|
|
Arbuscular mycorrhizal associations and the major regulators |
Li XUE1( ), Ertao WANG2( ) |
1. College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China 2. National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China |
|
|
Abstract Plants growing in natural soils encounter diverse biotic and abiotic stresses and have adapted with sophisticated strategies to deal with complex environments such as changing root system structure, evoking biochemical responses and recruiting microbial partners. Under selection pressure, plants and their associated microorganisms assemble into a functional entity known as a holobiont. The commonest cooperative interaction is between plant roots and arbuscular mycorrhizal (AM) fungi. About 80% of terrestrial plants can form AM symbiosis with the ancient phylum Glomeromycota. A very large network of extraradical and intraradical mycelium of AM fungi connects the underground biota and the nearby carbon and nutrient fluxes. Here, we discuss recent progress on the regulators of AM associations with plants, AM fungi and their surrounding environments, and explore further mechanistic insights.
|
Keywords
AM symbiosis
signal
regulators
nutrients
phosphate
microbiota
|
Corresponding Author(s):
Li XUE,Ertao WANG
|
Just Accepted Date: 11 June 2020
Online First Date: 13 July 2020
Issue Date: 28 July 2020
|
|
1 |
S E Smith, F A Smith. Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia, 2012, 104(1): 1–13
https://doi.org/10.3852/11-229
pmid: 21933929
|
2 |
W Wang, J Shi, Q Xie, Y Jiang, N Yu, E Wang. Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. Molecular Plant, 2017, 10(9): 1147–1158
https://doi.org/10.1016/j.molp.2017.07.012
pmid: 28782719
|
3 |
Y Jiang, W Wang, Q Xie, N Liu, L Liu, D Wang, X Zhang, C Yang, X Chen, D Tang, E Wang. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science, 2017, 356(6343): 1172–1175
https://doi.org/10.1126/science.aam9970
pmid: 28596307
|
4 |
L H Luginbuehl, G N Menard, S Kurup, H Van Erp, G V Radhakrishnan, A Breakspear, G E D Oldroyd, P J Eastmond. Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science, 2017, 356(6343): 1175–1178
https://doi.org/10.1126/science.aan0081
pmid: 28596311
|
5 |
A Keymer, P Pimprikar, V Wewer, C Huber, M Brands, S L Bucerius, P M Delaux, V Klingl, E V Röpenack-Lahaye, T L Wang, W Eisenreich, P Dörmann, M Parniske, C Gutjahr. Lipid transfer from plants to arbuscular mycorrhiza fungi. eLife, 2017, 6: e29107
https://doi.org/10.7554/eLife.29107
pmid: 28726631
|
6 |
C Gutjahr, M Parniske. Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annual Review of Cell and Developmental Biology, 2013, 29(1): 593–617
https://doi.org/10.1146/annurev-cellbio-101512-122413
pmid: 24099088
|
7 |
M T Waters, C Gutjahr, T Bennett, D C Nelson. Strigolactone signaling and evolution. Annual Review of Plant Biology, 2017, 68(1): 291–322
https://doi.org/10.1146/annurev-arplant-042916-040925
pmid: 28125281
|
8 |
K Akiyama, K Matsuzaki, H Hayashi. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature, 2005, 435(7043): 824–827
https://doi.org/10.1038/nature03608
pmid: 15944706
|
9 |
A Besserer, V Puech-Pagès, P Kiefer, V Gomez-Roldan, A Jauneau, S Roy, J C Portais, C Roux, G Bécard, N Séjalon-Delmas. Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biology, 2006, 4(7): e226
https://doi.org/10.1371/journal.pbio.0040226
pmid: 16787107
|
10 |
Y Kobae, H Kameoka, Y Sugimura, K Saito, R Ohtomo, T Fujiwara, J Kyozuka. Strigolactone biosynthesis genes of rice arerequired for the punctual entry of arbuscular mycorrhizal fungi into the roots. Plant & Cell Physiology, 2018, 59(3): 544–553
https://doi.org/10.1093/pcp/pcy001
pmid: 29325120
|
11 |
W Liu, W Kohlen, A Lillo, R Op den Camp, S Ivanov, M Hartog, E Limpens, M Jamil, C Smaczniak, K Kaufmann, W C Yang, G J E J Hooiveld, T Charnikhova, H J Bouwmeester, T Bisseling, R Geurts. Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. Plant Cell, 2011, 23(10): 3853–3865
https://doi.org/10.1105/tpc.111.089771
pmid: 22039214
|
12 |
A Genre, M Chabaud, C Balzergue, V Puech-Pagès, M Novero, T Rey, J Fournier, S Rochange, G Bécard, P Bonfante, D G Barker. Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone. New Phytologist, 2013, 198(1): 190–202
https://doi.org/10.1111/nph.12146
pmid: 23384011
|
13 |
M Giovannetti, A Mari, M Novero, P Bonfante. Early Lotus japonicus root transcriptomic responses to symbiotic and pathogenic fungal exudates. Frontiers of Plant Science, 2015, 6: 480
https://doi.org/10.3389/fpls.2015.00480
pmid: 26175746
|
14 |
K Abdel-Lateif, D Bogusz, V Hocher. The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia and Frankia bacteria. Plant Signaling & Behavior, 2012, 7(6): 636–641
https://doi.org/10.4161/psb.20039
pmid: 22580697
|
15 |
J M M Aguilar, A M Ashby, A J M Richards, G J Loake, M D Watson, C H Shaw. Chemotaxis of Rhizobium leguminosarum towards flavonoid inducers of the symbiotic nodulation genes. Journal of General and Applied Microbiology, 1988, 134(10): 2741–2746
|
16 |
A J Dharmatilake, W D Bauer. Chemotaxis of Rhizobium meliloti towards nodulation gene-inducing compounds from alfalfa roots. Applied and Environmental Microbiology, 1992, 58(4): 1153–1158
https://doi.org/10.1128/AEM.58.4.1153-1158.1992
pmid: 16348685
|
17 |
G Bécard, D D Douds, P E Pfeffer. Extensive in vitro hyphal growth of vesicular-arbuscular mycorrhizal gungi in the presence of CO2 and flavonols. Applied and Environmental Microbiology, 1992, 58(3): 821–825
https://doi.org/10.1128/AEM.58.3.821-825.1992
pmid: 16348673
|
18 |
G Nagahashi, D D Douds Jr. The effects of hydroxy fatty acids on the hyphal branching of germinated spores of AM fungi. Fungal Biology, 2011, 115(4–5): 351–358
https://doi.org/10.1016/j.funbio.2011.01.006
pmid: 21530917
|
19 |
E A Fich, N A Segerson, J K C Rose. The plant polyester cutin: biosynthesis, structure, and biological roles. Annual Review of Plant Biology, 2016, 67(1): 207–233
https://doi.org/10.1146/annurev-arplant-043015-111929
pmid: 26865339
|
20 |
E Wang, S Schornack, J F Marsh, E Gobbato, B Schwessinger, P Eastmond, M Schultze, S Kamoun, G E D Oldroyd. A common signaling process that promotes mycorrhizal and oomycete colonization of plants. Current Biology, 2012, 22(23): 2242–2246
https://doi.org/10.1016/j.cub.2012.09.043
pmid: 23122843
|
21 |
J Y Wang, I Haider, M Jamil, V Fiorilli, Y Saito, J Mi, L Baz, B A Kountche, K P Jia, X Guo, A Balakrishna, V O Ntui, B Reinke, V Volpe, T Gojobori, I Blilou, L Lanfranco, P Bonfante, S Al-Babili. The apocarotenoid metabolite zaxinone regulates growth and strigolactone biosynthesis in rice. Nature Communications, 2019, 10(1): 810
https://doi.org/10.1038/s41467-019-08461-1
pmid: 30778050
|
22 |
D C Nelson, G R Flematti, E L Ghisalberti, K W Dixon, S M Smith. Regulation of seed germination and seedling growth by chemical signals from burning vegetation. Annual Review of Plant Biology, 2012, 63(1): 107–130
https://doi.org/10.1146/annurev-arplant-042811-105545
pmid: 22404467
|
23 |
N Morffy, L Faure, D C Nelson. Smoke and hormone mirrors: action and evolution of karrikin and strigolactone signaling. Trends in Genetics, 2016, 32(3): 176–188
https://doi.org/10.1016/j.tig.2016.01.002
pmid: 26851153
|
24 |
C Gutjahr, E Gobbato, J Choi, M Riemann, M G Johnston, W Summers, S Carbonnel, C Mansfield, S Y Yang, M Nadal, I Acosta, M Takano, W B Jiao, K Schneeberger, K A Kelly, U Paszkowski. Rice perception of symbiotic arbuscular mycorrhizal fungi requires the karrikin receptor complex. Science, 2015, 350(6267): 1521–1524
https://doi.org/10.1126/science.aac9715
pmid: 26680197
|
25 |
J A Villaécija-Aguilar, M Hamon-Josse, S Carbonnel, A Kretschmar, C Schmidt, C Dawid, T Bennett, C Gutjahr. SMAX1/SMXL2 regulate root and root hair development downstream of KAI2-mediated signalling in Arabidopsis. PLOS Genetics, 2019, 15(8): e1008327
https://doi.org/10.1371/journal.pgen.1008327
pmid: 31465451
|
26 |
P N McGuiness, J B Reid, E Foo. The role of gibberellins and brassinosteroids in nodulation and arbuscular mycorrhizal associations. Frontiers of Plant Science, 2019, 10: 269
https://doi.org/10.3389/fpls.2019.00269
pmid: 30930916
|
27 |
C Jiang, X Gao, L Liao, N P Harberd, X Fu. Phosphate starvation root architecture and anthocyanin accumulation responses are modulated by the gibberellin-DELLA signaling pathway in Arabidopsis. Plant Physiology, 2007, 145(4): 1460–1470
https://doi.org/10.1104/pp.107.103788
pmid: 17932308
|
28 |
D S Floss, J G Levy, V Lévesque-Tremblay, N Pumplin, M J Harrison. DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(51): E5025–E5034
https://doi.org/10.1073/pnas.1308973110
pmid: 24297892
|
29 |
N Yu, D Luo, X Zhang, J Liu, W Wang, Y Jin, W Dong, J Liu, H Liu, W Yang, L Zeng, Q Li, Z He, G E D Oldroyd, E Wang. A DELLA protein complex controls the arbuscular mycorrhizal symbiosis in plants. Cell Research, 2014, 24(1): 130–133
https://doi.org/10.1038/cr.2013.167
pmid: 24343576
|
30 |
Y Jin, H Liu, D Luo, N Yu, W Dong, C Wang, X Zhang, H Dai, J Yang, E Wang. DELLA proteins are common components of symbiotic rhizobial and mycorrhizal signalling pathways. Nature Communications, 2016, 7(1): 12433
https://doi.org/10.1038/ncomms12433
pmid: 27514472
|
31 |
P Pimprikar, S Carbonnel, M Paries, K Katzer, V Klingl, M J Bohmer, L Karl, D S Floss, M J Harrison, M Parniske, C Gutjahr. A CCaMK-CYCLOPS-DELLA complex activates transcription of RAM1 to regulate arbuscule branching. Current Biology, 2016, 26(8): 987–998
https://doi.org/10.1016/j.cub.2016.01.069
pmid: 27020747
|
32 |
D S Floss, S K Gomez, H J Park, A M MacLean, L M Müller, K K Bhattarai, V Lévesque-Tremblay, I E Maldonado-Mendoza, M J Harrison. A transcriptional program for arbuscule degeneration during AM symbiosis is regulated by MYB1. Current Biology, 2017, 27(8): 1206–1212
https://doi.org/10.1016/j.cub.2017.03.003
pmid: 28392110
|
33 |
C Heck, H Kuhn, S Heidt, S Walter, N Rieger, N Requena. Symbiotic fungi control plant root cortex development through the novel GRAS transcription factor MIG1. Current Biology, 2016, 26(20): 2770–2778
https://doi.org/10.1016/j.cub.2016.07.059
pmid: 27641773
|
34 |
D S Floss, V Lévesque-Tremblay, H J Park, M J Harrison. DELLA proteins regulate expression of a subset of AM symbiosis-induced genes in Medicago truncatula. Plant Signaling & Behavior, 2016, 11(4): e1162369
https://doi.org/10.1080/15592324.2016.1162369
pmid: 26984507
|
35 |
L Xue, H Cui, B Buer, V Vijayakumar, P M Delaux, S Junkermann, M Bucher. Network of GRAS transcription factors involved in the control of arbuscule development in Lotus japonicus. Plant Physiology, 2015, 167(3): 854–871
https://doi.org/10.1104/pp.114.255430
pmid: 25560877
|
36 |
S Hirsch, J Kim, A Muñoz, A B Heckmann, J A Downie, G E D Oldroyd. GRAS proteins form a DNA binding complex to induce gene expression during nodulation signaling in Medicago truncatula. Plant Cell, 2009, 21(2): 545–557
https://doi.org/10.1105/tpc.108.064501
pmid: 19252081
|
37 |
E Gobbato, J F Marsh, T Vernié, E Wang, F Maillet, J Kim, J B Miller, J Sun, S A Bano, P Ratet, K S Mysore, J Dénarié, M Schultze, G E D Oldroyd. A GRAS-type transcription factor with a specific function in mycorrhizal signaling. Current Biology, 2012, 22(23): 2236–2241
https://doi.org/10.1016/j.cub.2012.09.044
pmid: 23122845
|
38 |
F Liaqat, R Eltem. Chitooligosaccharides and their biological activities: a comprehensive review. Carbohydrate Polymers, 2018, 184: 243–259
https://doi.org/10.1016/j.carbpol.2017.12.067
pmid: 29352917
|
39 |
Y Cao, M K Halane, W Gassmann, G Stacey. The role of plant innate immunity in the legume-rhizobium symbiosis. Annual Review of Plant Biology, 2017, 68(1): 535–561
https://doi.org/10.1146/annurev-arplant-042916-041030
pmid: 28142283
|
40 |
F Maillet, V Poinsot, O André, V Puech-Pagès, A Haouy, M Gueunier, L Cromer, D Giraudet, D Formey, A Niebel, E A Martinez, H Driguez, G Bécard, J Dénarié. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature, 2011, 469(7328): 58–63
https://doi.org/10.1038/nature09622
pmid: 21209659
|
41 |
F Feng, J Sun, G V Radhakrishnan, T Lee, Z Bozsóki, S Fort, A Gavrin, K Gysel, M B Thygesen, K R Andersen, S Radutoiu, J Stougaard, G E D Oldroyd. A combination of chitooligosaccharide and lipochitooligosaccharide recognition promotes arbuscular mycorrhizal associations in Medicago truncatula. Nature Communications, 2019, 10(1): 5047
https://doi.org/10.1038/s41467-019-12999-5
pmid: 31695035
|
42 |
J Dénarié, F Debellé, J C Promé. Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annual Review of Biochemistry, 1996, 65(1): 503–535
https://doi.org/10.1146/annurev.bi.65.070196.002443
pmid: 8811188
|
43 |
C Zipfel, G E D Oldroyd. Plant signalling in symbiosis and immunity. Nature, 2017, 543(7645): 328–336
https://doi.org/10.1038/nature22009
pmid: 28300100
|
44 |
E B Madsen, L H Madsen, S Radutoiu, M Olbryt, M Rakwalska, K Szczyglowski, S Sato, T Kaneko, S Tabata, N Sandal, J Stougaard. A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature, 2003, 425(6958): 637–640
https://doi.org/10.1038/nature02045
pmid: 14534591
|
45 |
S Radutoiu, L H Madsen, E B Madsen, H H Felle, Y Umehara, M Grønlund, S Sato, Y Nakamura, S Tabata, N Sandal, J Stougaard. Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature, 2003, 425(6958): 585–592
https://doi.org/10.1038/nature02039
pmid: 14534578
|
46 |
Y Cao, Y Liang, K Tanaka, C T Nguyen, R P Jedrzejczak, A Joachimiak, G Stacey. The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. eLife, 2014, 3: e03766
https://doi.org/10.7554/eLife.03766
pmid: 25340959
|
47 |
M Hayafune, R Berisio, R Marchetti, A Silipo, M Kayama, Y Desaki, S Arima, F Squeglia, A Ruggiero, K Tokuyasu, A Molinaro, H Kaku, N Shibuya. Chitin-induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich-type dimerization. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(3): E404–E413
https://doi.org/10.1073/pnas.1312099111
pmid: 24395781
|
48 |
X Zhang, W Dong, J Sun, F Feng, Y Deng, Z He, G E D Oldroyd, E Wang. The receptor kinase CERK1 has dual functions in symbiosis and immunity signalling. Plant Journal, 2015, 81(2): 258–267
https://doi.org/10.1111/tpj.12723
pmid: 25399831
|
49 |
K Miyata, T Kozaki, Y Kouzai, K Ozawa, K Ishii, E Asamizu, Y Okabe, Y Umehara, A Miyamoto, Y Kobae, K Akiyama, H Kaku, Y Nishizawa, N Shibuya, T Nakagawa. The bifunctional plant receptor, OsCERK1, regulates both chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice. Plant & Cell Physiology, 2014, 55(11): 1864–1872
https://doi.org/10.1093/pcp/pcu129
pmid: 25231970
|
50 |
J Sun, J B Miller, E Granqvist, A Wiley-Kalil, E Gobbato, F Maillet, S Cottaz, E Samain, M Venkateshwaran, S Fort, R J Morris, J M Ané, J Dénarié, G E D Oldroyd. Activation of symbiosis signaling by arbuscular mycorrhizal fungi in legumes and rice. Plant Cell, 2015, 27(3): 823–838
https://doi.org/10.1105/tpc.114.131326
pmid: 25724637
|
51 |
J He, C Zhang, H Dai, H Liu, X Zhang, J Yang, X Chen, Y Zhu, D Wang, X Qi, W Li, Z Wang, G An, N Yu, Z He, Y F Wang, Y Xiao, P Zhang, E Wang. A LysM receptor heteromer mediates perception of arbuscular mycorrhizal symbiotic signal in rice. Molecular Plant, 2019, 12(12): 1561–1576
https://doi.org/10.1016/j.molp.2019.10.015
pmid: 31706032
|
52 |
R Huang, Z Li, C Mao, H Zhang, Z Sun, H Li, C Huang, Y Feng, X Shen, M Bucher, Z Zhang, Y Lin, Y Cao, D Duanmu. Natural variation at OsCERK1 regulates arbuscular mycorrhizal symbiosis in rice. New Phytologist, 2020, 225(4): 1762–1776
https://doi.org/10.1111/nph.16158
pmid: 31484206
|
53 |
A Girardin, T M Wang, Y Ding, J Keller, L Buendia, M Gaston, C Ribeyre, V Gasciolli, M C Auriac, T Vernie, A Bendahmane, M K Ried, M Parniske, P Morel, M Vandenbussche, M Schorderet, D Reinhardt, P M Delaux, J J Bono, B. LefebvreLCO receptors involved in arbuscular mycorrhiza are functional for rhizobia perception in legumes. Current Biology, 2019, 29(24): 4249–4259. e5
|
54 |
Y Kobae, M Kawachi, K Saito, Y Kikuchi, T Ezawa, M Maeshima, S Hata, T Fujiwara. Up-regulation of genes involved in N-acetylglucosamine uptake and metabolism suggests a recycling mode of chitin in intraradical mycelium of arbuscular mycorrhizal fungi. Mycorrhiza, 2015, 25(5): 411–417
https://doi.org/10.1007/s00572-014-0623-2
pmid: 25564438
|
55 |
M Nadal, R Sawers, S Naseem, B Bassin, C Kulicke, A Sharman, G An, K An, K R Ahern, A Romag, T P Brutnell, C Gutjahr, N Geldner, C Roux, E Martinoia, J B Konopka, U Paszkowski. An N-acetylglucosamine transporter required for arbuscular mycorrhizal symbioses in rice and maize. Nature Plants, 2017, 3(6): 17073
https://doi.org/10.1038/nplants.2017.73
pmid: 28548655
|
56 |
L Kamel, N Tang, M Malbreil, H San Clemente, M Le Marquer, C Roux, N Frei Dit Frey. The comparison of expressed candidate secreted proteins from two arbuscular mycorrhizal fungi unravels common and specific molecular tools to invade different host plants. Frontiers of Plant Science, 2017, 8: 124
https://doi.org/10.3389/fpls.2017.00124
pmid: 28223991
|
57 |
M Le Marquer, H San Clemente, C Roux, B Savelli, N Frei Dit Frey. Identification of new signalling peptides through a genome-wide survey of 250 fungal secretomes. BMC Genomics, 2019, 20(1): 64
https://doi.org/10.1186/s12864-018-5414-2
pmid: 30658568
|
58 |
K Sędzielewska Toro, A Brachmann. The effector candidate repertoire of the arbuscular mycorrhizal fungus Rhizophagus clarus. BMC Genomics, 2016, 17(1): 101
https://doi.org/10.1186/s12864-016-2422-y
pmid: 26861502
|
59 |
T Zeng, R Holmer, J Hontelez, B Te Lintel-Hekkert, L Marufu, T de Zeeuw, F Wu, E Schijlen, T Bisseling, E Limpens. Host- and stage-dependent secretome of the arbuscular mycorrhizal fungus Rhizophagus irregularis. Plant Journal, 2018, 94(3): 411–425
https://doi.org/10.1111/tpj.13908
pmid: 29570877
|
60 |
S Kloppholz, H Kuhn, N Requena. A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Current Biology, 2011, 21(14): 1204–1209
https://doi.org/10.1016/j.cub.2011.06.044
pmid: 21757354
|
61 |
S Voß, R Betz, S Heidt, N Corradi, N Requena. RiCRN1, a crinkler effector from the arbuscular mycorrhizal fungus Rhizophagus irregularis, functions in arbuscule development. Frontiers in Microbiology, 2018, 9: 2068
https://doi.org/10.3389/fmicb.2018.02068
pmid: 30233541
|
62 |
S Tsuzuki, Y Handa, N Takeda, M Kawaguchi. Strigolactone-induced putative secreted protein 1 is required for the establishment of symbiosis by the arbuscular mycorrhizal fungus Rhizophagus irregularis. Molecular Plant-Microbe Interactions, 2016, 29(4): 277–286
https://doi.org/10.1094/MPMI-10-15-0234-R
pmid: 26757243
|
63 |
T Zeng, L Rodriguez-Moreno, A Mansurkhodzaev, P Wang, W van den Berg, V Gasciolli, S Cottaz, S Fort, B P H J Thomma, J J Bono, T Bisseling, E Limpens. A lysin motif effector subverts chitin-triggered immunity to facilitate arbuscular mycorrhizal symbiosis. New Phytologist, 2020, 225(1): 448–460
https://doi.org/10.1111/nph.16245
pmid: 31596956
|
64 |
A M Schmitz, T E Pawlowska, M J Harrison. A short LysM protein with high molecular diversity from an arbuscular mycorrhizal fungus, Rhizophagus irregularis. Mycoscience, 2019, 60(1): 63–70
https://doi.org/10.1016/j.myc.2018.09.002
|
65 |
S E Smith, F A Smith. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annual Review of Plant Biology, 2011, 62(1): 227–250
https://doi.org/10.1146/annurev-arplant-042110-103846
pmid: 21391813
|
66 |
C Santi, D Bogusz, C Franche. Biological nitrogen fixation in non-legume plants. Annals of Botany, 2013, 111(5): 743–767
https://doi.org/10.1093/aob/mct048
pmid: 23478942
|
67 |
B J Ferguson, C Mens, A H Hastwell, M Zhang, H Su, C H Jones, X Chu, P M Gresshoff. Legume nodulation: the host controls the party. Plant, Cell & Environment, 2019, 42(1): 41–51
https://doi.org/10.1111/pce.13348
pmid: 29808564
|
68 |
S E Smith, F A Smith, I Jakobsen. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiology, 2003, 133(1): 16–20
https://doi.org/10.1104/pp.103.024380
pmid: 12970469
|
69 |
S E Smith, F A Smith, I Jakobsen. Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytologist, 2004, 162(2): 511–524
https://doi.org/10.1111/j.1469-8137.2004.01039.x
|
70 |
L Nussaume, S Kanno, H Javot, E Marin, N Pochon, A Ayadi, T M Nakanishi, M C Thibaud. Phosphate import in plants: focus on the PHT1 transporters. Frontiers of Plant Science, 2011, 2: 83
https://doi.org/10.3389/fpls.2011.00083
pmid: 22645553
|
71 |
M Bucher. Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytologist, 2007, 173(1): 11–26
https://doi.org/10.1111/j.1469-8137.2006.01935.x
pmid: 17176390
|
72 |
V Loth-Pereda, E Orsini, P E Courty, F Lota, A Kohler, L Diss, D Blaudez, M Chalot, U Nehls, M Bucher, F Martin. Structure and expression profile of the phosphate Pht1 transporter gene family in mycorrhizal Populus trichocarpa. Plant Physiology, 2011, 156(4): 2141–2154
https://doi.org/10.1104/pp.111.180646
pmid: 21705655
|
73 |
F Walder, D Brulé, S Koegel, A Wiemken, T Boller, P E Courty. Plant phosphorus acquisition in a common mycorrhizal network: regulation of phosphate transporter genes of the Pht1 family in sorghum and flax. New Phytologist, 2015, 205(4): 1632–1645
https://doi.org/10.1111/nph.13292
pmid: 25615409
|
74 |
C Rausch, M Bucher. Molecular mechanisms of phosphate transport in plants. Planta, 2002, 216(1): 23–37
https://doi.org/10.1007/s00425-002-0921-3
pmid: 12430011
|
75 |
V Karandashov, M Bucher. Symbiotic phosphate transport in arbuscular mycorrhizas. Trends in Plant Science, 2005, 10(1): 22–29
https://doi.org/10.1016/j.tplants.2004.12.003
pmid: 15642520
|
76 |
H Javot, R V Penmetsa, N Terzaghi, D R Cook, M J Harrison. A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(5): 1720–1725
https://doi.org/10.1073/pnas.0608136104
pmid: 17242358
|
77 |
S Y Yang, M Grønlund, I Jakobsen, M S Grotemeyer, D Rentsch, A Miyao, H Hirochika, C S Kumar, V Sundaresan, N Salamin, S Catausan, N Mattes, S Heuer, U Paszkowski. Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the phosphate transporter1 gene family. Plant Cell, 2012, 24(10): 4236–4251
https://doi.org/10.1105/tpc.112.104901
pmid: 23073651
|
78 |
M Willmann, N Gerlach, B Buer, A Polatajko, R Nagy, E Koebke, J Jansa, R Flisch, M Bucher. Mycorrhizal phosphate uptake pathway in maize: vital for growth and cob development on nutrient poor agricultural and greenhouse soils. Frontiers of Plant Science, 2013, 4: 533
https://doi.org/10.3389/fpls.2013.00533
pmid: 24409191
|
79 |
L Xue, L Klinnawee, Y Zhou, G Saridis, V Vijayakumar, M Brands, P Dörmann, T Gigolashvili, F Turck, M Bucher. AP2 transcription factor CBX1 with a specific function in symbiotic exchange of nutrients in mycorrhizal Lotus japonicus. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(39): E9239–E9246
https://doi.org/10.1073/pnas.1812275115
pmid: 30209216
|
80 |
Y Jiang, Q Xie, W Wang, J Yang, X Zhang, N Yu, Y Zhou, E Wang. Medicago AP2-domain transcription factor WRI5a is a master regulator of lipid biosynthesis and transfer during mycorrhizal symbiosis. Molecular Plant, 2018, 11(11): 1344–1359
https://doi.org/10.1016/j.molp.2018.09.006
pmid: 30292683
|
81 |
F Krajinski, P E Courty, D Sieh, P Franken, H Zhang, M Bucher, N Gerlach, I Kryvoruchko, D Zoeller, M Udvardi, B Hause. The H+-ATPase HA1 of Medicago truncatula is essential for phosphate transport and plant growth during arbuscular mycorrhizal symbiosis. Plant Cell, 2014, 26(4): 1808–1817
https://doi.org/10.1105/tpc.113.120436
pmid: 24781114
|
82 |
E Wang, N Yu, S A Bano, C Liu, A J Miller, D Cousins, X Zhang, P Ratet, M Tadege, K S Mysore, J A Downie, J D Murray, G E D Oldroyd, M Schultze. A H+-ATPase that energizes nutrient uptake during mycorrhizal symbioses in rice and Medicago truncatula. Plant Cell, 2014, 26(4): 1818–1830
https://doi.org/10.1105/tpc.113.120527
pmid: 24781115
|
83 |
J Liu, J Chen, K Xie, Y Tian, A Yan, J Liu, Y Huang, S Wang, Y Zhu, A Chen, G Xu. A mycorrhiza-specific H+-ATPase is essential for arbuscule development and symbiotic phosphate and nitrogen uptake. Plant, Cell & Environment, 2020, 43(4): 1069–1083
https://doi.org/10.1111/pce.13714
pmid: 31899547
|
84 |
M Govindarajulu, P E Pfeffer, H Jin, J Abubaker, D D Douds, J W Allen, H Bücking, P J Lammers, Y Shachar-Hill. Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature, 2005, 435(7043): 819–823
https://doi.org/10.1038/nature03610
pmid: 15944705
|
85 |
D Wipf, F Krajinski, D van Tuinen, G Recorbet, P E Courty. Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. New Phytologist, 2019, 223(3): 1127–1142
https://doi.org/10.1111/nph.15775
pmid: 30843207
|
86 |
M Guether, R Balestrini, M Hannah, J He, M K Udvardi, P Bonfante. Genome-wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus. New Phytologist, 2009, 182(1): 200–212
https://doi.org/10.1111/j.1469-8137.2008.02725.x
pmid: 19192192
|
87 |
Y Handa, H Nishide, N Takeda, Y Suzuki, M Kawaguchi, K Saito. RNA-seq transcriptional profiling of an arbuscular mycorrhiza provides insights into regulated and coordinated gene expression in Lotus japonicus and Rhizophagus irregularis. Plant & Cell Physiology, 2015, 56(8): 1490–1511
https://doi.org/10.1093/pcp/pcv071
pmid: 26009592
|
88 |
Y Sugimura, K Saito. Comparative transcriptome analysis between Solanum lycopersicum L. and Lotus japonicus L. during arbuscular mycorrhizal development. Soil Science and Plant Nutrition, 2017, 63(2): 127–136
https://doi.org/10.1080/00380768.2017.1280378
|
89 |
J Liu, J Liu, J Liu, M Cui, Y Huang, Y Tian, A Chen, G Xu. The potassium transporter SlHAK10 is involved in mycorrhizal potassium uptake. Plant Physiology, 2019, 180(1): 465–479
https://doi.org/10.1104/pp.18.01533
pmid: 30760639
|
90 |
E Nouri, F Breuillin-Sessoms, U Feller, D Reinhardt. Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida. PLoS One, 2014, 9(6): e90841
https://doi.org/10.1371/journal.pone.0090841
pmid: 24608923
|
91 |
F Breuillin, J Schramm, M Hajirezaei, A Ahkami, P Favre, U Druege, B Hause, M Bucher, T Kretzschmar, E Bossolini, C Kuhlemeier, E Martinoia, P Franken, U Scholz, D Reinhardt. Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant Journal, 2010, 64(6): 1002–1017
https://doi.org/10.1111/j.1365-313X.2010.04385.x
pmid: 21143680
|
92 |
V Blanke, C Renker, M Wagner, K Füllner, M Held, A J Kuhn, F Buscot. Nitrogen supply affects arbuscular mycorrhizal colonization of Artemisia vulgaris in a phosphate-polluted field site. New Phytologist, 2005, 166(3): 981–992
https://doi.org/10.1111/j.1469-8137.2005.01374.x
pmid: 15869657
|
93 |
F Breuillin-Sessoms, D S Floss, S K Gomez, N Pumplin, Y Ding, V Levesque-Tremblay, R D Noar, D A Daniels, A Bravo, J B Eaglesham, V A Benedito, M K Udvardi, M J Harrison. Suppression of arbuscule degeneration in Medicago truncatula phosphate transporter4 mutants is dependent on the ammonium transporter 2 family protein AMT2;3. Plant Cell, 2015, 27(4): 1352–1366
https://doi.org/10.1105/tpc.114.131144
pmid: 25841038
|
94 |
J Dong, G Ma, L Sui, M Wei, V Satheesh, R Zhang, S Ge, J Li, T E Zhang, C Wittwer, H J Jessen, H Zhang, G Y An, D Y Chao, D Liu, M Lei. Inositol pyrophosphate InsP8 acts as an intracellular phosphate signal in Arabidopsis. Molecular Plant, 2019, 12(11): 1463–1473
https://doi.org/10.1016/j.molp.2019.08.002
pmid: 31419530
|
95 |
C H Ho, S H Lin, H C Hu, Y F Tsay. CHL1 functions as a nitrate sensor in plants. Cell, 2009, 138(6): 1184–1194
https://doi.org/10.1016/j.cell.2009.07.004
pmid: 19766570
|
96 |
K H Liu, C Y Huang, Y F Tsay. CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake. Plant Cell, 1999, 11(5): 865–874
https://doi.org/10.1105/tpc.11.5.865
pmid: 10330471
|
97 |
Y F Tsay, J I Schroeder, K A Feldmann, N M Crawford. The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell, 1993, 72(5): 705–713
https://doi.org/10.1016/0092-8674(93)90399-B
pmid: 8453665
|
98 |
K Garcia, D Chasman, S Roy, J M Ané. Physiological responses and gene co-expression network of mycorrhizal roots under K+ deprivation. Plant Physiology, 2017, 173(3): 1811–1823
https://doi.org/10.1104/pp.16.01959
pmid: 28159827
|
99 |
J F Briat, H Rouached, N Tissot, F Gaymard, C Dubos. Integration of P, S, Fe, and Zn nutrition signals in Arabidopsis thaliana: potential involvement of PHOSPHATE STARVATION RESPONSE 1 (PHR1). Frontiers of Plant Science, 2015, 6: 290
https://doi.org/10.3389/fpls.2015.00290
pmid: 25972885
|
100 |
X Xie, W Hu, X Fan, H Chen, M Tang. Interactions between phosphorus, zinc, and iron homeostasis in nonmycorrhizal and mycorrhizal plants. Frontiers of Plant Science, 2019, 10: 1172
https://doi.org/10.3389/fpls.2019.01172
pmid: 31616454
|
101 |
Y Hirakawa, S Sawa. Diverse function of plant peptide hormones in local signaling and development. Current Opinion in Plant Biology, 2019, 51: 81–87
https://doi.org/10.1016/j.pbi.2019.04.005
pmid: 31132657
|
102 |
T C de Bang, P K Lundquist, X Dai, C Boschiero, Z Zhuang, P Pant, I Torres-Jerez, S Roy, J Nogales, V Veerappan, R Dickstein, M K Udvardi, P X Zhao, W R Scheible. Genome-wide identification of Medicago peptides involved in macronutrient responses and nodulation. Plant Physiology, 2017, 175(4): 1669–1689
https://doi.org/10.1104/pp.17.01096
pmid: 29030416
|
103 |
V Mortier, G Den Herder, R Whitford, W Van de Velde, S Rombauts, K D’Haeseleer, M Holsters, S Goormachtig. CLE peptides control Medicago truncatula nodulation locally and systemically. Plant Physiology, 2010, 153(1): 222–237
https://doi.org/10.1104/pp.110.153718
pmid: 20348212
|
104 |
D Tsikou, Z Yan, D B Holt, N B Abel, D E Reid, L H Madsen, H Bhasin, M Sexauer, J Stougaard, K Markmann. Systemic control of legume susceptibility to rhizobial infection by a mobile microRNA. Science, 2018, 362(6411): 233–236
https://doi.org/10.1126/science.aat6907
pmid: 30166437
|
105 |
T Sasaki, T Suzaki, T Soyano, M Kojima, H Sakakibara, M Kawaguchi. Shoot-derived cytokinins systemically regulate root nodulation. Nature Communications, 2014, 5(1): 4983
https://doi.org/10.1038/ncomms5983
pmid: 25236855
|
106 |
D Morandi, M Sagan, E Prado-Vivant, G Duc. Influence of genes determining supernodulation on root colonization by the mycorrhizal fungus Glomus mosseae in Pisum sativum and Medicago truncatula mutants. Mycorrhiza, 2000, 10(1): 37–42
https://doi.org/10.1007/s005720050285
|
107 |
M Z Solaiman, K Senoo, M Kawaguchi, H Imaizumi-Anraku, S Akao, A Tanaka, H Obata. Characterization of mycorrhizas fglomus sp. on roots of hypernodulating mutants of Lotus japonicus. Journal of Plant Research, 2000, 113(4): 443–448
https://doi.org/10.1007/PL00013953
|
108 |
K Sakamoto, Y Nohara. Soybean (Glycine max [L.] Merr.) shoots systemically control arbuscule formation in mycorrhizal symbiosis. Soil Science and Plant Nutrition, 2009, 55(2): 252–257
https://doi.org/10.1111/j.1747-0765.2009.00358.x
|
109 |
L M Müller, K Flokova, E Schnabel, X Sun, Z Fei, J Frugoli, H J Bouwmeester, M J Harrison. A CLE-SUNN module regulates strigolactone content and fungal colonization in arbuscular mycorrhiza. Nature Plants, 2019, 5(9): 933–939
https://doi.org/10.1038/s41477-019-0501-1
pmid: 31477892
|
110 |
M Le Marquer, G Bécard, N Frei Dit Frey. Arbuscular mycorrhizal fungi possess a CLAVATA3/embryo surrounding region-related gene that positively regulates symbiosis. New Phytologist, 2019, 222(2): 1030–1042
https://doi.org/10.1111/nph.15643
pmid: 30554405
|
111 |
J A Vorholt, C Vogel, C I Carlström, D B Müller. Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host & Microbe, 2017, 22(2): 142–155
https://doi.org/10.1016/j.chom.2017.07.004
pmid: 28799900
|
112 |
T Thiergart, R Zgadzaj, Z Bozsóki, R Garrido-Oter, S Radutoiu, P Schulze-Lefert. Lotus japonicus symbiosis genes impact microbial interactions between symbionts and multikingdom commensal communities. mBio, 2019, 10(5): e01833-19
https://doi.org/10.1128/mBio.01833-19
pmid: 31594815
|
113 |
L Xue, J Almario, I Fabiańska, G Saridis, M Bucher. Dysfunction in the arbuscular mycorrhizal symbiosis has consistent but small effects on the establishment of the fungal microbiota in Lotus japonicus. New Phytologist, 2019, 224(1): 409–420
https://doi.org/10.1111/nph.15958
pmid: 31125425
|
114 |
E Wang, S Schornack, J F Marsh, E Gobbato, B Schwessinger, P Eastmond, M Schultze, S Kamoun, G E D Oldroyd. A common signaling process that promotes mycorrhizal and oomycete colonization of plants. Current Biology, 2012, 22(23): 2242–2246
https://doi.org/10.1016/j.cub.2012.09.043
pmid: 23122843
|
115 |
A Banhara, Y Ding, R Kühner, A Zuccaro, M Parniske. Colonization of root cells and plant growth promotion by Piriformospora indica occurs independently of plant common symbiosis genes. Frontiers of Plant Science, 2015, 6: 667
https://doi.org/10.3389/fpls.2015.00667
pmid: 26441999
|
116 |
R Huisman, K Bouwmeester, M Brattinga, F Govers, T Bisseling, E Limpens. Haustorium formation in Medicago truncatula roots infected by Phytophthora palmivora does not involve the common endosymbiotic program shared by arbuscular mycorrhizal fungi and rhizobia. Molecular Plant-Microbe Interactions, 2015, 28(12): 1271–1280
https://doi.org/10.1094/MPMI-06-15-0130-R
pmid: 26313411
|
117 |
T Rey, A Chatterjee, M Buttay, J Toulotte, S Schornack. Medicago truncatula symbiosis mutants affected in the interaction with a biotrophic root pathogen. New Phytologist, 2015, 206(2): 497–500
https://doi.org/10.1111/nph.13233
pmid: 25495186
|
118 |
X L Wang, M X Wang, X G Xie, S Y Guo, Y Zhou, X B Zhang, N Yu, E T Wang. An amplification-selection model for quantified rhizosphere microbiota assembly. Science Bulletin, 2020, 65(12): 983–986
https://doi.org/10.1016/j.scib.2020.03.005
|
119 |
I Fabiańska, N Gerlach, J Almario, M Bucher. Plant-mediated effects of soil phosphorus on the root-associated fungal microbiota in Arabidopsis thaliana. New Phytologist, 2019, 221(4): 2123–2137
https://doi.org/10.1111/nph.15538
pmid: 30317641
|
120 |
J A López-Ráez, K Shirasu, E Foo. Strigolactones in plant interactions with beneficial and detrimental organisms: the Yin and Yang. Trends in Plant Science, 2017, 22(6): 527–537
https://doi.org/10.1016/j.tplants.2017.03.011
pmid: 28400173
|
121 |
I Fabiańska, E Sosa-Lopez, M Bucher. The role of nutrient balance in shaping plant root-fungal interactions: facts and speculation. Current Opinion in Microbiology, 2019, 49: 90–96
https://doi.org/10.1016/j.mib.2019.10.004
pmid: 31733616
|
122 |
G Castrillo, P J P L Teixeira, S H Paredes, T F Law, L de Lorenzo, M E Feltcher, O M Finkel, N W Breakfield, P Mieczkowski, C D Jones, J Paz-Ares, J L Dangl. Root microbiota drive direct integration of phosphate stress and immunity. Nature, 2017, 543(7646): 513–518
https://doi.org/10.1038/nature21417
pmid: 28297714
|
123 |
J Almario, G Jeena, J Wunder, G Langen, A Zuccaro, G Coupland, M Bucher. Root-associated fungal microbiota of nonmycorrhizal Arabis alpina and its contribution to plant phosphorus nutrition. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(44): E9403–E9412
https://doi.org/10.1073/pnas.1710455114
pmid: 28973917
|
124 |
K Hiruma, N Gerlach, S Sacristán, R T Nakano, S Hacquard, B Kracher, U Neumann, D Ramírez, M Bucher, R J O’Connell, P Schulze-Lefert. Root endophyte Colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent. Cell, 2016, 165(2): 464–474
https://doi.org/10.1016/j.cell.2016.02.028
pmid: 26997485
|
125 |
M Bakshi, K Vahabi, S Bhattacharya, I Sherameti, A Varma, K W Yeh, I Baldwin, A K Johri, R Oelmüller. WRKY6 restricts Piriformospora indica-stimulated and phosphate-induced root development in Arabidopsis. BMC Plant Biology, 2015, 15(1): 305
https://doi.org/10.1186/s12870-015-0673-4
pmid: 26718529
|
126 |
P Frey-Klett, J Garbaye, M Tarkka. The mycorrhiza helper bacteria revisited. New Phytologist, 2007, 176(1): 22–36
https://doi.org/10.1111/j.1469-8137.2007.02191.x
pmid: 17803639
|
127 |
A Salvioli, S Ghignone, M Novero, L Navazio, F Venice, P Bagnaresi, P Bonfante. Symbiosis with an endobacterium increases the fitness of a mycorrhizal fungus, raising its bioenergetic potential. ISME Journal, 2016, 10(1): 130–144
https://doi.org/10.1038/ismej.2015.91
pmid: 26046255
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|