Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2017, Vol. 4 Issue (2) : 172-184    https://doi.org/10.15302/J-FASE-2017139
RESEARCH ARTICLE
Long-term simulation of growth stage-based irrigation scheduling in maize under various water constraints in Colorado, USA
Quanxiao FANG1,2(), Liwang MA3, Lajpat Rai AHUJA3, Thomas James TROUT4, Robert Wayne MALONE5, Huihui ZHANG4, Dongwei GUI6, Qiang YU2
1. Agronomy College, Qingdao Agricultural University, Qingdao 266109, China
2. State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
3. USDA-ARS, Rangeland Resources and Systems Research Unit, Fort Collins, CO 80526, USA
4. USDA-ARS, Agricultural Water Management and Systems Research Unit, Fort Collins, CO 80526, USA
5. USDA-ARS, National Laboratory for Agriculture and the Environment, Ames, IA 50011, USA
6. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
 Download: PDF(1081 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Due to varying crop responses to water stress at different growth stages, scheduling irrigation is a challenge for farmers, especially when water availability varies on a monthly, seasonal and yearly basis. The objective of this study was to optimize irrigation between the vegetative (V) and reproductive (R) phases of maize under different available water levels in Colorado. Long-term (1992–2013) scenarios simulated with the calibrated Root Zone Water Quality Model were designed to meet 40%–100% of crop evapotranspiration (ET) requirements at V and R phases, subject to seasonal water availabilities (300, 400, 500 mm, and no water limit), with and without monthly limits (total of 112 scenarios). The most suitable irrigation between V and R phases of maize was identified as 60/100, 80/100, and 100/100 of crop ET requirement for the 300, 400, 500 mm water available, respectively, based on the simulations from 1992 to 2013. When a monthly water limit was imposed, the corresponding suitable irrigation targets between V and R stages were 60/100, 100/100, and 100/100 of crop ET requirement for the above three seasonal water availabilities, respectively. Irrigation targets for producing higher crop yield with reduced risk of poor yield were discussed for projected five-year water availabilities.

Keywords RZWQM      ET-based irrigation schedule      maize      water constrains     
Corresponding Author(s): Quanxiao FANG   
Just Accepted Date: 28 February 2017   Online First Date: 23 March 2017    Issue Date: 07 June 2017
 Cite this article:   
Quanxiao FANG,Liwang MA,Lajpat Rai AHUJA, et al. Long-term simulation of growth stage-based irrigation scheduling in maize under various water constraints in Colorado, USA[J]. Front. Agr. Sci. Eng. , 2017, 4(2): 172-184.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2017139
https://academic.hep.com.cn/fase/EN/Y2017/V4/I2/172
Fig.1  Simulated grain yield (kg·hm-2), water use efficiency (WUE, kg·hm-2·mm-1) and irrigation amounts (mm) in response to these targeted irrigation levels (40% -100% of crop ET requirement) under the no water limit condition from 1992 to 2013 at Greeley CO. The box plots show 5, 25, 50, 75, 95 percentiles. The dots and lines in the box plots indicate the mean and medium values across these years, respectively. The crosses indicate the minimum and maximum values across these years.
Targets for reproductive stageTargets for vegetative stage
Water limit40%ET60%ET80%ET100%ET
GYWUEGYWUEGYWUEGYWUE
No monthly water limit
40% ET334010.6444711.2567412.0724513.5
Unlimited60% ET436311.8585412.9726113.7894115.1
water80% ET558212.9724914.2883415.11005115.4
 100% ET658413.5826014.8984615.51025615.1
300 mm40% ET334010.6442711.1529211.6508810.6
seasonal60% ET436311.8565412.8596312.3573011.3
water limit80% ET551913.0670714.2645612.9593011.5
100% ET629813.6711314.6662013.0594011.6
400 mm40% ET334010.6444711.2566612.0690313.2
seasonal60% ET436311.8585412.9712413.6796214.4
water limit80% ET558212.9721114.2824114.9866514.8
100% ET655413.5804814.9883415.3880014.9
500 mm40% ET334010.6444711.2567412.0724513.5
seasonal60% ET436311.8585412.9726113.7885415.1
water limit80% ET558212.9724914.2878215.1979115.5
100% ET658413.5825114.8974915.61001615.4
Monthly water limit
300 mm40% ET326610.5418010.9459310.8504811.3
seasonal60% ET397511.6472011.7507611.4545911.7
water limit80% ET445512.5504512.2522111.6551611.8
100% ET465912.8518212.4522211.6551311.8
400 mm40% ET331910.6433311.0525311.5564911.6
seasonal60% ET416611.8538312.5596012.2645112.5
water limit80% ET486612.8608113.6638112.7676112.7
100% ET527013.4636613.9647712.8690112.9
500 mm40% ET334010.6443111.2556311.9633912.4
seasonal60% ET424311.8566612.8679513.2766213.8
water limit80% ET508812.8667514.2774314.4816614.2
100% ET565613.6717914.8804814.7840114.3
Tab.1  Long-term (1992–2013) simulated average corn yield (GY, kg·hm-2) and water use efficiency (WUE, kg·hm-2·mm-1) across seasons for different irrigation targets (40%–100% of crop ET) between vegetative and reproductive stages under various water availability without or with monthly water limit (Numbers in bold are the most reasonable irrigation targets with the highest grain yield and WUE for each water limit conditions)
Fig.2  Simulated grain yield (kg·hm-2), water use efficiency (WUE, kg·hm-2·mm-1) and irrigation amounts (mm) in response to these targeted irrigation levels (40%-100% of crop ET requirement) under the 500 mm seasonal water availability without monthly water limitation (a) and with monthly water limitation (b) from 1992 to 2013 at Greeley CO. The box plots show 5, 25, 50, 75, 95 percentiles. The dots and lines in the box plots indicate the mean and medium values across these years, respectively. The crosses indicate the minimum and maximum values across these years.
Fig.3  Simulated grain yield (kg·hm-2), water use efficiency (WUE, kg·hm-2·mm-1) and irrigation amounts (mm) in response to these targeted irrigation levels (40% -100% of crop ET requirement) under the 400 mm seasonal water availability without monthly water limitation (a) and with monthly water limitation (b) from 1992 to 2013 at Greeley CO. The box plots show 5, 25, 50, 75, 95 percentiles. The dots and lines in the box plots indicate the mean and medium values across these years, respectively. The crosses indicate the minimum and maximum values across these years.
Fig.4  Simulated grain yield (kg·hm-2), water use efficiency (WUE, kg·hm-2·mm-1) and irrigation amounts (mm) in response to these targeted irrigation levels (40% -100% of crop ET requirement) under the 300 mm seasonal water availability without monthly water limitation (a) and with monthly water limitation (b) from 1992 to 2013 at Greeley CO. The box plots show 5, 25, 50, 75, 95 percentiles. The dots and lines in the box plots indicate the mean and medium values across these years, respectively. The crosses indicate the minimum and maximum values across these years.
Fig.5  Cumulative probabilities of simulated irrigation requirement (mm) ( a), grain yield (kg·hm-2) (b), and water use efficiency (kg·hm-2·mm-1) (c) from 1992 to 2013 for the selected reasonable irrigation management scenarios under the different water availabilities without (solid lines) or with (dash lines) monthly water limit.
ItemsTargets for R stage/%Targets for V Stage/%
406080100
Irrigation requirement40613±1501018±1781387±2011692±221
60893±1531308±1841682±2111995±229
801201±1661604±1931972±2232311±243
1001520±1711891±2172256±2262532±237
Grain yield403455±3484631±3586011±8287520±688
604479±3666053±3217586±6979232±615
805667±3787403±2479101±48410250±416
1006654±5008392±31510021±42110416±367
WUE4010.9±0.811.5±0.612.6±1.514.0±1.0
6012.0±0.713.3±0.714.2±1.115.5±0.8
8013.1±0.714.5±0.815.5±0.715.7±0.6
10013.6±0.715.0±0.715.7±0.615.3±0.6
Tab.2  Simulated total irrigation requirement (mm), average grain yield (kg·hm-2) and average water use efficiency (WUE, kg·hm-2·mm-1) for the five-year moving period from 1992 to 2013 as influenced by the various targeted irrigation levels (40%–100% of crop ET requirement) (the standard deviations were calculated from the different 5-year periods from 1992 to 2013)
1 Fang Q X, Ma L W, Yu Q, Ahuja L R, Malone R W, Hoogenboom G. Irrigation strategies to improve the water use efficiency of wheat–maize double cropping systems in North China Plain. Agricultural Water Management, 2010, 97(8): 1165–1174
https://doi.org/10.1016/j.agwat.2009.02.012
2 Geerts S, Raes D. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agricultural Water Management, 2009, 96(9): 1275–1284
https://doi.org/10.1016/j.agwat.2009.04.009
3 Bell L W, Lilley J M, Hunt J R, Kirkegaard J A. Optimizing grain yield and grazing potential of crops across Australia’s high-rainfall zone: a simulation analysis. 1. Wheat. Crop & Pasture Science, 2015, 66(4): 332–348
https://doi.org/10.1071/CP14230
4 Sadras V O, Lawson C, Hooper P, McDonald G K. Contribution of summer rainfall and nitrogen to the yield and water use efficiency of wheat in Mediterranean-type environments of South Australia. European Journal of Agronomy, 2012, 36(1): 41–54
https://doi.org/10.1016/j.eja.2011.09.001
5 Zhang S, Sadras V, Chen X, Zhang F. Water use efficiency of dryland wheat in the Loess Plateau in response to soil and crop management. Field Crops Research, 2013a, 151: 9–18
https://doi.org/10.1016/j.fcr.2013.07.005
6 Zhang X, Wang Y, Sun H, Chen S, Shao L. Optimizing the yield of winter wheat by regulating water consumption during vegetative and reproductive stages under limited water supply. Irrigation Science, 2013b, 31(5): 1103–1112
https://doi.org/10.1007/s00271-012-0391-8
7 Lobell D B, Roberts M J, Schlenker W, Braun N, Little B B, Rejesus R M, Hammer G L. Greater sensitivity to drought accompanies maize yield increase in the U.S. Midwest. Science, 2014, 344(6183): 516–519
https://doi.org/10.1126/science.1251423 pmid: 24786079
8 Xue Q, Rudd J C, Liu S, Jessup K E, Devkota R N, Mahano J R. Yield determination and water-use efficiency of wheat under water-limited conditions in the US Southern High Plains. Crop Science, 2014, 54(1): 34–47
https://doi.org/10.2135/cropsci2013.02.0108
9 Du T, Kang S, Zhang J, Davies W J. Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security. Journal of Experimental Botany, 2015, 66(8): 2253–2269
https://doi.org/10.1093/jxb/erv034 pmid: 25873664
10 Roth G, Harris G, Gillies M, Montgomery J, Wigginton D. Water-use efficiency and productivity trends in Australian irrigated cotton: a review. Crop & Pasture Science, 2014, 64(12): 1033–1048
11 Kottmann L, Wilde P, Schittenhelm S. How do timing, duration, and intensity of drought stress affect the agronomic performance of winter rye? European Journal of Agronomy, 2016, 75: 25–32
https://doi.org/10.1016/j.eja.2015.12.010
12 Zhang S, Sadras V, Chen X, Zhang F. Water use efficiency of dryland maize in the Loess Plateau of China in response to crop management. Field Crops Research, 2014, 163: 55–63
https://doi.org/10.1016/j.fcr.2014.04.003
13 Irmak S, Djaman K, Rudnick D R. Effect of full and limited irrigation amount and frequency on subsurface drip-irrigated maize evapotranspiration, yield, water use efficiency and yield response factors. Irrigation Science, 2016, 34(4): 271–286
https://doi.org/10.1007/s00271-016-0502-z
14 Pereira L S, Paredes P, Cholpankulov E D, Inchenkova O P, Teodoro P R, Horst M G. Irrigation scheduling strategies for cotton to cope with water scarcity in the Fergana Valley, Central Asia. Agricultural Water Management, 2009, 96(5): 723–735
https://doi.org/10.1016/j.agwat.2008.10.013
15 Attia A, Rajan N, Xue Q, Nair S, Ibrahim A, Hays D. Application of DSSAT-CERES-Wheat model to simulate winter wheat response to irrigation management in the Texas High Plains. Agricultural Water Management, 2016, 165: 50–60
https://doi.org/10.1016/j.agwat.2015.11.002
16 Montoya F, Camargo D, Ortega J F, Córcoles J I, Domínguez A. Evaluation of Aquacrop model for a potato crop under different irrigation conditions. Agricultural Water Management, 2016, 164: 267–280
https://doi.org/10.1016/j.agwat.2015.10.019
17 Amarasingha R P R K, Suriyagoda L D B, Marambe B, Gaydon D S, Galagedara L W, Punyawardena R, Howden M. Simulation of crop and water productivity for rice (Oryza sativa L.) using APSIM under diverse agro-climatic conditions and water management techniques in Sri Lanka. Agricultural Water Management, 2015, 160: 132–143
https://doi.org/10.1016/j.agwat.2015.07.001
18 Marsal J, Stöckle C O. Use of CropSyst as a decision support system for scheduling regulated deficit irrigation in a pear orchard. Irrigation Science, 2012, 30(2): 139–147
https://doi.org/10.1007/s00271-011-0273-5
19 Sun C, Ren L. Assessing crop yield and crop water productivity and optimizing irrigation scheduling of winter wheat and summer maize in the Haihe plain using SWAT model. Hydrological Processes, 2014, 28(4): 2478–2498
https://doi.org/10.1002/hyp.9759
20 Fang Q X, Ma L, Nielsen D C, Trout T J, Ahuja L R. Quantifying corn yield and water use efficiency under growth stage-based deficit irrigation conditions. In: Ahuja L R, Ma L, Lascano, R J, eds. Practical applications of agricultural system models to optimize the use of limited water. Adv. Agric. Systems Model. 5. ASA, SSSA, CSSA, Madison, WI. 2014, 1–24
21 Ahuja L R, Ma L, Lascano R J, Saseendran S A, Fang Q X, Nielsen D C, Colaizzi P D. Syntheses of the current model applications for managing water and needs for experimental data and model improvements to enhance these applications. Practical applications of agricultural system models to optimize the use of limited water, Adv. Agric. Systems Model. 5. ASA, SSSA, CSSA, Madison, WI. 2014, 399–438
22 Ma L, Ahuja L R, Malone R W. Systems modeling for soil and water research and management: current status and needs for the 21st century. Transactions of the ASABE, 2007, 50(5): 1705–1713
https://doi.org/10.13031/2013.23962
23 Chen C, Wang E, Yu Q. Modelling the effects of climate variability and water management on crop water productivity and water balance in the North China Plain. Agricultural Water Management, 2010, 97(8): 1175–1184
https://doi.org/10.1016/j.agwat.2008.11.012
24 Geerts S, Raes D, Garcia M. Using AquaCrop to derive deficit irrigation schedules. Agricultural Water Management, 2010, 98(1): 213–216
https://doi.org/10.1016/j.agwat.2010.07.003
25 Saseendran S A, Ahuja L R, Nielsen D C, Trout T J, Ma L. Use of crop simulation models to evaluate limited irrigation management options for corn in a semiarid environment. Water Resources Research, 2008, 44(7): 137–149
https://doi.org/10.1029/2007WR006181
26 Linker R, Ioslovich I, Sylaios G, Plauborg F, Battilani A. Optimal model-based deficit irrigation scheduling using AquaCrop: a simulation study with cotton, potato and tomato. Agricultural Water Management, 2016, 163: 236–243
https://doi.org/10.1016/j.agwat.2015.09.011
27 García-Vila M, Fereres E. Combining the simulation crop model AquaCrop with an economic model for the optimization of irrigation management at farm level. European Journal of Agronomy, 2012, 36(1): 21–31
https://doi.org/10.1016/j.eja.2011.08.003
28 Allen R G, Wright J L, Pruitt W O, Pereira L S, Jensen M E. Water requirements. In: Hoffman G J, Robert G E, Marvin E J, Derrel L M, Ronald L E. eds. Design and operation of farm irrigation systems. 2nd ed. Chap. 8. ASAE, St. Joseph, MI. 2007, 208–288
29 Allen R G, Pereira L S, Smith M, Raes D, Wright J L. FAO-56 dual crop coefficient method for estimating evaporation from soil and application extensions. Journal of Irrigation and Drainage Engineering, 2005, 131(1): 2–13
https://doi.org/10.1061/(ASCE)0733-9437(2005)131:1(2)
30 Ma L, Trout T J, Ahuja L R, Bausch W C, Saseendran S A, Malone R W, Nielsen D C. Calibrating RZWQM2 model for maize responses to deficit irrigation. Agricultural Water Management, 2012, 103: 140–149
https://doi.org/10.1016/j.agwat.2011.11.005
31 Ahuja L R, Rojas K W, Hanson J D, Shaffer M J, Ma L. Root zone water quality model: modeling management effects on water quality and crop production. Highlands Ranch: Water Resources Publication, 2000
32 Ma L, Hoogenboom G, Ahuja L R, Ascough J C II, Saseendran S A. Evaluation of the RZWQM-CERES-Maize hybrid model for maize production. Agricultural Systems, 2006, 87(3): 274–295
https://doi.org/10.1016/j.agsy.2005.02.001
33 Shuttleworth W J, Wallace J S. Evaporation from sparse crops-an energy combination theory. Quarterly Journal of the Royal Meteorological Society, 1985, 111(469): 839–855
https://doi.org/10.1002/qj.49711146910
34 Doherty J.FORTRAN 90 modules for implementation of parallelised, model-independent, model-based processing. ,  2008–03–20
[1] Dongdong LI, Meng WANG, Xianyan KUANG, Wenxin LIU. Genetic study and molecular breeding for high phosphorus use efficiency in maize[J]. Front. Agr. Sci. Eng. , 2019, 6(4): 366-379.
[2] Torsten MÜLLER, Fusuo ZHANG. Adaptation of Chinese and German maize-based food-feed-energy systems to limited phosphate resources—a new Sino-German international research training group[J]. Front. Agr. Sci. Eng. , 2019, 6(4): 313-320.
[3] Qiugang MA, Markus RODEHUTSCORD, Moritz NOVOTNY, Lan LI, Luqing YANG. Phytate and phosphorus utilization by broiler chickens and laying hens fed maize-based diets[J]. Front. Agr. Sci. Eng. , 2019, 6(4): 380-387.
[4] Meng DUAN, Jin XIE, Xiaomin MAO. Modeling water and heat transfer in soil-plant-atmosphere continuum applied to maize growth under plastic film mulching[J]. Front. Agr. Sci. Eng. , 2019, 6(2): 144-161.
[5] Xiaoyi WEI,Weiqiang ZHANG,Qian ZHANG,Pei SUN,Zhaohu LI,Mingcai ZHANG,Jianmin LI,Liusheng DUAN. Analysis of differential expression of genes induced by ethephon in elongating internodes of maize plants[J]. Front. Agr. Sci. Eng. , 2016, 3(3): 263-282.
[6] Xiaoxin YE,Jinnan JIA,Yongqing MA,Yu AN,Shuqi DONG. Effectiveness of ten commercial maize cultivars in inducing Egyptian broomrape germination[J]. Front. Agr. Sci. Eng. , 2016, 3(2): 137-146.
[7] Hui RAN,Shaozhong KANG,Fusheng LI,Ling TONG,Taisheng DU. Effects of irrigation and nitrogen management on hybrid maize seed production in north-west China[J]. Front. Agr. Sci. Eng. , 2016, 3(1): 55-64.
[8] Jingjing WANG,Feng HUANG,Baoguo LI. Quantitative analysis of yield and soil water balance for summer maize on the piedmont of the North China Plain using AquaCrop[J]. Front. Agr. Sci. Eng. , 2015, 2(4): 295-310.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed