| 
					
						|  |  
    					|  |  
    					| A brief review of genome editing technology for generating animal models |  
						| Haoyi WANG1,2,3(  ), Sen WU4,5(  ), Mario R. CAPECCHI6(  ), Rudolf JAENISCH7,8(  ) |  
						| 1. State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China 2. University of the Chinese Academy of Sciences, Beijing 100049, China
 3. Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
 4. Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
 5. State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
 6. Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
 7. Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
 8. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
 |  
						|  |  
					
						| 
								
									|  
          
          
            
              
				
								                
													
													    |  |  
														| 
													
													    | Abstract The recent development of genome editing technologies has given researchers unprecedented power to alter DNA sequences at chosen genomic loci, thereby generating various genetically edited animal models. This mini-review briefly summarizes the development of major genome editing tools, focusing on the application of these tools to generate animal models in multiple species. |  
															| Keywords 
																																																				animal model  
																		  																																				CRISPR  
																		  																																				genome editing  
																		  																																				TALEN  
																		  																																				ZFN |  
															| Corresponding Author(s):
																Haoyi WANG,Sen WU,Mario R. CAPECCHI,Rudolf JAENISCH |  
															| Just Accepted Date: 21 February 2020  
																																														Online First Date: 16 March 2020   
																																														Issue Date: 28 April 2020 |  |  
								            
								                
																																												
															| 1 | R Jaenisch , B Mintz . Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA. Proceedings of the National Academy of Sciences of the United States of America, 1974, 71(4): 1250–1254 |  
															| 2 | R Jaenisch. Germ line integration and Mendelian transmission of the exogenous Moloney leukemia virus. Proceedings of the National Academy of Sciences of the United States of America, 1976, 73(4): 1260–1264 https://doi.org/10.1073/pnas.73.4.1260
														     															     															     		pmid: 1063407
 |  
															| 3 | J W Gordon, G A Scangos, D J Plotkin, J A Barbosa, F H Ruddle. Genetic transformation of mouse embryos by microinjection of purified DNA. Proceedings of the National Academy of Sciences of the United States of America, 1980, 77(12): 7380–7384 https://doi.org/10.1073/pnas.77.12.7380
														     															     															     		pmid: 6261253
 |  
															| 4 | A Schnieke, K Harbers, R Jaenisch. Embryonic lethal mutation in mice induced by retrovirus insertion into the α1(I) collagen gene. Nature, 1983, 304(5924): 315–320 https://doi.org/10.1038/304315a0
														     															     															     		pmid: 6308457
 |  
															| 5 | O Smithies, R G Gregg, S S Boggs, M A Koralewski, R S Kucherlapati. Insertion of DNA sequences into the human chromosomal β-globin locus by homologous recombination. Nature, 1985, 317(6034): 230–234 https://doi.org/10.1038/317230a0
														     															     															     		pmid: 2995814
 |  
															| 6 | K R Thomas, K R Folger, M R Capecchi. High frequency targeting of genes to specific sites in the mammalian genome. Cell, 1986, 44(3): 419–428 https://doi.org/10.1016/0092-8674(86)90463-0
														     															     															     		pmid: 3002636
 |  
															| 7 | M R Capecchi. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nature Reviews: Genetics, 2005, 6(6): 507–512 https://doi.org/10.1038/nrg1619
														     															     															     		pmid: 15931173
 |  
															| 8 | A Bradley, M Evans, M H Kaufman, E Robertson. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature, 1984, 309(5965): 255–256 https://doi.org/10.1038/309255a0
														     															     															     		pmid: 6717601
 |  
															| 9 | K R Thomas, M R Capecchi. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell, 1987, 51(3): 503–512 https://doi.org/10.1016/0092-8674(87)90646-5
														     															     															     		pmid: 2822260
 |  
															| 10 | T Doetschman, R G Gregg, N Maeda, M L Hooper, D W Melton, S Thompson, O Smithies. Targetted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature, 1987, 330(6148): 576–578 https://doi.org/10.1038/330576a0
														     															     															     		pmid: 3683574
 |  
															| 11 | M Buehr, S Meek, K Blair, J Yang, J Ure, J Silva, R McLay, J Hall, Q L Ying, A Smith. Capture of authentic embryonic stem cells from rat blastocysts. Cell, 2008, 135(7): 1287–1298 https://doi.org/10.1016/j.cell.2008.12.007
														     															     															     		pmid: 19109897
 |  
															| 12 | P Rouet, F Smih, M Jasin. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Molecular and Cellular Biology, 1994, 14(12): 8096–8106 https://doi.org/10.1128/MCB.14.12.8096
														     															     															     		pmid: 7969147
 |  
															| 13 | N Rudin, E Sugarman, J E Haber. Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae. Genetics, 1989, 122(3): 519–534 pmid: 2668114
 |  
															| 14 | G Silva, L Poirot, R Galetto, J Smith, G Montoya, P Duchateau, F Pâques. Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Current Gene Therapy, 2011, 11(1): 11–27 https://doi.org/10.2174/156652311794520111
														     															     															     		pmid: 21182466
 |  
															| 15 | J Miller, A D McLachlan, A Klug. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO Journal, 1985, 4(6): 1609–1614 https://doi.org/10.1002/j.1460-2075.1985.tb03825.x
														     															     															     		pmid: 4040853
 |  
															| 16 | H S Najafabadi, S Mnaimneh, F W Schmitges, M Garton, K N Lam, A Yang, M Albu, M T Weirauch, E Radovani, P M Kim, J Greenblatt, B J Frey, T R Hughes. C2H2 zinc finger proteins greatly expand the human regulatory lexicon. Nature Biotechnology, 2015, 33(5): 555–562 https://doi.org/10.1038/nbt.3128
														     															     															     		pmid: 25690854
 |  
															| 17 | H Takatsuji. Zinc-finger transcription factors in plants. Cellular and Molecular Life Sciences, 1998, 54(6): 582–596 https://doi.org/10.1007/s000180050186
														     															     															     		pmid: 9676577
 |  
															| 18 | F D Urnov, E J Rebar, M C Holmes, H S Zhang, P D Gregory. Genome editing with engineered zinc finger nucleases. Nature Reviews: Genetics, 2010, 11(9): 636–646 https://doi.org/10.1038/nrg2842
														     															     															     		pmid: 20717154
 |  
															| 19 | M Bibikova, D Carroll, D J Segal, J K Trautman, J Smith, Y G Kim, S Chandrasegaran. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Molecular and Cellular Biology, 2001, 21(1): 289–297 https://doi.org/10.1128/MCB.21.1.289-297.2001
														     															     															     		pmid: 11113203
 |  
															| 20 | M Bibikova, M Golic, K G Golic, D Carroll. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics, 2002, 161(3): 1169–1175 pmid: 12136019
 |  
															| 21 | M Bibikova, K Beumer, J K Trautman, D Carroll. Enhancing gene targeting with designed zinc finger nucleases. Science, 2003, 300(5620): 764 https://doi.org/10.1126/science.1079512
														     															     															     		pmid: 12730594
 |  
															| 22 | K J Beumer, J K Trautman, A Bozas, J L Liu, J Rutter, J G Gall, D Carroll. Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(50): 19821–19826 https://doi.org/10.1073/pnas.0810475105
														     															     															     		pmid: 19064913
 |  
															| 23 | Y Doyon, J M McCammon, J C Miller, F Faraji, C Ngo, G E Katibah, R Amora, T D Hocking, L Zhang, E J Rebar, P D Gregory, F D Urnov, S L Amacher. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nature Biotechnology, 2008, 26(6): 702–708 https://doi.org/10.1038/nbt1409
														     															     															     		pmid: 18500334
 |  
															| 24 | X Meng, M B Noyes, L J Zhu, N D Lawson, S A Wolfe. Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nature Biotechnology, 2008, 26(6): 695–701 https://doi.org/10.1038/nbt1398
														     															     															     		pmid: 18500337
 |  
															| 25 | A M Geurts, G J Cost, Y Freyvert, B Zeitler, J C Miller, V M Choi, S S Jenkins, A Wood, X Cui, X Meng, A Vincent, S Lam, M Michalkiewicz, R Schilling, J Foeckler, S Kalloway, H Weiler, S Ménoret, I Anegon, G D Davis, L Zhang, E J Rebar, P D Gregory, F D Urnov, H J Jacob, R Buelow. Knockout rats via embryo microinjection of zinc-finger nucleases. Science, 2009, 325(5939): 433 https://doi.org/10.1126/science.1172447
														     															     															     		pmid: 19628861
 |  
															| 26 | J Boch, H Scholze, S Schornack, A Landgraf, S Hahn, S Kay, T Lahaye, A Nickstadt, U Bonas. Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 2009, 326(5959): 1509–1512 https://doi.org/10.1126/science.1178811
														     															     															     		pmid: 19933107
 |  
															| 27 | M J Moscou, A J Bogdanove. A simple cipher governs DNA recognition by TAL effectors. Science, 2009, 326(5959): 1501 https://doi.org/10.1126/science.1178817
														     															     															     		pmid: 19933106
 |  
															| 28 | J C Miller, S Tan, G Qiao, K A Barlow, J Wang, D F Xia, X Meng, D E Paschon, E Leung, S J Hinkley, G P Dulay, K L Hua, I Ankoudinova, G J Cost, F D Urnov, H S Zhang, M C Holmes, L Zhang, P D Gregory, E J Rebar. A TALE nuclease architecture for efficient genome editing. Nature Biotechnology, 2011, 29(2): 143–148 https://doi.org/10.1038/nbt.1755
														     															     															     		pmid: 21179091
 |  
															| 29 | D Hockemeyer, H Wang, S Kiani, C S Lai, Q Gao, J P Cassady, G J Cost, L Zhang, Y Santiago, J C Miller, B Zeitler, J M Cherone, X Meng, S J Hinkley, E J Rebar, P D Gregory, F D Urnov, R Jaenisch. Genetic engineering of human pluripotent cells using TALE nucleases. Nature Biotechnology, 2011, 29(8): 731–734 https://doi.org/10.1038/nbt.1927
														     															     															     		pmid: 21738127
 |  
															| 30 | L Tesson, C Usal, S Ménoret, E Leung, B J Niles, S Remy, Y Santiago, A I Vincent, X Meng, L Zhang, P D Gregory, I Anegon, G J Cost. Knockout rats generated by embryo microinjection of TALENs. Nature Biotechnology, 2011, 29(8): 695–696 https://doi.org/10.1038/nbt.1940
														     															     															     		pmid: 21822240
 |  
															| 31 | J D Sander, L Cade, C Khayter, D Reyon, R T Peterson, J K Joung, J R J Yeh. Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nature Biotechnology, 2011, 29(8): 697–698 https://doi.org/10.1038/nbt.1934
														     															     															     		pmid: 21822241
 |  
															| 32 | P Huang, A Xiao, M Zhou, Z Zhu, S Lin, B Zhang. Heritable gene targeting in zebrafish using customized TALENs. Nature Biotechnology, 2011, 29(8): 699–700 https://doi.org/10.1038/nbt.1939
														     															     															     		pmid: 21822242
 |  
															| 33 | Z Qiu, M Liu, Z Chen, Y Shao, H Pan, G Wei, C Yu, L Zhang, X Li, P Wang, H Y Fan, B Du, B Liu, M Liu, D Li. High-efficiency and heritable gene targeting in mouse by transcription activator-like effector nucleases. Nucleic Acids Research, 2013, 41(11): e120 https://doi.org/10.1093/nar/gkt258
														     															     															     		pmid: 23630316
 |  
															| 34 | H Liu, Y Chen, Y Niu, K Zhang, Y Kang, W Ge, X Liu, E Zhao, C Wang, S Lin, B Jing, C Si, Q Lin, X Chen, H Lin, X Pu, Y Wang, B Qin, F Wang, H Wang, W Si, J Zhou, T Tan, T Li, S Ji, Z Xue, Y Luo, L Cheng, Q Zhou, S Li, Y E Sun, W Ji. TALEN-mediated gene mutagenesis in rhesus and cynomolgus monkeys. Cell Stem Cell, 2014, 14(3): 323–328 https://doi.org/10.1016/j.stem.2014.01.018
														     															     															     		pmid: 24529597
 |  
															| 35 | S Remy, L Tesson, S Menoret, C Usal, A De Cian, V Thepenier, R Thinard, D Baron, M Charpentier, J B Renaud, R Buelow, G J Cost, C Giovannangeli, A Fraichard, J P Concordet, I Anegon. Efficient gene targeting by homology-directed repair in rat zygotes using TALE nucleases. Genome Research, 2014, 24(8): 1371–1383 https://doi.org/10.1101/gr.171538.113
														     															     															     		pmid: 24989021
 |  
															| 36 | B Wefers, M Meyer, O Ortiz, M Hrabé de Angelis, J Hansen, W Wurst, R Kühn. Direct production of mouse disease models by embryo microinjection of TALENs and oligodeoxynucleotides. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(10): 3782–3787 https://doi.org/10.1073/pnas.1218721110
														     															     															     		pmid: 23426636
 |  
															| 37 | V M Bedell, Y Wang, J M Campbell, T L Poshusta, C G Starker, R G 2nd Krug, W Tan, S G Penheiter, A C Ma, A Y H Leung, S C Fahrenkrug, D F Carlson, D F Voytas, K J Clark, J J Essner, S C Ekker. In vivo genome editing using a high-efficiency TALEN system. Nature, 2012, 491(7422): 114–118 https://doi.org/10.1038/nature11537
														     															     															     		pmid: 23000899
 |  
															| 38 | H Wang, Y C Hu, S Markoulaki, G G Welstead, A W Cheng, C S Shivalila, T Pyntikova, D B Dadon, D F Voytas, A J Bogdanove, D C Page, R Jaenisch. TALEN-mediated editing of the mouse Y chromosome. Nature Biotechnology, 2013, 31(6): 530–532 https://doi.org/10.1038/nbt.2595
														     															     															     		pmid: 23666012
 |  
															| 39 | W Tan, D F Carlson, C A Lancto, J R Garbe, D A Webster, P B Hackett, S C Fahrenkrug. Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(41): 16526–16531 https://doi.org/10.1073/pnas.1310478110
														     															     															     		pmid: 24014591
 |  
															| 40 | D F Carlson, W Tan, S G Lillico, D Stverakova, C Proudfoot, M Christian, D F Voytas, C R Long, C B Whitelaw, S C Fahrenkrug. Efficient TALEN-mediated gene knockout in livestock. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(43): 17382–17387 https://doi.org/10.1073/pnas.1211446109
														     															     															     		pmid: 23027955
 |  
															| 41 | K S Makarova, Y I Wolf, O S Alkhnbashi, F Costa, S A Shah, S J Saunders, R Barrangou, S J Brouns, E Charpentier, D H Haft, P Horvath, S Moineau, F J Mojica, R M Terns, M P Terns, M F White, A F Yakunin, R A Garrett, J van der Oost, R Backofen, E V Koonin. An updated evolutionary classification of CRISPR-Cas systems. Nature Reviews: Microbiology, 2015, 13(11): 722–736 https://doi.org/10.1038/nrmicro3569
														     															     															     		pmid: 26411297
 |  
															| 42 | F Jiang, J A Doudna. CRISPR-Cas9 structures and mechanisms. Annual Review of Biophysics, 2017, 46(1): 505–529 https://doi.org/10.1146/annurev-biophys-062215-010822
														     															     															     		pmid: 28375731
 |  
															| 43 | G Gasiunas, R Barrangou, P Horvath, V Siksnys. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(39): E2579–E2586 https://doi.org/10.1073/pnas.1208507109
														     															     															     		pmid: 22949671
 |  
															| 44 | M Jinek, K Chylinski, I Fonfara, M Hauer, J A Doudna, E Charpentier. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816–821 https://doi.org/10.1126/science.1225829
														     															     															     		pmid: 22745249
 |  
															| 45 | P Mali, L Yang, K M Esvelt, J Aach, M Guell, J E DiCarlo, J E Norville, G M Church. RNA-guided human genome engineering via Cas9. Science, 2013, 339(6121): 823–826 https://doi.org/10.1126/science.1232033
														     															     															     		pmid: 23287722
 |  
															| 46 | L Cong, F A Ran, D Cox, S Lin, R Barretto, N Habib, P D Hsu, X Wu, W Jiang, L A Marraffini, F Zhang. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819–823 https://doi.org/10.1126/science.1231143
														     															     															     		pmid: 23287718
 |  
															| 47 | H Wang, H Yang, C S Shivalila, M M Dawlaty, A W Cheng, F Zhang, R Jaenisch. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 2013, 153(4): 910–918 https://doi.org/10.1016/j.cell.2013.04.025
														     															     															     		pmid: 23643243
 |  
															| 48 | L Yang, M Güell, D Niu, H George, E Lesha, D Grishin, J Aach, E Shrock, W Xu, J Poci, R Cortazio, R A Wilkinson, J A Fishman, G Church. Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science, 2015, 350(6264): 1101–1104 https://doi.org/10.1126/science.aad1191
														     															     															     		pmid: 26456528
 |  
															| 49 | H Yang, H Wang, C S Shivalila, A W Cheng, L Shi, R Jaenisch. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell, 2013, 154(6): 1370–1379 https://doi.org/10.1016/j.cell.2013.08.022
														     															     															     		pmid: 23992847
 |  
															| 50 | W Li, F Teng, T Li, Q Zhou. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nature Biotechnology, 2013, 31(8): 684–686 https://doi.org/10.1038/nbt.2652
														     															     															     		pmid: 23929337
 |  
															| 51 | D Li, Z Qiu, Y Shao, Y Chen, Y Guan, M Liu, Y Li, N Gao, L Wang, X Lu, Y Zhao, M Liu. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nature Biotechnology, 2013, 31(8): 681–683 https://doi.org/10.1038/nbt.2661
														     															     															     		pmid: 23929336
 |  
															| 52 | W Y Hwang, Y Fu, D Reyon, M L Maeder, S Q Tsai, J D Sander, R T Peterson, J R Yeh, J K Joung. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature Biotechnology, 2013, 31(3): 227–229 https://doi.org/10.1038/nbt.2501
														     															     															     		pmid: 23360964
 |  
															| 53 | G Xiang, J Ren, T Hai, R Fu, D Yu, J Wang, W Li, H Wang, Q Zhou. Editing porcine IGF2 regulatory element improved meat production in Chinese Bama pigs. Cellular and Molecular Life Sciences, 2018, 75(24): 4619–4628 https://doi.org/10.1007/s00018-018-2917-6
														     															     															     		pmid: 30259067
 |  
															| 54 | Y Niu, B Shen, Y Cui, Y Chen, J Wang, L Wang, Y Kang, X Zhao, W Si, W Li, A P Xiang, J Zhou, X Guo, Y Bi, C Si, B Hu, G Dong, H Wang, Z Zhou, T Li, T Tan, X Pu, F Wang, S Ji, Q Zhou, X Huang, W Ji, J Sha. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell, 2014, 156(4): 836–843 https://doi.org/10.1016/j.cell.2014.01.027
														     															     															     		pmid: 24486104
 |  
															| 55 | M Hashimoto, T Takemoto. Electroporation enables the efficient mRNA delivery into the mouse zygotes and facilitates CRISPR/Cas9-based genome editing. Scientific Reports, 2015, 5(1): 11315 https://doi.org/10.1038/srep11315
														     															     															     		pmid: 26066060
 |  
															| 56 | W Qin, S L Dion, P M Kutny, Y Zhang, A W Cheng, N L Jillette, A Malhotra, A M Geurts, Y G Chen, H Wang. Efficient CRISPR/Cas9-mediated genome editing in mice by zygote electroporation of nuclease. Genetics, 2015, 200(2): 423–430 https://doi.org/10.1534/genetics.115.176594
														     															     															     		pmid: 25819794
 |  
															| 57 | T Kaneko, T Sakuma, T Yamamoto, T Mashimo. Simple knockout by electroporation of engineered endonucleases into intact rat embryos. Scientific Reports, 2014, 4(1): 6382 https://doi.org/10.1038/srep06382
														     															     															     		pmid: 25269785
 |  
															| 58 | W Wang, P M Kutny, S L Byers, C J Longstaff, M J DaCosta, C Pang, Y Zhang, R A Taft, F W Buaas, H Wang. Delivery of Cas9 protein into mouse zygotes through a series of electroporation dramatically increases the efficiency of model creation. Journal of Genetics and Genomics, 2016, 43(5): 319–327 https://doi.org/10.1016/j.jgg.2016.02.004
														     															     															     		pmid: 27210041
 |  
															| 59 | G Takahashi, C B Gurumurthy, K Wada, H Miura, M Sato, M Ohtsuka. GONAD: genome-editing via Oviductal Nucleic Acids Delivery system: a novel microinjection independent genome engineering method in mice. Scientific Reports, 2015, 5(1): 11406 https://doi.org/10.1038/srep11406
														     															     															     		pmid: 26096991
 |  
															| 60 | Y Wu, H Zhou, X Fan, Y Zhang, M Zhang, Y Wang, Z Xie, M Bai, Q Yin, D Liang, W Tang, J Liao, C Zhou, W Liu, P Zhu, H Guo, H Pan, C Wu, H Shi, L Wu, F Tang, J Li. Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Research, 2015, 25(1): 67–79 https://doi.org/10.1038/cr.2014.160
														     															     															     		pmid: 25475058
 |  
															| 61 | L Wei, X Wang, S Yang, W Yuan, J Li. Efficient generation of the mouse model with a defined point mutation through haploid cell-mediated gene editing. Journal of Genetics and Genomics, 2017, 44(9): 461–463 https://doi.org/10.1016/j.jgg.2017.07.004
														     															     															     		pmid: 28943147
 |  
															| 62 | M Adli. The CRISPR tool kit for genome editing and beyond. Nature Communications, 2018, 9(1): 1911 https://doi.org/10.1038/s41467-018-04252-2
														     															     															     		pmid: 29765029
 |  
															| 63 | H Wang, M La Russa, L S Qi. CRISPR/Cas9 in genome editing and beyond. Annual Review of Biochemistry, 2016, 85(1): 227–264 https://doi.org/10.1146/annurev-biochem-060815-014607
														     															     															     		pmid: 27145843
 |  
															| 64 | H A Rees, D R Liu. Base editing: precision chemistry on the genome and transcriptome of living cells. Nature Reviews: Genetics, 2018, 19(12): 770–788 https://doi.org/10.1038/s41576-018-0059-1
														     															     															     		pmid: 30323312
 |  
															| 65 | K Nishida, T Arazoe, N Yachie, S Banno, M Kakimoto, M Tabata, M Mochizuki, A Miyabe, M Araki, K Y Hara, Z Shimatani, A Kondo. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science, 2016, 353(6305): aaf8729 https://doi.org/10.1126/science.aaf8729
														     															     															     		pmid: 27492474
 |  
															| 66 | A C Komor, Y B Kim, M S Packer, J A Zuris, D R Liu. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 2016, 533(7603): 420–424 https://doi.org/10.1038/nature17946
														     															     															     		pmid: 27096365
 |  
															| 67 | N M Gaudelli, A C Komor, H A Rees, M S Packer, A H Badran, D I Bryson, D R Liu. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage. Nature, 2017, 551(7681): 464–471 https://doi.org/10.1038/nature24644
														     															     															     		pmid: 29160308
 |  
															| 68 | Z Liu, Z Lu, G Yang, S Huang, G Li, S Feng, Y Liu, J Li, W Yu, Y Zhang, J Chen, Q Sun, X Huang. Efficient generation of mouse models of human diseases via ABE- and BE-mediated base editing. Nature Communications, 2018, 9(1): 2338 https://doi.org/10.1038/s41467-018-04768-7
														     															     															     		pmid: 29904106
 |  
															| 69 | P Liang, H Sun, Y Sun, X Zhang, X Xie, J Zhang, Z Zhang, Y Chen, C Ding, Y Xiong, W Ma, D Liu, J Huang, Z Songyang. Effective gene editing by high-fidelity base editor 2 in mouse zygotes. Protein & Cell, 2017, 8(8): 601–611 https://doi.org/10.1007/s13238-017-0418-2
														     															     															     		pmid: 28585179
 |  
															| 70 | K Kim, S M Ryu, S T Kim, G Baek, D Kim, K Lim, E Chung, S Kim, J S Kim. Highly efficient RNA-guided base editing in mouse embryos. Nature Biotechnology, 2017, 35(5): 435–437 https://doi.org/10.1038/nbt.3816
														     															     															     		pmid: 28244995
 |  
															| 71 | Y Ma, L Yu, X Zhang, C Xin, S Huang, L Bai, W Chen, R Gao, J Li, S Pan, X Qi, X Huang, L Zhang. Highly efficient and precise base editing by engineered dCas9-guide tRNA adenosine deaminase in rats. Cell Discovery, 2018, 4(1): 39 https://doi.org/10.1038/s41421-018-0047-9
														     															     															     		pmid: 30038797
 |  
															| 72 | Z Liu, M Chen, S Chen, J Deng, Y Song, L Lai, Z Li. Highly efficient RNA-guided base editing in rabbit. Nature Communications, 2018, 9(1): 2717 https://doi.org/10.1038/s41467-018-05232-2
														     															     															     		pmid: 30006570
 |  
															| 73 | L Yang, X Zhang, L Wang, S Yin, B Zhu, L Xie, Q Duan, H Hu, R Zheng, Y Wei, L Peng, H Han, J Zhang, W Qiu, H Geng, S Siwko, X Zhang, M Liu, D Li. Increasing targeting scope of adenosine base editors in mouse and rat embryos through fusion of TadA deaminase with Cas9 variants. Protein & Cell, 2018, 9(9): 814–819 https://doi.org/10.1007/s13238-018-0568-x
														     															     															     		pmid: 30066232
 |  
															| 74 | A V Anzalone, P B Randolph, J R Davis, A A Sousa, L W Koblan, J M Levy, P J Chen, C Wilson, G A Newby, A Raguram, D R Liu. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 2019, 576(7785): 149–157 https://doi.org/10.1038/s41586-019-1711-4
														     															     															     		pmid: 31634902
 |  
															| 75 | S E Klompe, P L H Vo, T S Halpin-Healy, S H Sternberg. Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration. Nature, 2019, 571(7764): 219–225 https://doi.org/10.1038/s41586-019-1323-z
														     															     															     		pmid: 31189177
 |  
															| 76 | J Strecker, A Ladha, Z Gardner, J L Schmid-Burgk, K S Makarova, E V Koonin, F Zhang. RNA-guided DNA insertion with CRISPR-associated transposases. Science, 2019, 365(6448): 48–53 https://doi.org/10.1126/science.aax9181
														     															     															     		pmid: 31171706
 |  
								            
												
											    	
											        	|  | Viewed |  
											        	|  |  |  
												        |  | Full text 
 | 
 
 |  
												        |  |  |  
												        |  | Abstract 
 | 
 |  
												        |  |  |  
												        |  | Cited |  |  
												        |  |  |  |  
													    |  | Shared |  |  
													    |  |  |  |  
													    |  | Discussed |  |  |  |  |