez, E Ibarra-Laclette, J Caballero-Perez, L Herrera-Estrella. Transcript profiling of Zea mays roots reveals gene responses to phosphate deficiency at the plant- and species-specific levels. Journal of Experimental Botany, 2008, 59(9): 2479–2497 https://doi.org/10.1093/jxb/ern115
pmid: 18503042
47
R Nagy, M J Vasconcelos, S Zhao, J McElver, W Bruce, N Amrhein, K G Raghothama, M Bucher. Differential regulation of five Pht1 phosphate transporters from maize (Zea mays L.). Plant Biology, 2006, 8(2): 186–197 https://doi.org/10.1055/s-2005-873052
pmid: 16547863
48
L Pei, Z Jin, K Li, H Yin, J Wang, A Yang. Identification and comparative analysis of low phosphate tolerance-associated microRNAs in two maize genotypes. Plant Physiology and Biochemistry, 2013, 70: 221–234 https://doi.org/10.1016/j.plaphy.2013.05.043
pmid: 23792878
49
Q Du, K Wang, C Zou, C Xu, W X Li. The PILNCR1-miR399 regulatory module is important for low-phosphate tolerance in maize. Plant Physiology, 2018, 177(4): 1743–1753 https://doi.org/10.1104/pp.18.00034
pmid: 29967097
50
K Li, C Xu, Z Li, K Zhang, A Yang, J Zhang. Comparative proteome analyses of phosphorus responses in maize (Zea mays L.) roots of wild-type and a low-P-tolerant mutant reveal root characteristics associated with phosphorus efficiency. Plant Journal, 2008, 55(6): 927–939 https://doi.org/10.1111/j.1365-313X.2008.03561.x
pmid: 18489707
51
K Li, C Xu, W Fan, H Zhang, J Hou, A Yang, K Zhang. Phosphoproteome and proteome analyses reveal low-phosphate mediated plasticity of root developmental and metabolic regulation in maize (Zea mays L.). Plant Physiology and Biochemistry, 2014, 83: 232–242 https://doi.org/10.1016/j.plaphy.2014.08.007
pmid: 25190054
52
A H Ganie, A Ahmad, R Pandey, I M Aref, P Y Yousuf, S Ahmad, M Iqbal. Metabolite profiling of low-P tolerant and low-P sensitive maize genotypes under phosphorus starvation and restoration conditions. PLoS One, 2015, 10(6): e0129520 https://doi.org/10.1371/journal.pone.0129520
pmid: 26090681
53
E S Buckler, J B Holland, P J Bradbury, C B Acharya, P J Brown, C Browne, E Ersoz, S Flint-Garcia, A Garcia, J C Glaubitz, M M Goodman, C Harjes, K Guill, D E Kroon, S Larsson, N K Lepak, H Li, S E Mitchell, G Pressoir, J A Peiffer, M O Rosas, T R Rocheford, M C Romay, S Romero, S Salvo, H Sanchez Villeda, H S da Silva, Q Sun, F Tian, N Upadyayula, D Ware, H Yates, J Yu, Z Zhang, S Kresovich, M D McMullen. The genetic architecture of maize flowering time. Science, 2009, 325(5941): 714–718 https://doi.org/10.1126/science.1174276
pmid: 19661422
54
R S Reiter, J G Coors, M R Sussman, W H Gabelman. Genetic analysis of tolerance to low-phosphorus stress in maize using restriction fragment length polymorphisms. Theoretical and Applied Genetics, 1991, 82(5): 561–568 https://doi.org/10.1007/BF00226791
pmid: 24213334
55
S M Kaeppler, J L Parke, S M Mueller, L Senior, C Stuber, W F Tracy. Variation among maize inbred lines and detection of quantitative trait loci for growth at low phosphorus and responsiveness to arbuscular mycorrhizal fungi. Crop Science, 2000, 40(2): 358–364 https://doi.org/10.2135/cropsci2000.402358x
56
J Zhu, S M Kaeppler, J P Lynch. Mapping of QTLs for lateral root branching and length in maize (Zea mays L.) under differential phosphorus supply. Theoretical and Applied Genetics, 2005, 111(4): 688–695 https://doi.org/10.1007/s00122-005-2051-3
pmid: 16021413
57
J Zhu, S M Kaeppler, J P Lynch. Mapping of QTL controlling root hair length in maize (Zea mays L.) under phosphorus deficiency. Plant and Soil, 2005, 270(1): 299–310 https://doi.org/10.1007/s11104-004-1697-y
58
J Zhu, S M Mickelson, S M Kaeppler, J P Lynch. Detection of quantitative trait loci for seminal root traits in maize (Zea mays L.) seedlings grown under differential phosphorus levels. Theoretical and Applied Genetics, 2006, 113(1): 1–10 https://doi.org/10.1007/s00122-006-0260-z
pmid: 16783587
59
J Y Chen, L Xu, Y L Cai, J Xu. QTL mapping of phosphorus efficiency and relative biologic characteristics in maize (Zea mays L.) at two sites. Plant and Soil, 2008, 313(1–2): 251–266 https://doi.org/10.1007/s11104-008-9698-x
60
J Y Chen, L Xu, Y L Cai, J Xu. Identification of QTLs for phosphorus utilization efficiency in maize (Zea mays L.) across P levels. Euphytica, 2009, 167(2): 245–252 https://doi.org/10.1007/s10681-009-9883-x
61
M Li, X H Guo, M Zhang, X P Wang, G D Zhang, Y C Tian, Z L Wang. Mapping QTLs for grain yield and yield components under high and low phosphorus treatments in maize (Zea mays L.). Plant Science, 2010, 178(5): 454–462 https://doi.org/10.1016/j.plantsci.2010.02.019
62
J Y Chen, Y L Cai, L Xu, J G Wang, W L Zhang, G Q Wang, D L Xu, T Q Chen, X G Lu, H Y Sun, A Y Huang, Y Liang, G L Dai, H N Qin, Z C Huang, Z J Zhu, Z G Yang, J Xu, S F Kuang. Identification of QTLs for biomass production in maize (Zea mays L.) under different phosphorus levels at two sites. Frontiers of Agriculture in China, 2011, 5(2): 152–161 https://doi.org/10.1007/s11703-011-1077-3
63
J Y Chen, L Xu. Comparative mapping of QTLs for H+ secretion of root in maize (Zea mays L.) and cross phosphorus levels on two growth stages. Frontiers of Agriculture in China, 2011, 5(3): 284–290 https://doi.org/10.1007/s11703-011-1075-5
64
J Y Chen, L Xu. The candidate QTLs affecting phosphorus absorption efficiency and root weight in maize (Zea mays L.). Frontiers of Agriculture in China, 2011, 5(4): 456–462 https://doi.org/10.1007/s11703-011-1079-1
65
H G Cai, Q Chu, L X Yuan, J C Liu, X H Chen, F J Chen, G H Mi, F S Zhang. Identification of quantitative trait loci for leaf area and chlorophyll content in maize (Zea mays) under low nitrogen and low phosphorus supply. Molecular Breeding, 2012, 30(1): 251–266 https://doi.org/10.1007/s11032-011-9615-5
66
G Zhang, X Wang, B Wang, Y Tian, M Li, Y Nie, Q Peng, Z Wang. Fine mapping a major QTL for kernel number per row under different phosphorus regimes in maize (Zea mays L.). Theoretical and Applied Genetics, 2013, 126(6): 1545–1553 https://doi.org/10.1007/s00122-013-2072-2
pmid: 23494393
67
H B Qiu, X P Mei, C X Liu, J G Wang, G Q Wang, X Wang, Z Liu, Y L Cai. Fine mapping of quantitative trait loci for acid phosphatase activity in maize leaf under low phosphorus stress. Molecular Breeding, 2013, 32(3): 629–639 https://doi.org/10.1007/s11032-013-9895-z
68
H B Qiu, C X Liu, T T Yu, X P Mei, G Q Wang, J G Wang, Y L Cai. Identification of QTL for acid phosphatase activity in root and rhizosphere soil of maize under low phosphorus stress. Euphytica, 2014, 197(1): 133–143 https://doi.org/10.1007/s10681-013-1058-0
69
J J Ni, P Wu, D Senadhira, N Huang. Mapping QTLs for phosphorus deficiency tolerance in rice (Oryza sativa L.). Theoretical and Applied Genetics, 1998, 97(8): 1361–1369 https://doi.org/10.1007/s001220051030
70
M Wissuwa, J Wegner, N Ae, M Yano. Substitution mapping of Pup1: a major QTL increasing phosphorus uptake of rice from a phosphorus-deficient soil. Theoretical and Applied Genetics, 2002, 105(6–7): 890–897 https://doi.org/10.1007/s00122-002-1051-9
pmid: 12582914
H Li, Z Peng, X Yang, W Wang, J Fu, J Wang, Y Han, Y Chai, T Guo, N Yang, J Liu, M L Warburton, Y Cheng, X Hao, P Zhang, J Zhao, Y Liu, G Wang, J Li, J Yan. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nature Genetics, 2013, 45(1): 43–50 https://doi.org/10.1038/ng.2484
pmid: 23242369
73
X Wang, H Wang, S Liu, A Ferjani, J Li, J Yan, X Yang, F Qin. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nature Genetics, 2016, 48(10): 1233–1241 https://doi.org/10.1038/ng.3636
pmid: 27526320
74
N Yang, Y Lu, X Yang, J Huang, Y Zhou, F Ali, W Wen, J Liu, J Li, J Yan. Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLOS Genetics, 2014, 10(9): e1004573 https://doi.org/10.1371/journal.pgen.1004573
pmid: 25211220
75
B W Luo, P Ma, Z Nie, X Zhang, X He, X Ding, X Feng, Q X Lu, Z Y Ren, H J Lin, Y Q Wu, Y O Shen, S Z Zhang, L Wu, D Liu, G T Pan, T Z Rong, S B Gao. Combining metabolite profiling with genome-wide association study to reveal response mechanisms of Zea mays seedlings under low-phosphorus conditions. Plant Journal, 2019, 97: 947–969 https://doi.org/10.1111/tpj.14160
pmid: 30472798
76
J Yu, J B Holland, M D McMullen, E S Buckler. Genetic design and statistical power of nested association mapping in maize. Genetics, 2008, 178(1): 539–551 https://doi.org/10.1534/genetics.107.074245
pmid: 18202393
77
B E Huang, K L Verbyla, A P Verbyla, C Raghavan, V K Singh, P Gaur, H Leung, R K Varshney, C R Cavanagh. MAGIC populations in crops: current status and future prospects. Theoretical and Applied Genetics, 2015, 128(6): 999–1017 https://doi.org/10.1007/s00122-015-2506-0
pmid: 25855139
78
N Bandillo, C Raghavan, P A Muyco, M A Sevilla, I T Lobina, C J Dilla-Ermita, C W Tung, S McCouch, M Thomson, R Mauleon, R K Singh, G Gregorio, E Redoña, H Leung. Multi-parent advanced generation inter-cross (MAGIC) populations in rice: progress and potential for genetics research and breeding. Rice, 2013, 6(1): 11 https://doi.org/10.1186/1939-8433-6-11
pmid: 24280183
M Dell’Acqua, D M Gatti, G Pea, F Cattonaro, F Coppens, G Magris, A L Hlaing, H H Aung, H Nelissen, J Baute, E Frascaroli, G A Churchill, D Inzé, M Morgante, M E Pè. Genetic properties of the MAGIC maize population: a new platform for high definition QTL mapping in Zea mays. Genome Biology, 2015, 16(1): 167 https://doi.org/10.1186/s13059-015-0716-z
pmid: 26357913
81
Y Xiao, H Tong, X Yang, S Xu, Q Pan, F Qiao, M S Raihan, Y Luo, H Liu, X Zhang, N Yang, X Wang, M Deng, M Jin, L Zhao, X Luo, Y Zhou, X Li, J Liu, W Zhan, N Liu, H Wang, G Chen, Y Cai, G Xu, W Wang, D Zheng, J Yan. Genome-wide dissection of the maize ear genetic architecture using multiple populations. New Phytologist, 2016, 210(3): 1095–1106 https://doi.org/10.1111/nph.13814
pmid: 26715032
82
W X Liu, W L Leiser, J C Reif, M R Tucker, D Losert, S Weissmann, V Hahn, H P Maurer, T Würschum. Multiple-line cross QTL mapping for grain yield and thousand kernel weight in triticale. Plant Breeding, 2016, 135(5): 567–573 https://doi.org/10.1111/pbr.12400
83
L T Zhang, J Li, T Z Rong, S B Gao, F K Wu, J Xu, M L Li, M J Cao, J Wang, E L Hu, Y X Liu, Y L Lu. Large-scale screening maize germplasm for low-phosphorus tolerance using multiple selection criteria. Euphytica, 2014, 197(3): 435–446 https://doi.org/10.1007/s10681-014-1079-3
84
Z Liu, X Liu, E J Craft, L Yuan, L Cheng, G Mi, F Chen. Physiological and genetic analysis for maize root characters and yield in response to low phosphorus stress. Breeding Science, 2018, 68(2): 268–277 https://doi.org/10.1270/jsbbs.17083
pmid: 29875611
85
S A Ige, O B Bello, O Alake. Combining ability and heterosis of tolerance to low soil nitrogen in tropical maize cultivars derived from two breeding eras. Open Agriculture, 2018, 3(1): 339–347 https://doi.org/10.1515/opag-2018-0037
86
R A Narang, T Altmann. Phosphate acquisition heterosis in Arabidopsis thaliana: a morphological and physiological analysis. Plant and Soil, 2001, 234(1): 91–97 https://doi.org/10.1023/A:1010545101345
87
M A Nadeem, M A Nawaz, M Q Shahid, Y Doğan, G Comertpay, M Yıldız, R Hatipoğlu, F Ahmad, A Alsaleh, N Labhane, H Özkan, G Chung, F S Baloch. DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnology, Biotechnological Equipment, 2018, 32(2): 261–285 https://doi.org/10.1080/13102818.2017.1400401
88
B N Devaiah, R Madhuvanthi, A S Karthikeyan, K G Raghothama. Phosphate starvation responses and gibberellic acid biosynthesis are regulated by the MYB62 transcription factor in Arabidopsis. Molecular Plant, 2009, 2(1): 43–58 https://doi.org/10.1093/mp/ssn081
pmid: 19529828
89
K L Huang, G J Ma, M L Zhang, H Xiong, H Wu, C Z Zhao, C S Liu, H X Jia, L Chen, J O Kjorven, X B Li, F Ren. The ARF7 and ARF19 transcription factors positively regulate PHOSPHATE STARVATION RESPONSE1 in Arabidopsis roots. Plant Physiology, 2018, 178(1): 413–427 https://doi.org/10.1104/pp.17.01713
pmid: 30026290
90
J H Chin, R Gamuyao, C Dalid, M Bustamam, J Prasetiyono, S Moeljopawiro, M Wissuwa, S Heuer. Developing rice with high yield under phosphorus deficiency: Pup1 sequence to application. Plant Physiology, 2011, 156(3): 1202–1216 https://doi.org/10.1104/pp.111.175471
pmid: 21602323
91
C A Pérez-Torres, J López-Bucio, A Cruz-Ramírez, E Ibarra-Laclette, S Dharmasiri, M Estelle, L Herrera-Estrella. Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell, 2008, 20(12): 3258–3272 https://doi.org/10.1105/tpc.108.058719
pmid: 19106375
92
H Zhang, M S Uddin, C Zou, C Xie, Y Xu, W X Li. Meta-analysis and candidate gene mining of low-phosphorus tolerance in maize. Journal of Integrative Plant Biology, 2014, 56(3): 262–270 https://doi.org/10.1111/jipb.12168
pmid: 24433531
93
F A Ran, P D Hsu, J Wright, V Agarwala, D A Scott, F Zhang. Genome engineering using the CRISPR-Cas9 system. Nature Protocols, 2013, 8(11): 2281–2308 https://doi.org/10.1038/nprot.2013.143
pmid: 24157548
94
S Svitashev, C Schwartz, B Lenderts, J K Young, A Mark Cigan. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nature Communications, 2016, 7(1): 13274 https://doi.org/10.1038/ncomms13274
pmid: 27848933
95
S N Char, A K Neelakandan, H Nahampun, B Frame, M Main, M H Spalding, P W Becraft, B C Meyers, V Walbot, K Wang, B Yang. An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnology Journal, 2017, 15(2): 257–268 https://doi.org/10.1111/pbi.12611
pmid: 27510362
96
T H E Meuwissen, B J Hayes, M E Goddard. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 2001, 157(4): 1819–1829
pmid: 11290733
97
B J Hayes, P J Bowman, A C Chamberlain, K Verbyla, M E Goddard. Accuracy of genomic breeding values in multi-breed dairy cattle populations. Genetics, Selection, Evolution, 2009, 41(1): 51 https://doi.org/10.1186/1297-9686-41-51
pmid: 19930712
R C Gaynor, G Gorjanc, A R Bentley, E S Ober, P Howell, R Jackson, I J Mackay, J M Hickey. A two-part strategy for using genomic selection to develop inbred lines. Crop Science, 2017, 57(5): 2372–2386 https://doi.org/10.2135/cropsci2016.09.0742
100
C Riedelsheimer, J B Endelman, M Stange, M E Sorrells, J L Jannink, A E Melchinger. Genomic predictability of interconnected biparental maize populations. Genetics, 2013, 194(2): 493–503 https://doi.org/10.1534/genetics.113.150227
pmid: 23535384
101
P Schopp, D Müller, Y C J Wientjes, A E Melchinger. Genomic prediction within and across biparental families: means and variances of prediction accuracy and usefulness of deterministic equations. G3: Genes, Genomes, Genetics, 2017, 7(11): 3571–3586 https://doi.org/10.1534/g3.117.300076
pmid: 28916649
102
X Zhang, P Pérez-Rodríguez, J Burgueño, M Olsen, E Buckler, G Atlin, B M Prasanna, M Vargas, F San Vicente, J Crossa. Rapid cycling genomic selection in a multiparental tropical maize population. G3: Genes, Genomes, Genetics, 2017, 7(7): 2315–2326 https://doi.org/10.1534/g3.117.043141
pmid: 28533335
103
R E Lorenzana, R Bernardo. Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. Theoretical and Applied Genetics, 2009, 120(1): 151–161 https://doi.org/10.1007/s00122-009-1166-3
pmid: 19841887
104
V S Windhausen, G N Atlin, J M Hickey, J Crossa, J L Jannink, M E Sorrells, B Raman, J E Cairns, A Tarekegne, K Semagn, Y Beyene, P Grudloyma, F Technow, C Riedelsheimer, A E Melchinger. Effectiveness of genomic prediction of maize hybrid performance in different breeding populations and environments. Genetics, 2012, 2(11): 1427–1436 https://doi.org/10.1534/g3.112.003699
pmid: 23173094
105
T Albrecht, H J Auinger, V Wimmer, J O Ogutu, C Knaak, M Ouzunova, H P Piepho, C C Schön. Genome-based prediction of maize hybrid performance across genetic groups, testers, locations, and years. Theoretical and Applied Genetics, 2014, 127(6): 1375–1386 https://doi.org/10.1007/s00122-014-2305-z
pmid: 24723140
106
J M Massman, A Gordillo, R E Lorenzana, R Bernardo. Genomewide predictions from maize single-cross data. Theoretical and Applied Genetics, 2013, 126(1): 13–22 https://doi.org/10.1007/s00122-012-1955-y
pmid: 22886355
107
S Zhong, J C M Dekkers, R L Fernando, J L Jannink. Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a barley case study. Genetics, 2009, 182(1): 355–364 https://doi.org/10.1534/genetics.108.098277
pmid: 19299342
108
H D Daetwyler, R Pong-Wong, B Villanueva, J A Woolliams. The impact of genetic architecture on genome-wide evaluation methods. Genetics, 2010, 185(3): 1021–1031 https://doi.org/10.1534/genetics.110.116855
pmid: 20407128
109
S A Clark, J M Hickey, H D Daetwyler, J H van der Werf. The importance of information on relatives for the prediction of genomic breeding values and the implications for the makeup of reference data sets in livestock breeding schemes. Genetics, Selection, Evolution, 2012, 44(1): 4 https://doi.org/10.1186/1297-9686-44-4
pmid: 22321529
110
Q Wang, Y Yu, J Yuan, X Zhang, H Huang, F Li, J Xiang. Effects of marker density and population structure on the genomic prediction accuracy for growth trait in Pacific white shrimp Litopenaeus vannamei. BMC Genetics, 2017, 18(1): 45 https://doi.org/10.1186/s12863-017-0507-5
pmid: 28514941
111
D H Lyra, L de Freitas Mendonça, G Galli, F C Alves, Í S C Granato, R Fritsche-Neto. Multi-trait genomic prediction for nitrogen response indices in tropical maize hybrids. Molecular Breeding, 2017, 37(6): 80 https://doi.org/10.1007/s11032-017-0681-1
112
G Gorjanc, J Jenko, S J Hearne, J M Hickey. Initiating maize pre-breeding programs using genomic selection to harness polygenic variation from landrace populations. BMC Genomics, 2016, 17(1): 30 https://doi.org/10.1186/s12864-015-2345-z
pmid: 26732811
P S Schnable, D Ware, R S Fulton, J C Stein, F Wei, S Pasternak, C Liang, J Zhang, L Fulton, T A Graves, P Minx, A D Reily, L Courtney, S S Kruchowski, C Tomlinson, C Strong, K Delehaunty, C Fronick, B Courtney, S M Rock, E Belter, F Du, K Kim, R M Abbott, M Cotton, A Levy, P Marchetto, K Ochoa, S M Jackson, B Gillam, W Chen, L Yan, J Higginbotham, M Cardenas, J Waligorski, E Applebaum, L Phelps, J Falcone, K Kanchi, T Thane, A Scimone, N Thane, J Henke, T Wang, J Ruppert, N Shah, K Rotter, J Hodges, E Ingenthron, M Cordes, S Kohlberg, J Sgro, B Delgado, K Mead, A Chinwalla, S Leonard, K Crouse, K Collura, D Kudrna, J Currie, R He, A Angelova, S Rajasekar, T Mueller, R Lomeli, G Scara, A Ko, K Delaney, M Wissotski, G Lopez, D Campos, M Braidotti, E Ashley, W Golser, H Kim, S Lee, J Lin, Z Dujmic, W Kim, J Talag, A Zuccolo, C Fan, A Sebastian, M Kramer, L Spiegel, L Nascimento, T Zutavern, B Miller, C Ambroise, S Muller, W Spooner, A Narechania, L Ren, S Wei, S Kumari, B Faga, M J Levy, L McMahan, P Van Buren, M W Vaughn, K Ying, C T Yeh, S J Emrich, Y Jia, A Kalyanaraman, A P Hsia, W B Barbazuk, R S Baucom, T P Brutnell, N C Carpita, C Chaparro, J M Chia, J M Deragon, J C Estill, Y Fu, J A Jeddeloh, Y Han, H Lee, P Li, D R Lisch, S Liu, Z Liu, D H Nagel, M C McCann, P SanMiguel, A M Myers, D Nettleton, J Nguyen, B W Penning, L Ponnala, K L Schneider, D C Schwartz, A Sharma, C Soderlund, N M Springer, Q Sun, H Wang, M Waterman, R Westerman, T K Wolfgruber, L Yang, Y Yu, L Zhang, S Zhou, Q Zhu, J L Bennetzen, R K Dawe, J Jiang, N Jiang, G G Presting, S R Wessler, S Aluru, R A Martienssen, S W Clifton, W R McCombie, R A Wing, R K Wilson. The B73 maize genome: complexity, diversity, and dynamics. Science, 2009, 326(5956): 1112–1115 https://doi.org/10.1126/science.1178534
pmid: 19965430
116
H Liu, X Luo, L Niu, Y Xiao, L Chen, J Liu, X Wang, M Jin, W Li, Q Zhang, J Yan. Distant eQTLs and non-coding sequences play critical roles in regulating gene expression and quantitative trait variation in maize. Molecular Plant, 2017, 10(3): 414–426 https://doi.org/10.1016/j.molp.2016.06.016
pmid: 27381443
117
R Bukowski, X Guo, Y Lu, C Zou, B He, Z Rong, B Wang, D Xu, B Yang, C Xie, L Fan, S Gao, X Xu, G Zhang, Y Li, Y Jiao, J F Doebley, J Ross-Ibarra, A Lorant, V Buffalo, M C Romay, E S Buckler, D Ware, J Lai, Q Sun, Y Xu. Construction of the third-generation Zea mays haplotype map. GigaScience, 2018, 7(4): 1–12 https://doi.org/10.1093/gigascience/gix134
pmid: 29300887
118
W Yang, L Duan, G Chen, L Xiong, Q Liu. Plant phenomics and high-throughput phenotyping: accelerating rice functional genomics using multidisciplinary technologies. Current Opinion in Plant Biology, 2013, 16(2): 180–187 https://doi.org/10.1016/j.pbi.2013.03.005
pmid: 23578473
119
W Yang, Z Guo, C Huang, L Duan, G Chen, N Jiang, W Fang, H Feng, W Xie, X Lian, G Wang, Q Luo, Q Zhang, Q Liu, L Xiong. Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nature Communications, 2014, 5(1): 5087 https://doi.org/10.1038/ncomms6087
pmid: 25295980
120
A Abe, S Kosugi, K Yoshida, S Natsume, H Takagi, H Kanzaki, H Matsumura, K Yoshida, C Mitsuoka, M Tamiru, H Innan, L Cano, S Kamoun, R Terauchi. Genome sequencing reveals agronomically important loci in rice using MutMap. Nature Biotechnology, 2012, 30(2): 174–178 https://doi.org/10.1038/nbt.2095
pmid: 22267009
H Takagi, A Abe, K Yoshida, S Kosugi, S Natsume, C Mitsuoka, A Uemura, H Utsushi, M Tamiru, S Takuno, H Innan, L M Cano, S Kamoun, R Terauchi. QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant Journal, 2013, 74(1): 174–183 https://doi.org/10.1111/tpj.12105
pmid: 23289725
123
H Zhang, X Wang, Q Pan, P Li, Y Liu, X Lu, W Zhong, M Li, L Han, J Li, P Wang, D Li, Y Liu, Q Li, F Yang, Y M Zhang, G Wang, L Li. QTG-Seq accelerates QTL fine mapping through QTL partitioning and whole-genome sequencing of bulked segregant samples. Molecular Plant, 2019, 12(3): 426–437 https://doi.org/10.1016/j.molp.2018.12.018
pmid: 30597214
124
J Yang, H Jiang, C T Yeh, J Yu, J A Jeddeloh, D Nettleton, P S Schnable. Extreme-phenotype genome-wide association study (XP-GWAS): a method for identifying trait-associated variants by sequencing pools of individuals selected from a diversity panel. Plant Journal, 2015, 84(3): 587–596 https://doi.org/10.1111/tpj.13029
pmid: 26386250
125
C Zou, P Wang, Y Xu. Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnology Journal, 2016, 14(10): 1941–1955 https://doi.org/10.1111/pbi.12559
pmid: 26990124
126
W Wang, R Mauleon, Z Hu, D Chebotarov, S Tai, Z Wu, M Li, T Zheng, R R Fuentes, F Zhang, L Mansueto, D Copetti, M Sanciangco, K C Palis, J Xu, C Sun, B Fu, H Zhang, Y Gao, X Zhao, F Shen, X Cui, H Yu, Z Li, M Chen, J Detras, Y Zhou, X Zhang, Y Zhao, D Kudrna, C Wang, R Li, B Jia, J Lu, X He, Z Dong, J Xu, Y Li, M Wang, J Shi, J Li, D Zhang, S Lee, W Hu, A Poliakov, I Dubchak, V J Ulat, F N Borja, J R Mendoza, J Ali, J Li, Q Gao, Y Niu, Z Yue, M E B Naredo, J Talag, X Wang, J Li, X Fang, Y Yin, J C Glaszmann, J Zhang, J Li, R S Hamilton, R A Wing, J Ruan, G Zhang, C Wei, N Alexandrov, K L McNally, Z Li, H Leung. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature, 2018, 557(7703): 43–49 https://doi.org/10.1038/s41586-018-0063-9
pmid: 29695866
127
X Xu, X Liu, S Ge, J D Jensen, F Hu, X Li, Y Dong, R N Gutenkunst, L Fang, L Huang, J Li, W He, G Zhang, X Zheng, F Zhang, Y Li, C Yu, K Kristiansen, X Zhang, J Wang, M Wright, S McCouch, R Nielsen, J Wang, W Wang. Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nature Biotechnology, 2012, 30(1): 105–111 https://doi.org/10.1038/nbt.2050
pmid: 22158310
128
X H Yang, S B Gao, S T Xu, Z X Zhang, B M Prasanna, L Li, J S Li, J B Yan. Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Molecular Breeding, 2011, 28(4): 511–526 https://doi.org/10.1007/s11032-010-9500-7
129
M Yang, X Wang, D Ren, H Huang, M Xu, G He, X W Deng. Genomic architecture of biomass heterosis in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(30): 8101–8106 https://doi.org/10.1073/pnas.1705423114
pmid: 28696287
130
X Huang, S Yang, J Gong, Y Zhao, Q Feng, H Gong, W Li, Q Zhan, B Cheng, J Xia, N Chen, Z Hao, K Liu, C Zhu, T Huang, Q Zhao, L Zhang, D Fan, C Zhou, Y Lu, Q Weng, Z X Wang, J Li, B Han. Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nature Communications, 2015, 6(1): 6258 https://doi.org/10.1038/ncomms7258
pmid: 25651972
131
F G Asoro, M A Newell, W D Beavis, M P Scott, J L Jannink. Accuracy and training population design for genomic selection on quantitative traits in elite North American oats. Plant Genome, 2011, 4(2): 132–144 https://doi.org/10.3835/plantgenome2011.02.0007
132
Y C J Wientjes, R F Veerkamp, M P L Calus. The effect of linkage disequilibrium and family relationships on the reliability of genomic prediction. Genetics, 2013, 193(2): 621–631 https://doi.org/10.1534/genetics.112.146290
pmid: 23267052
133
J Crossa, P Pérez, J Hickey, J Burgueño, L Ornella, J Cerón-Rojas, X Zhang, S Dreisigacker, R Babu, Y Li, D Bonnett, K Mathews. Genomic prediction in CIMMYT maize and wheat breeding programs. Heredity, 2014, 112(1): 48–60 https://doi.org/10.1038/hdy.2013.16
pmid: 23572121
A Jacobson, L Lian, S Zhong, R Bernardo. General combining ability model for genome-wide selection in a biparental cross. Crop Science, 2014, 54(3): 895–905 https://doi.org/10.2135/cropsci2013.11.0774
J Cuevas, J Crossa, V Soberanis, S Pérez-Elizalde, P Pérez-Rodríguez, G L Campos, O A Montesinos-López, J Burgueño. Genomic prediction of genotype × environment interaction kernel regression models. Plant Genome, 2016, 9(3): 1–20 https://doi.org/10.3835/plantgenome2016.03.0024
pmid: 27902799
138
J Crossa, G D L Campos, M Maccaferri, R Tuberosa, J Burgueño, P Pérez-rodríguez. Extending the marker × environment interaction model for genomic-enabled prediction and genome-wide association analysis in durum wheat. Crop Science, 2016, 56(5): 2193–2209 https://doi.org/10.2135/cropsci2015.04.0260
139
D Jarquín, J Crossa, X Lacaze, P Du Cheyron, J Daucourt, J Lorgeou, F Piraux, L Guerreiro, P Pérez, M Calus, J Burgueño, G de los Campos. A reaction norm model for genomic selection using high-dimensional genomic and environmental data. Theoretical and Applied Genetics, 2014, 127(3): 595–607 https://doi.org/10.1007/s00122-013-2243-1
pmid: 24337101