Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2016, Vol. 3 Issue (3) : 222-230    https://doi.org/10.15302/J-FASE-2016106
REVIEW
Autophagy and the nutritional signaling pathway
Long HE1,2,Shabnam ESLAMFAM3,Xi MA1,2(),Defa LI1()
1. State Key Lab of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China
2. Center for Autophagy Research, Department of Internal Medicine and Biochemistry, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9113, USA
3. College of Dental Medicine, Midwestern University, Downers Grove, IL 60515, USA
 Download: PDF(291 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

During their growth and development, animals adapt to tremendous changes in order to survive. These include responses to both environmental and physiological changes and autophagy is one of most important adaptive and regulatory mechanisms. Autophagy is defined as an autolytic process to clear damaged cellular organelles and recycle the nutrients via lysosomic degradation. The process of autophagy responds to special conditions such as nutrient withdrawal. Once autophagy is induced, phagophores form and then elongate and curve to form autophagosomes. Autophagosomes then engulf cargo, fuse with endosomes, and finally fuse with lysosomes for maturation. During the initiation process, the ATG1/ULK1 (unc-51-like kinase 1) and VPS34 (which encodes a class III phosphatidylinositol (PtdIns) 3-kinase) complexes are critical in recruitment and assembly of other complexes required for autophagy. The process of autophagy is regulated by autophagy related genes (ATGs). Amino acid and energy starvation mediate autophagy by activating mTORC1 (mammalian target of rapamycin) and AMP-activated protein kinase (AMPK). AMPK is the energy status sensor, the core nutrient signaling component and the metabolic kinase of cells. This review mainly focuses on the mechanism of autophagy regulated by nutrient signaling especially for the two important complexes, ULK1 and VPS34.

Keywords Autophagy      ULK1 complex      VPS34 complex      AMPK      mTOR      nutrient signaling     
Corresponding Author(s): Xi MA,Defa LI   
Just Accepted Date: 08 July 2016   Online First Date: 26 July 2016    Issue Date: 21 September 2016
 Cite this article:   
Long HE,Shabnam ESLAMFAM,Xi MA, et al. Autophagy and the nutritional signaling pathway[J]. Front. Agr. Sci. Eng. , 2016, 3(3): 222-230.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2016106
https://academic.hep.com.cn/fase/EN/Y2016/V3/I3/222
Fig.1  Molecular mechanism of autophagosome initiation and maturation
1 Xie Z, Klionsky D J. Autophagosome formation: core machinery and adaptations. Nature Cell Biology, 2007, 9(10): 1102–1109
https://doi.org/10.1038/ncb1007-1102
2 Mizushima N, Levine B, Cuervo A M, Klionsky D J. Autophagy fights disease through cellular self-digestion. Nature, 2008, 451(7182): 1069–1075
https://doi.org/10.1038/nature06639
3 Renna M, Bento C F, Ghislat G, Puri C, Ashkenazi A, Vicinanza M, Menzies F M, Rubinsztein D C. Mammalian autophagy-how does it work? Annual Review of Biochemistry, 2016 (first published online)
4 Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. Journal of Cell Biology, 2000, 150(6): 1507–1513
https://doi.org/10.1083/jcb.150.6.1507
5 Kim J, Kim Y C, Fang C, Russell R C, Kim J H, Fan W, Liu R, Zhong Q, Guan K L. Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell, 2013, 152(1–2): 290–303
https://doi.org/10.1016/j.cell.2012.12.016
6 Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N. The role of autophagy during the early neonatal starvation period. Nature, 2004, 432(7020): 1032–1036
https://doi.org/10.1038/nature03029
7 Zhang S, Li X, Li L, Yan X. Autophagy up-regulation by early weaning in the liver, spleen and skeletal muscle of piglets. British Journal of Nutrition, 2011, 106(2): 213–217
https://doi.org/10.1017/S0007114511001000
8 Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N. The role of autophagy during the early neonatal starvation period. Nature, 2004, 432(7020): 1032–1036
https://doi.org/10.1038/nature03029
9 Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, Kominami E, Tanaka K, Chiba T. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. Journal of Cell Biology, 2005, 169(3): 425–434
https://doi.org/10.1083/jcb.200412022
10 Rabinowitz J D, White E. Autophagy and metabolism. Science, 2010, 330(6009): 1344–1348
https://doi.org/10.1126/science.1193497
11 Deretic V, Levine B. Autophagy, immunity, and microbial adaptations. Cell Host & Microbe, 2009, 5(6): 527–549
https://doi.org/10.1016/j.chom.2009.05.016
12 Levine B, Mizushima N, Virgin H W. Autophagy in immunity and inflammation. Nature, 2011, 469(7330): 323–335
https://doi.org/10.1038/nature09782
13 Jia K, Thomas C, Akbar M, Sun Q, Adams-Huet B, Gilpin C, Levine B. Autophagy genes protect against Salmonella typhimurium infection and mediate insulin signaling-regulated pathogen resistance. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(34): 14564–14569
https://doi.org/10.1073/pnas.0813319106
14 Kuballa P, Huett A, Rioux J D, Daly M J, Xavier R J. Impaired autophagy of an intracellular pathogen induced by a Crohn’s disease associated ATG16L1 variant. PLoS ONE, 2008, 3(10): e3391
https://doi.org/10.1371/journal.pone.0003391
15 Wild P, Farhan H, McEwan D G, Wagner S, Rogov V V, Brady N R, Richter B, Korac J, Waidmann O, Choudhary C, Dötsch V, Bumann D, Dikic I. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science, 2011, 333(6039): 228–233
https://doi.org/10.1126/science.1205405
16 Benjamin J L, Sumpter R Jr, Levine B, Hooper L V. Intestinal epithelial autophagy is essential for host defense against invasive bacteria. Cell Host & Microbe, 2013, 13(6): 723–734
https://doi.org/10.1016/j.chom.2013.05.004
17 Ravikumar B, Moreau K, Jahreiss L, Puri C, Rubinsztein D C. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nature Cell Biology, 2010, 12(8): 747–757
https://doi.org/10.1038/ncb2078
18 Yamamoto A, Masaki R, Tashiro Y. Characterization of the isolation membranes and the limiting membranes of autophagosomes in rat hepatocytes by lectin cytochemistry. Journal of Histochemistry and Cytochemistry, 1990, 38(4): 573–580
https://doi.org/10.1177/38.4.2319125
19 Suzuki K, Kirisako T, Kamada Y, Mizushima N, Noda T, Ohsumi Y. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO Journal, 2001, 20(21): 5971–5981
https://doi.org/10.1093/emboj/20.21.5971
20 Itakura E, Mizushima N. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy, 2010, 6(6): 764–776
https://doi.org/10.4161/auto.6.6.12709
21 Simonsen A, Stenmark H. Self-eating from an ER-associated cup. Journal of Cell Biology, 2008, 182(4): 621–622
https://doi.org/10.1083/jcb.200807061
22 Noda T, Kim J, Huang W, Baba M, Tokunaga C, Ohsumi Y, Klionsky D J. Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. Journal of Cell Biology, 2000, 148(3): 465–480
https://doi.org/10.1083/jcb.148.3.465
23 Reggiori F, Shintani T, Chong H, Nair U, Klionsky D J. Atg9 cycles between mitochondria and the pre-autophagosomal structure in yeasts. Autophagy, 2005, 1(2): 101–109
https://doi.org/10.4161/auto.1.2.1840
24 Guan J, Stromhaug P E, George M D, Habibzadegah-Tari P, Bevan A, Dunn W A Jr, Klionsky D J. Cvt18/Gsa12 is required for cytoplasm-to-vacuole transport, pexophagy, and autophagy in Saccharomyces cerevisiae and Pichia pastoris. Molecular Biology of the Cell, 2001, 12(12): 3821–3838
https://doi.org/10.1091/mbc.12.12.3821
25 Matsuura A, Tsukada M, Wada Y, Ohsumi Y. Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene, 1997, 192(2): 245–250
https://doi.org/10.1016/S0378-1119(97)00084-X
26 Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T, Ohsumi M, Takao T, Noda T, Ohsumi Y. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. Journal of Cell Biology, 2000, 151(2): 263–276
https://doi.org/10.1083/jcb.151.2.263
27 Mizushima N, Kuma A, Kobayashi Y, Yamamoto A, Matsubae M, Takao T, Natsume T, Ohsumi Y, Yoshimori T. Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. Journal of Cell Science, 2003, 116(9): 1679–1688
https://doi.org/10.1242/jcs.00381
28 Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO Journal, 2000, 19(21): 5720–5728
https://doi.org/10.1093/emboj/19.21.5720
29 Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, Tokuhisa T, Ohsumi Y, Yoshimori T. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. Journal of Cell Biology, 2001, 152(4): 657–668
https://doi.org/10.1083/jcb.152.4.657
30 Kim J, Kamada Y, Stromhaug P E, Guan J, Hefner-Gravink A, Baba M, Scott S V, Ohsumi Y, Dunn W A Jr, Klionsky D J. Cvt9/Gsa9 functions in sequestering selective cytosolic cargo destined for the vacuole. Journal of Cell Biology, 2001, 153(2): 381–396
https://doi.org/10.1083/jcb.153.2.381
31 Takáts S, Nagy P, Varga Á, Pircs K, Kárpáti M, Varga K, Kovács A L, Hegedűs K, Juhász G. Autophagosomal Syntaxin17-dependent lysosomal degradation maintains neuronal function in Drosophila. Journal of Cell Biology, 2013, 201(4): 531–539
https://doi.org/10.1083/jcb.201211160
32 Atlashkin V, Kreykenbohm V, Eskelinen E L, Wenzel D, Fayyazi A, Fischer von Mollard G. Deletion of the SNARE vti1b in mice results in the loss of a single SNARE partner, syntaxin 8. Molecular and Cellular Biology, 2003, 23(15): 5198–5207
https://doi.org/10.1128/MCB.23.15.5198-5207.2003
33 Fader C M, Sánchez D G, Mestre M B, Colombo M I. TI-VAMP/VAMP7 and VAMP3/cellubrevin: two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways. Biochimica et Biophysica Acta, 2009, 1793(12): 1901–1916
https://doi.org/10.1016/j.bbamcr.2009.09.011
34 Itakura E, Kishi-Itakura C, Mizushima N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell, 2012, 151(6): 1256–1269
https://doi.org/10.1016/j.cell.2012.11.001
35 Diao J, Liu R, Rong Y, Zhao M, Zhang J, Lai Y, Zhou Q, Wilz L M, Li J, Vivona S, Pfuetzner R A, Brunger A T, Zhong Q. ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature, 2015, 520(7548): 563–566
https://doi.org/10.1038/nature14147
36 Razi M, Chan E Y, Tooze S A. Early endosomes and endosomal coatomer are required for autophagy. Journal of Cell Biology, 2009, 185(2): 305–321
https://doi.org/10.1083/jcb.200810098
37 Lee J A, Beigneux A, Ahmad S T, Young S G, Gao F B. ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration. Current Biology, 2007, 17(18): 1561–1567
https://doi.org/10.1016/j.cub.2007.07.029
38 Nickerson D P, Brett C L, Merz A J. Vps-C complexes: gatekeepers of endolysosomal traffic. Current Opinion in Cell Biology, 2009, 21(4): 543–551
https://doi.org/10.1016/j.ceb.2009.05.007
39 Eskelinen E L, Illert A L, Tanaka Y, Schwarzmann G, Blanz J, von Figura K, Saftig P. Role of LAMP-2 in lysosome biogenesis and autophagy. Molecular Biology of the Cell, 2002, 13(9): 3355– 3368
https://doi.org/10.1091/mbc.E02-02-0114
40 Hyttinen J M T, Niittykoski M, Salminen A, Kaarniranta K. Maturation of autophagosomes and endosomes: a key role for Rab7. Biochimica et Biophysica Acta, 2013, 1833(3): 503–510
41 Liang C, Lee J S, Inn K S, Gack M U, Li Q, Roberts E A, Vergne I, Deretic V, Feng P, Akawa C, Jung J U. Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nature Cell Biology, 2008, 10(7): 776–787
https://doi.org/10.1038/ncb1740
42 Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N, Maejima I, Shirahama-Noda K, Ichimura T, Isobe T, Akira S, Noda T, Yoshimori T. Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nature Cell Biology, 2009, 11(4): 385–396
https://doi.org/10.1038/ncb1846
43 Chen D, Fan W, Lu Y, Ding X, Chen S, Zhong Q. A mammalian autophagosome maturation mechanism mediated by TECPR1 and the Atg12-Atg5 conjugate. Molecular Cell, 2012, 45(5): 629–641
https://doi.org/10.1016/j.molcel.2011.12.036
44 Jewell J L, Russell R C, Guan K L. Amino acid signalling upstream of mTOR. Nature Reviews Molecular Cell Biology, 2013, 14(3): 133–139
https://doi.org/10.1038/nrm3522
45 Avruch J, Long X, Ortiz-Vega S, Rapley J, Papageorgiou A, Dai N. Amino acid regulation of TOR complex 1. American Journal of Physiology: Endocrinology and Metabolism, 2009, 296(4): 592–602
https://doi.org/10.1152/ajpendo.90645.2008
46 Oshiro N, Takahashi R, Yoshino K I, Tanimura K, Nakashima A, Eguchi S, Miyamoto T, Hara K, Takehana K, Avruch J, Kikkawa U, Yonezawa K. The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1. Journal of Biological Chemistry, 2007, 282(28): 20329–20339
https://doi.org/10.1074/jbc.M702636200
47 Laplante M, Sabatini D M. mTOR signaling in growth control and disease. Cell, 2012, 149(2): 274–293
https://doi.org/10.1016/j.cell.2012.03.017
48 Hardie D G. AMP-activated protein kinase—an energy sensor that regulates all aspects of cell function. Genes & Development, 2011, 25(18): 1895–1908
https://doi.org/10.1101/gad.17420111
49 Habets D D, Coumans W A, El Hasnaoui M, Zarrinpashneh E, Bertrand L, Viollet B, Kiens B, Jensen T E, Richter E A, Bonen A, Glatz J F. Crucial role for LKB1 to AMPKa2 axis in the regulation of CD36-mediated long-chain fatty acid uptake into cardiomyocytes. Biochimica et Biophysica Acta, 2009, 1791(3): 212–219
https://doi.org/10.1016/j.bbalip.2008.12.009
50 Winder W W, Holmes B F, Rubink D S, Jensen E B, Chen M, Holloszy J O. Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle. Journal of Applied Physiology, 2000, 88(6): 2219–2226
51 Cantó C, Gerhart-Hines Z, Feige J N, Lagouge M, Noriega L, Milne J C, Elliott P J, Puigserver P, Auwerx J. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature, 2009, 458(7241): 1056–1060
https://doi.org/10.1038/nature07813
52 Ganley I G, Lam D H, Wang J, Ding X, Chen S, Jiang X. ULK1–ATG13–FIP200 complex mediates mTOR signaling and is essential for autophagy. Journal of Biological Chemistry, 2009, 284(18): 12297–12305
https://doi.org/10.1074/jbc.M900573200
53 Papinski D, Kraft C. Regulation of autophagy by signaling through the Atg1/ULK1 complex. Journal of Molecular Biology, 2016, 428(9): 1725–1741
https://doi.org/10.1016/j.jmb.2016.03.030
54 Ktistakis N T, Tooze S A. Digesting the expanding mechanisms of autophagy. Trends in Cell Biology, 2016, (first published online)
https://doi.org/10.1016/j.tcb.2016.03.006
55 Reggiori F, Tucker K A, Stromhaug P E, Klionsky D J. The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Developmental Cell, 2004, 6(1): 79–90
https://doi.org/10.1016/S1534-5807(03)00402-7
56 Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. Journal of Cell Biology, 2000, 150(6): 1507–1513
https://doi.org/10.1083/jcb.150.6.1507
57 Chan E Y, Longatti A, McKnight N C, Tooze S A. Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism. Molecular and Cellular Biology, 2009, 29(1): 157–171
https://doi.org/10.1128/MCB.01082-08
58 Noda N N, Mizushima N. Atg101: not just an accessory subunit in the autophagy-initiation complex. Cell Structure and Function, 2016, 41(1): 13–20
https://doi.org/10.1247/csf.15013
59 Mercer C A, Kaliappan A, Dennis P B. A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy, 2009, 5(5): 649–662
https://doi.org/10.4161/auto.5.5.8249
60 Hara T, Takamura A, Kishi C, Iemura S I, Natsume T, Guan J L, Mizushima N. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. Journal of Cell Biology, 2008, 181(3): 497–510
https://doi.org/10.1083/jcb.200712064
61 Mizushima N. The role of the Atg1/ULK1 complex in autophagy regulation. Current Opinion in Cell Biology, 2010, 22(2): 132–139
https://doi.org/10.1016/j.ceb.2009.12.004
62 Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S I, Natsume T, Takehana K, Yamada N, Guan J L, Oshiro N, Mizushima N. Nutrient-dependent mTORC1 association with the ULK1-Atg13–FIP200 complex required for autophagy. Molecular Biology of the Cell, 2009, 20(7): 1981–1991
https://doi.org/10.1091/mbc.E08-12-1248
63 Jung C H, Ro S H, Cao J, Otto N M, Kim D H. mTOR regulation of autophagy. FEBS Letters, 2010, 584(7): 1287–1295
https://doi.org/10.1016/j.febslet.2010.01.017
64 Shintani T, Klionsky D J. Autophagy in health and disease: a double-edged sword. Science, 2004, 306(5698): 990–995
https://doi.org/10.1126/science.1099993
65 Kim J, Kundu M, Viollet B, Guan K L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature Cell Biology, 2011, 13(2): 132–141
https://doi.org/10.1038/ncb2152
66 Hardie D G. AMP-activated protein kinase-an energy sensor that regulates all aspects of cell function. Genes & Development, 2011, 25(18): 1895–1908
https://doi.org/10.1101/gad.17420111
67 Nazio F, Strappazzon F, Antonioli M, Bielli P, Cianfanelli V, Bordi M, Gretzmeier C, Dengjel J, Piacentini M, Fimia G M, Cecconi F. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nature Cell Biology, 2013, 15(4): 406–416
https://doi.org/10.1038/ncb2708
68 Liang J, Shao S H, Xu Z X, Hennessy B, Ding Z, Larrea M, Kondo S, Dumont D J, Gutterman J U, Walker C L, Slingerland J M, Mills G B. The energy sensing LKB1-AMPK pathway regulates p27kip1 phosphorylation mediating the decision to enter autophagy or apoptosis. Nature Cell Biology, 2007, 9(2): 218–224
https://doi.org/10.1038/ncb1537
69 Löffler A S, Alers S, Dieterle A M, Keppeler H, Franz-Wachtel M, Kundu M, Campbell D G, Wesselborg S, Alessi D R, Stork B. Ulk1-mediated phosphorylation of AMPK constitutes a negative regulatory feedback loop. Autophagy, 2011, 7(7): 696–706
https://doi.org/10.4161/auto.7.7.15451
70 Obara K, Ohsumi Y. PtdIns 3-kinase orchestrates autophagosome formation in yeast. Journal of Lipids, 2011, 2011: 498768
https://doi.org/10.1155/2011/498768
71 Kametaka S, Okano T, Ohsumi M, Ohsumi Y. Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast, Saccharomyces cerevisiae. Journal of Biological Chemistry, 1998, 273(35): 22284–22291
https://doi.org/10.1074/jbc.273.35.22284
72 Obara K, Sekito T, Ohsumi Y. Assortment of phosphatidylinositol 3-kinase complexes-Atg14p directs association of complex I to the pre-autophagosomal structure in Saccharomyces cerevisiae. Molecular Biology of the Cell, 2006, 17(4): 1527–1539
https://doi.org/10.1091/mbc.E05-09-0841
73 Chen J, Li Y, Tian Y, Huang C, Li D, Zhong Q, Ma X. Interaction between microbes and host intestinal health: modulation by dietary nutrients and gut-brain-endocrine-immune axis. Current Protein & Peptide Science, 2015, 16(7): 572–603
https://doi.org/10.1016/j.cell.2012.12.016
74 Fan P, Li L, Rezaei A, Eslamfam S, Che D, Ma X. Metabolites of dietary protein and peptides by intestinal microbes and their impacts on gut. Current Protein & Peptide Science, 2015, 16(7): 646–654
https://doi.org/10.2174/1389203716666150630133657
75 Ropolo A, Grasso D, Pardo R, Sacchetti M L, Archange C, Re A L, Seux M, Nowak J, Gonzalez C D, Iovanna J L, Vaccaro M I. The pancreatitis-induced vacuole membrane protein 1 triggers autophagy in mammalian cells. Journal of Biological Chemistry, 2007, 282(51): 37124–37133
https://doi.org/10.1074/jbc.M706956200
76 Fimia G M, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S, Nardacci R, Corazzari M, Fuoco C, Ucar A, Schwartz P, Gruss P. Ambra1 regulates autophagy and development of the nervous system. Nature, 2007, 447(7148): 1121–1125
77 Takahashi Y, Coppola D, Matsushita N, Cualing H D, Sun M, Sato Y, Liang C, Jung J U, Cheng J Q, Mul J J, Pledger W J, Wang H G. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nature Cell Biology, 2007, 9(10): 1142–1151
https://doi.org/10.1038/ncb1634
78 Zhong Y, Wang Q, Li X, Yan Y, Backer J M, Chait B T, Heintz N, Yue Z. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nature Cell Biology, 2009, 11(4): 468–476
https://doi.org/10.1038/ncb1854
79 Yuan H, Russell R C, Guan K L. Regulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagy. Autophagy, 2013, 9(12): 1983–1995
https://doi.org/10.4161/auto.26058
80 Tang Y, Tan B, Xiong X, Li F, Ren W, Kong X, Qiu W, Hardwidge P R, Yin Y. Methionine deficiency reduces autophagy and accelerates death in intestinal epithelial cells infected with enterotoxigenic Escherichia coli. Amino Acids, 2015, 47(10): 2199–2204
https://doi.org/10.1007/s00726-014-1781-4
81 Chen R, Wang Q, Song S, Liu F, He B, Gao X. Protective role of autophagy in methionine–choline deficient diet-induced advanced nonalcoholic steatohepatitis in mice. European Journal of Pharmacology, 2016, 5(770): 126–133
https://doi.org/10.1016/j.ejphar.2015.11.012
82 Wang S, Tsun Z Y, Wolfson R L, Shen K, Wyant G A, Plovanich M E, Yuan E D, Jones T D, Chantranupong L, Comb W, Wang T, Bar-Peled L, Zoncu R, Straub C, Kim C, Park J, Sabatini B L, Sabatini D M. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science, 2015, 347(6218): 188–194
https://doi.org/10.1126/science.1257132
83 Munson M J, Allen G F, Toth R, Campbell D G, Lucocq J M, Ganley I G. mTOR activates the VPS34-UVRAG complex to regulate autolysosomal tubulation and cell survival. EMBO Journal, 2015, 34(17): 2272–2290
https://doi.org/10.15252/embj.201590992
84 Ma X, Chen J, Tian Y. Pregnane X receptor as the “sensor and effector” in regulating epigenome. Journal of Cellular Physiology, 2015, 230(4): 752–757
https://doi.org/10.1016/j.cell.2012.12.016
[1] Yu WANG,Jie ZHOU,Jingquan YU. The critical role of autophagy in plant responses to abiotic stresses[J]. Front. Agr. Sci. Eng. , 2017, 4(1): 28-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed