Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2018, Vol. 5 Issue (3) : 351-361    https://doi.org/10.15302/J-FASE-2018235
REVIEW
Multiple effects of grape seed polyphenolics to prevent metabolic diseases
Torey ARVIK1, Hyunsook KIM2, James SEIBER3, Wallace YOKOYAMA4()
1. Sonomaceuticals/WholeVine Product LLC, Santa Rosa, CA 95403, USA
2. Hanyang University, Seoul 04763, Korea
3. Department of Food Science, University of California, Davis, CA 95616, USA
4. United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Western Regional Research Center, Albany, CA 94710, USA
 Download: PDF(529 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Obesity is increasing in developing countries. Population studies show a relationship between affluence and obesity. Changing food intake patterns with affluence such as preference for foods with less astringent polyphenolic compounds and dietary fibers may increase risk of metabolic dysfunctions due to caloric imbalance. Animal models of obesity consistently show that grape seed procyanidins prevent increases in body and abdo- minal adipose weight gain, plasma cholesterol, liver weight gain and inflammation in animals on high fat diets. The mechanisms are not clear because the oral intake of procyanidins results in pleiotropic interactions with proteins in the mouth, stomach, small intestine, cecum and colon that affect the rate of digestion of bioavailability of macronutrients, sterols, and dietary fiber. Procyanidins also bind bile acids and reduce intestinal permeability to inflammatory bacterial cell wall fragment. Procyanidins are not degraded or metabolized until reaching the lower gut where they can be metabolized into phenolic acids by gut bacteria. While they are metabolized by gut bacteria, they also alter total numbers and distribution of phyla and species of gut bacteria. Gut bacteria are recognized as significant contributors to obesity and obesity related metabolic diseases. The review examines the different pleiotropic effects of grape seed procyanidins that have a significant effect on metabolic disease in animal models of obesity.

Keywords grape seed      obesity      procyanidins      high fat      microbiota      animal models     
Corresponding Author(s): Wallace YOKOYAMA   
Online First Date: 19 July 2018    Issue Date: 31 July 2018
 Cite this article:   
Torey ARVIK,Hyunsook KIM,James SEIBER, et al. Multiple effects of grape seed polyphenolics to prevent metabolic diseases[J]. Front. Agr. Sci. Eng. , 2018, 5(3): 351-361.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2018235
https://academic.hep.com.cn/fase/EN/Y2018/V5/I3/351
Fig.1  Percent obesity in US, China and Japan from 1975 to 2014. The percentage of obese persons increased in China. The per capita income increased from 385 to 49992 CNY between1978 and 2015.
Fig.2  The percentage of male diabetics in China has almost doubled in the past 20 years. A combination of increasing prosperity and genetics play major roles. Japanese males, US males and US females, but not Japanese women, have increased rates of diabetes in the same period[10].
Fig.3  Structures of monomers, catechin and epicatechin, and their oligomers (B-Type)[18]
Fig.4  Proanthocyanidin monomers, oligomers, and gallates. The red grapes are generally higher in proanthocyanidins (PAs). Chardonnay has a higher content of PAs than the other white grape Riesling. After processing into wine, Chardonnay grape seeds often have higher PA content because white grape seeds are not fermented with the juice and the PAs are not extracted. Alcohol extracts of Chardonnay seeds are often used in human and animal studies. Catechin and epicatechin are monomers. B1-B4 are dimers and Bx-3-O-g are dimer gallates. C1 and T2 are trimers.
Fig.5  Effect of powdered grape seeds on Syrian Hamster HDL, LDL and VDL. Male Syrian hamsters were fed high fat diets containing 10% of the powdered seeds of Chardonnay (ChrSd), Cabernet Sauvignon (CabSd), and Syrah (SyrSd) grapes for four weeks. High density lipoprotein (HDL), low density lipoprotein (LDL) and very low density lipoprotein (VLDL) cholesterol were lowered in hamsters fed the ChrSd diets compared to hamsters fed the Control.
1 Caputo T, Gilardi F, Desvergne B. From chronic overnutrition to metaflammation and insulin resistance: adipose tissue and liver contributions. FEBS Letters, 2017, 591(19): 3061–3088
https://doi.org/10.1002/1873-3468.12742 pmid: 28677122
2 Mancuso P. The role of adipokines in chronic inflammation. Immuno Targets and Therapy, 2016, 5: 47–56
https://doi.org/10.2147/ITT.S73223 pmid: 27529061
3 Hamilton M K, Raybould H E. Bugs, guts and brains, and the regulation of food intake and body weight. International Journal of Molecular Sciences 2016, 6 (S1): 8–14
4 Kumari M, Kozyrskyj A L. Gut microbial metabolism defines host metabolism: an emerging perspective in obesity and allergic inflammation. Obesity Reviews: an Official Journal of the International Association for the Study of Obesity, 2017, 18(1): 18–31
5 Wen L, Duffy A. Factors influencing the gut microbiota, inflammation, and type 2 diabetes. Journal of Nutritional Biochemistry, 2017, 147(7): 1468S–1475S
https://doi.org/10.3945/jn.116.240754 pmid: 28615382
6 Hruby A, Hu F B. The epidemiology of obesity: a big picture. PharmacoEconomics, 2015, 33(7): 673–689
https://doi.org/10.1007/s40273-014-0243-x pmid: 25471927
7 Peng W, Berry E M. Global nutrition 1990–2015: a shrinking hungry, and expanding fat world. PLoS One, 2018, 13(3): e0194821
https://doi.org/10.1371/journal.pone.0194821 pmid: 29584768
8 Araújo J R, Tomas J, Brenner C, Sansonetti P J. Impact of high-fat diet on the intestinal microbiota and small intestinal physiology before and after the onset of obesity. Biochimie, 2017, 141: 97–106
https://doi.org/10.1016/j.biochi.2017.05.019 pmid: 28571979
9 King H, Aubert R E, Herman W H. Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care, 1998, 21(9): 1414–1431
https://doi.org/10.2337/diacare.21.9.1414 pmid: 9727886
10 NCD Risk Factor Collaboration (NCD-RisC). Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet, 2016, 387(10026): 1377–1396
https://doi.org/10.1016/S0140-6736(16)30054-X pmid: 27115820
11 Wang H J, Zhang B, Du W W, Liu A D, Zhang J G, Wang Z H, Su C, Ma Y X, Zhai F Y. Trends of the dietary fiber intake among Chinese aged 18–45 in nine provinces (autonomous region) from 1989 to 2006. Chinese Journal of Preventive Medicine, 2011, 45(4): 318–322
pmid: 21624326
12 Xiao Y, Su C, Ouyang Y, Zhang B. Trends of vegetables and fruits consumption among Chinese adults aged 18 to 44 years old from 1991 to 2011. Chinese Journal of Epidemiology, 2015, 36(3): 232–236
13 Ngamukote S, Mäkynen K, Thilawech T, Adisakwattana S. Cholesterol-lowering activity of the major polyphenols in grape seed. Molecules, 2011, 16(6): 5054–5061
https://doi.org/10.3390/molecules16065054 pmid: 21694670
14 Prior R L, Gu L. Occurrence and biological significance of proanthocyanidins in the American diet. Phytochemistry, 2005, 66(18): 2264–2280
https://doi.org/10.1016/j.phytochem.2005.03.025 pmid: 15904940
15 Fuleki T, Ricardo-da-Silva J M. Catechin and procyanidin composition of seeds from grape cultivars grown in Ontario. Journal of Agricultural and Food Chemistry, 1997, 45(4): 1156–1160
https://doi.org/10.1021/jf960493k
16 Arranz S, Saura-Calixto F, Shaha S, Kroon P A. High contents of nonextractable polyphenols in fruits suggest that polyphenol contents of plant foods have been underestimated. Journal of Agricultural and Food Chemistry, 2009, 57(16): 7298–7303
https://doi.org/10.1021/jf9016652 pmid: 19637929
17 Perez-Jimenez J, Arranz S, Saura-Calixto F. Proanthocyanidin content in foods is largely underestimated in the literature data: an approach to quantification of the missing proanthocyanidins. Food Research International, 2009, 42(10): 1381–1388
https://doi.org/10.1016/j.foodres.2009.07.002
18 Weber H A, Hodges A E, Guthrie J R, O’Brien B M, Robaugh D, Clark A P, Harris R K, Algaier J W, Smith C S. Comparison of proanthocyanidins in commercial antioxidants: grape seed and pine bark extracts. Journal of Agricultural and Food Chemistry, 2007, 55(1): 148–156
https://doi.org/10.1021/jf063150n pmid: 17199326
19 Cadot Y, Miñana-Castelló M T, Chevalier M. Anatomical, histological, and histochemical changes in grape seeds from Vitis vinifera L. cv Cabernet franc during fruit development. Journal of Agricultural and Food Chemistry, 2006, 54(24): 9206–9215
https://doi.org/10.1021/jf061326f pmid: 17117811
20 Kennedy J A, Matthews M A, Waterhouse A L. Changes in grape seed polyphenols during fruit ripening. Phytochemistry, 2000, 55(1): 77–85
https://doi.org/10.1016/S0031-9422(00)00196-5 pmid: 11021647
21 Kennedy J A, Ristic R, Iland P G, Jones G P, Troup G J, Pilbrow J R, Hutton D R, Hewitt D, Hunter C R. Development of seed polyphenols in berries from Vitis vinifera L. cv. Shiraz. Australian Journal of Grape and Wine Research, 2000, 6(3): 244–254
https://doi.org/10.1111/j.1755-0238.2000.tb00185.x
22 del Rio J L P, Kennedy J A. Development of proanthocyanidins in Vitis vinifera L. cv. Pinot noir grapes and extraction into wine. American Journal of Enology and Viticulture, 2006, 57(2): 125–132
23 Moran M A, Sadras V O, Liebich B, Bubner R M. High temp traits differ across varieties. Australian & New Zealand Grapegrower & Winemaker, 2011, 571: 34–35
24 Cala O, Dufourc E J, Fouquet E, Manigand C, Laguerre M, Pianet I.The colloidal state of tannins impacts the nature of their interaction with proteins: the case of salivary proline-rich protein/procyanidins binding. Langmuir: the ACS Journal of Surfaces and Colloids, 2012, 28(50): 17410–17418
25 de Freitas V, Mateus N. Structural features of procyanidin interactions with salivary proteins. Journal of Agricultural and Food Chemistry, 2001, 49(2): 940–945
https://doi.org/10.1021/jf000981z pmid: 11262053
26 Carvalho E, Mateus N, Plet B, Pianet I, Dufourc E, De Freitas V. Influence of wine pectic polysaccharides on the interactions between condensed tannins and salivary proteins. Journal of Agricultural and Food Chemistry, 2006, 54(23): 8936–8944
https://doi.org/10.1021/jf061835h pmid: 17090144
27 Soares S, Mateus N, de Freitas V. Carbohydrates inhibit salivary proteins precipitation by condensed tannins. Journal of Agricultural and Food Chemistry, 2012, 60(15): 3966–3972
https://doi.org/10.1021/jf3002747 pmid: 22440016
28 Gonçalves R, Mateus N, De Freitas V. Influence of carbohydrates on the interaction of procyanidin B3 with trypsin. Journal of Agricultural and Food Chemistry, 2011, 59(21): 11794–11802
https://doi.org/10.1021/jf203060s pmid: 21950419
29 Shirakami Y, Sakai H, Kochi T, Seishima M, Shimizu M. Catechins and its role in chronic diseases. Advances in Experimental Medicine and Biology, 2016, 929: 67–90
https://doi.org/10.1007/978-3-319-41342-6_4 pmid: 27771921
30 Zhang L, Wang Y, Li D, Ho C T, Li J, Wan X. The absorption, distribution, metabolism and excretion of procyanidins. Food & Function, 2016, 7(3): 1273–1281
https://doi.org/10.1039/C5FO01244A pmid: 26814915
31 Glick Z, Joslyn M A. Effect of tannic acid and related compounds on the absorption and utilization of proteins in the rat. Journal of Nutrition, 1970, 100(5): 516–520
https://doi.org/10.1093/jn/100.5.516 pmid: 5443823
32 Oh H I, Hoff J E. Interaction of condensed grape tannins with pepsin and trypsin in simulated human digestive-system. Nutrition Reports International, 1988, 38(3): 445–453
33 Bates J M, Akerlund J, Mittge E, Guillemin K. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host & Microbe, 2007, 2(6): 371–382
https://doi.org/10.1016/j.chom.2007.10.010 pmid: 18078689
34 Estaki M, DeCoffe D, Gibson D L. Interplay between intestinal alkaline phosphatase, diet, gut microbes and immunity. World Journal of Gastroenterology, 2014, 20(42): 15650–15656
https://doi.org/10.3748/wjg.v20.i42.15650 pmid: 25400448
35 Malo M S, Alam S N, Mostafa G, Zeller S J, Johnson P V, Mohammad N, Chen K T, Moss A K, Ramasamy S, Faruqui A, Hodin S, Malo P S, Ebrahimi F, Biswas B, Narisawa S, Millán J L, Warren H S, Kaplan J B, Kitts C L, Hohmann E L, Hodin R A. Intestinal alkaline phosphatase preserves the normal homeostasis of gut microbiota. Gut, 2010, 59(11): 1476–1484
https://doi.org/10.1136/gut.2010.211706 pmid: 20947883
36 Tebib K, Rouanet J M, Besançon P. Effect of grape seed tannins on the activity of some rat intestinal enzyme activities. Enzyme Protein, 1994, 48(1): 51–60
https://doi.org/10.1159/000474969 pmid: 7787971
37 Vallet J, Rouanet J M, Besançon P. Dietary grape seed tannins: effects of nutritional balance and on some enzymic activities along the crypt-villus axis of rat small intestine. Annals of Nutrition & Metabolism, 1994, 38(2): 75–84
https://doi.org/10.1159/000177796 pmid: 8067688
38 Kaliannan K, Hamarneh S R, Economopoulos K P, Nasrin Alam S, Moaven O, Patel P, Malo N S, Ray M, Abtahi S M, Muhammad N, Raychowdhury A, Teshager A, Mohamed M M, Moss A K, Ahmed R, Hakimian S, Narisawa S, Millán J L, Hohmann E, Warren H S, Bhan A K, Malo M S, Hodin R A. Intestinal alkaline phosphatase prevents metabolic syndrome in mice. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(17): 7003–7008
https://doi.org/10.1073/pnas.1220180110 pmid: 23569246
39 Sugiyama H, Akazome Y, Shoji T, Yamaguchi A, Yasue M, Kanda T, Ohtake Y. Oligomeric procyanidins in apple polyphenol are main active components for inhibition of pancreatic lipase and triglyceride absorption. Journal of Agricultural and Food Chemistry, 2007, 55(11): 4604–4609
https://doi.org/10.1021/jf070569k pmid: 17458979
40 Moreno D A, Ilic N, Poulev A, Brasaemle D L, Fried S K, Raskin I. Inhibitory effects of grape seed extract on lipases. Nutrition, 2003, 19(10): 876–879
https://doi.org/10.1016/S0899-9007(03)00167-9 pmid: 14559324
41 Adisakwattana S, Moonrat J, Srichairat S, Chanasit C, Tirapongporn H, Chanathong B, Ngamukote S, Makynen K, Sapwarobol S. Lowering mechanisms of grape seed extract (Vitis vinifera L) and its antihyperlidemic activity. Journal of Medicinal Plants Research, 2010, 4(20): 2113–2120
42 Donovan J L, Manach C, Rios L, Morand C, Scalbert A, Rémésy C. Procyanidins are not bioavailable in rats fed a single meal containing a grapeseed extract or the procyanidin dimer B3. British Journal of Nutrition, 2002, 87(4): 299–306
https://doi.org/10.1079/BJN2001517 pmid: 12064339
43 Baba S, Osakabe N, Natsume M, Terao J. Absorption and urinary excretion of procyanidin B2 [epicatechin-(4β-8)-epicatechin] in rats. Free Radical Biology & Medicine, 2002, 33(1): 142–148
https://doi.org/10.1016/S0891-5849(02)00871-7 pmid: 12086692
44 Choy Y Y, Jaggers G K, Oteiza P I, Waterhouse A L. Bioavailability of intact proanthocyanidins in the rat colon after ingestion of grape seed extract. Journal of Agricultural and Food Chemistry, 2013, 61(1): 121–127
https://doi.org/10.1021/jf301939e pmid: 23244439
45 Choy Y Y, Quifer-Rada P, Holstege D M, Frese S A, Calvert C C,Mills D A, Lamuela-Raventos R M, Waterhouse A L.Phenolic metabolites and substantial microbiome changes in pig feces by ingesting grape seed proanthocyanidins. Food & Function, 2014, 5 (9): 2298–2308
46 Liu W, Zhao S, Wang J, Shi J, Sun Y, Wang W, Ning G, Hong J, Liu R. Molecular Nutrition & Food Research, 2017, 61(9): 1601082
47 Yokota A, Fukiya S, Islam K B, Ooka T, Ogura Y, Hayashi T, Hagio M, Ishizuka S. Is bile acid a determinant of the gut microbiota on a high-fat diet? Gut Microbes, 2012, 3(5): 455–459
https://doi.org/10.4161/gmic.21216 pmid: 22825495
48 Tamura T, Ozawa M, Tanaka N, Arai S, Mura K. Bacillus cereus response to a proanthocyanidin trimer, a transcriptional and functional analysis. Current Microbiology, 2016, 73(1): 115–123
https://doi.org/10.1007/s00284-016-1032-x pmid: 27061585
49 Tebib K, Bitri L, Besancon P, Rouanet J. Polymeric grape seed tannins prevent plasma cholesterol changes in high-cholesterol-fed rats. Food Chemistry, 1994, 49(4): 403–406
https://doi.org/10.1016/0308-8146(94)90012-4
50 Martin-Carron N, Goni I, Larrauri J A, Garcia-Alonso A, Saura-Calixto F. Reduction in serum total and LDL cholesterol concentrations by a dietary fiber and polyphenol-rich grape product in hypercholesterolemic rats. Nutrition Research, 1999, 19(9): 1371–1381
https://doi.org/10.1016/S0271-5317(99)00094-9
51 Nakamura Y, Tonogai Y. Effects of grape seed polyphenols on serum and hepatic lipid contents and fecal steroid excretion in normal and hypercholesterolemic rats. Journal of Health Science, 2002, 48(6): 570–578
https://doi.org/10.1248/jhs.48.570
52 Bagchi D, Bagchi M, Stohs S J, Das D K, Ray S D, Kuszynski C A, Joshi S S, Pruess H G. Free radicals and grape seed proanthocyanidin extract: importance in human health and disease prevention. Toxicology, 2000, 148(2–3): 187–197
https://doi.org/10.1016/S0300-483X(00)00210-9 pmid: 10962138
53 Bagchi D, Bagchi M, Stohs S, Ray S D, Sen C K, Preuss H G. Cellular protection with proanthocyanidins derived from grape seeds. Annals of the New York Academy of Sciences, 2002, 957(1): 260–270
https://doi.org/10.1111/j.1749-6632.2002.tb02922.x pmid: 12074978
54 Bagchi D, Swaroop A, Preuss H G, Bagchi M. Free radical scavenging, antioxidant and cancer chemoprevention by grape seed proanthocyanidin: an overview. Mutation Research, 2014, 768: 69–73
https://doi.org/10.1016/j.mrfmmm.2014.04.004 pmid: 24751946
55 Décordé K, Teissèdre P L, Sutra T, Ventura E, Cristol J P, Rouanet J M. Chardonnay grape seed procyanidin extract supplementation prevents high-fat diet-induced obesity in hamsters by improving adipokine imbalance and oxidative stress markers. Molecular Nutrition & Food Research, 2009, 53(5): 659–666
https://doi.org/10.1002/mnfr.200800165 pmid: 19035554
56 Zhang Z, Wang H, Jiao R, Peng C, Wong Y M, Yeung V S, Huang Y, Chen Z Y. Choosing hamsters but not rats as a model for studying plasma cholesterol-lowering activity of functional foods. Molecular Nutrition & Food Research, 2009, 53(7): 921–930
https://doi.org/10.1002/mnfr.200800517 pmid: 19536872
57 Cao H. Adipocytokines in obesity and metabolic disease. Journal of Endocrinology, 2014, 220(2): T47–T59
https://doi.org/10.1530/JOE-13-0339 pmid: 24403378
58 Andrade-Oliveira V, Camara N O, Moraes-Vieira P M. Adipokines as drug targets in diabetes and underlying disturbances. Journal of Diabetes Research, 2015, 2015: 681612
59 Jiao R, Zhang Z, Yu H, Huang Y, Chen Z Y. Hypocholesterolemic activity of grape seed proanthocyanidin is mediated by enhancement of bile acid excretion and up-regulation of CYP7A1. Journal of Nutritional Biochemistry, 2010, 21(11): 1134–1139
https://doi.org/10.1016/j.jnutbio.2009.10.007 pmid: 20092993
60 Bucic-Kojic A, Planinic M, Tomas S, Jakobek L, Seruga M. Influence of solvent and temperature on extraction of phenolic compounds from grape seed, antioxidant activity and colour of extract. International Journal of Food Science & Technology, 2009, 44(12): 2394–2401
https://doi.org/10.1111/j.1365-2621.2008.01876.x
61 Bautista-Ortin A B, Rodriguez-Rodriguez P, Gil-Munoz R, Jimenez-Pascual E, Busse-Valverde N, Martinez-Cutillas A, Lopez-Roca J M, Gomez-Plaza E. Influence of berry ripeness on concentration, qualitative composition and extractability of grape seed tannins. Australian Journal of Grape and Wine Research, 2012, 18(2): 123–130
https://doi.org/10.1111/j.1755-0238.2012.00178.x
62 Cádiz-Gurrea M L, Borrás-Linares I, Lozano-Sánchez J, Joven J, Fernández-Arroyo S, Segura-Carretero A. Cocoa and grape seed byproducts as a source of antioxidant and anti-inflammatory proanthocyanidins. International Journal of Molecular Sciences, 2017, 18(2): E376
https://doi.org/10.3390/ijms18020376 pmid: 28208630
63 Hellström J K, Törrönen A R, Mattila P H. Proanthocyanidins in common food products of plant origin. Journal of Agricultural and Food Chemistry, 2009, 57(17): 7899–7906
https://doi.org/10.1021/jf901434d pmid: 19722709
64 Saura-Calixto F. Antioxidant dietary fiber product: a new concept and a potential food ingredient. Journal of Agricultural and Food Chemistry, 1998, 46(10): 4303–4306
https://doi.org/10.1021/jf9803841
65 Bravo L, Saura-Calixto F. Characterization of dietary fiber and the in vitro indigestible fraction of grape pomace. American Journal of Enology and Viticulture, 1998, 49(2): 135–141
66 Martin-Carron N, Saura-Calixto F, Goni I. Effects of dietary fibre- and polyphenol-rich grape products on lipidaemia and nutritional parameters in rats. Journal of the Science of Food and Agriculture, 2000, 80(8): 1183–1188
https://doi.org/10.1002/1097-0010(200006)80:8<1183::AID-JSFA617>3.0.CO;2-G
67 Bravo L, Abia R, Sauracalixto F. Polyphenols as dietary fiber associated compounds—Comparative-study in-vivo and in-vitro properties. Journal of Agricultural and Food Chemistry, 1994, 42(7): 1481–1487
https://doi.org/10.1021/jf00043a017
68 Kim H, Bartley G, Chon J W, Seo K H, Yokoyama W. Chardonnay grape seed flour alters expression of hepatic genes for lipid and glucose metabolism, inflammation, and leptin receptor. FASEB Journal, 2014, 28(1)
69 Seo K, Kim H, Chon J, Kim D, Nah S, Arvik T, Yokoyama W. Flavonoid-rich Chardonnay grape seed flour supplementation ameliorates diet-induced visceral adiposity, insulin resistance, and glucose intolerance via altered adipose tissue gene expression. Journal of Functional Foods, 2015, 17: 881–891
https://doi.org/10.1016/j.jff.2015.06.039
70 Kim H, Kim D H, Seo K H, Chon J W, Nah S Y, Bartley G E, Arvik T, Lipson R, Yokoyama W. Modulation of the intestinal microbiota is associated with lower plasma cholesterol and weight gain in hamsters fed Chardonnay grape seed flour. Journal of Agricultural and Food Chemistry, 2015, 63(5): 1460–1467
https://doi.org/10.1021/jf5026373 pmid: 25598538
71 Li F, Jiang C, Krausz K W, Li Y, Albert I, Hao H, Fabre K M, Mitchell J B, Patterson A D, Gonzalez F J. Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nature Communications, 2013, 4(1): 2384
https://doi.org/10.1038/ncomms3384 pmid: 24064762
72 Feringa H H, Laskey D A, Dickson J E, Coleman C I. The effect of grape seed extract on cardiovascular risk markers: a meta-analysis of randomized controlled trials. Journal of the American Dietetic Association, 2011, 111(8): 1173–1181
https://doi.org/10.1016/j.jada.2011.05.015 pmid: 21802563
73 Zhang H, Liu S, Li L, Liu S, Liu S, Mi J, Tian G. The impact of grape seed extract treatment on blood pressure changes: a meta-analysis of 16 randomized controlled trials. Medicine, 2016, 95(33): e4247
https://doi.org/10.1097/MD.0000000000004247 pmid: 27537554
[1] Li XUE, Ertao WANG. Arbuscular mycorrhizal associations and the major regulators[J]. Front. Agr. Sci. Eng. , 2020, 7(3): 296-306.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed