| 
					
						|  |  
    					|  |  
    					| Autophagy and the nutritional signaling pathway |  
						| Long HE1,2,Shabnam ESLAMFAM3,Xi MA1,2(  ),Defa LI1(  ) |  
						| 1. State Key Lab of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China 2. Center for Autophagy Research, Department of Internal Medicine and Biochemistry, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9113, USA
 3. College of Dental Medicine, Midwestern University, Downers Grove, IL 60515, USA
 |  
						|  |  
					
						| 
								
									|  
          
          
            
              
				
								                
													
													    |  |  
														| 
													
													    | Abstract During their growth and development, animals adapt to tremendous changes in order to survive. These include responses to both environmental and physiological changes and autophagy is one of most important adaptive and regulatory mechanisms. Autophagy is defined as an autolytic process to clear damaged cellular organelles and recycle the nutrients via lysosomic degradation. The process of autophagy responds to special conditions such as nutrient withdrawal. Once autophagy is induced, phagophores form and then elongate and curve to form autophagosomes. Autophagosomes then engulf cargo, fuse with endosomes, and finally fuse with lysosomes for maturation. During the initiation process, the ATG1/ULK1 (unc-51-like kinase 1) and VPS34 (which encodes a class III phosphatidylinositol (PtdIns) 3-kinase) complexes are critical in recruitment and assembly of other complexes required for autophagy. The process of autophagy is regulated by autophagy related genes (ATGs). Amino acid and energy starvation mediate autophagy by activating mTORC1 (mammalian target of rapamycin) and AMP-activated protein kinase (AMPK). AMPK is the energy status sensor, the core nutrient signaling component and the metabolic kinase of cells. This review mainly focuses on the mechanism of autophagy regulated by nutrient signaling especially for the two important complexes, ULK1 and VPS34. |  
															| Keywords 
																																																				Autophagy  
																		  																																				ULK1 complex  
																		  																																				VPS34 complex  
																		  																																				AMPK  
																		  																																				mTOR  
																		  																																				nutrient signaling |  
															| Corresponding Author(s):
																Xi MA,Defa LI |  
															| Just Accepted Date: 08 July 2016  
																																														Online First Date: 26 July 2016   
																																														Issue Date: 21 September 2016 |  |  
								            
								                
																																												
															| 1 | Xie Z, Klionsky D J. Autophagosome formation: core machinery and adaptations. Nature Cell Biology, 2007, 9(10): 1102–1109 https://doi.org/10.1038/ncb1007-1102
 |  
															| 2 | Mizushima N, Levine B, Cuervo A M, Klionsky D J. Autophagy fights disease through cellular self-digestion. Nature, 2008, 451(7182): 1069–1075 https://doi.org/10.1038/nature06639
 |  
															| 3 | Renna M, Bento C F, Ghislat G, Puri C, Ashkenazi A, Vicinanza M, Menzies F M, Rubinsztein D C. Mammalian autophagy-how does it work? Annual Review of Biochemistry, 2016 (first published online) |  
															| 4 | Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. Journal of Cell Biology, 2000, 150(6): 1507–1513 https://doi.org/10.1083/jcb.150.6.1507
 |  
															| 5 | Kim J, Kim Y C, Fang C, Russell R C, Kim J H, Fan W, Liu R, Zhong Q, Guan K L. Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell, 2013, 152(1–2): 290–303 https://doi.org/10.1016/j.cell.2012.12.016
 |  
															| 6 | Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N. The role of autophagy during the early neonatal starvation period. Nature, 2004, 432(7020): 1032–1036 https://doi.org/10.1038/nature03029
 |  
															| 7 | Zhang S, Li X, Li L, Yan X. Autophagy up-regulation by early weaning in the liver, spleen and skeletal muscle of piglets. British Journal of Nutrition, 2011, 106(2): 213–217 https://doi.org/10.1017/S0007114511001000
 |  
															| 8 | Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N. The role of autophagy during the early neonatal starvation period. Nature, 2004, 432(7020): 1032–1036 https://doi.org/10.1038/nature03029
 |  
															| 9 | Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, Kominami E, Tanaka K, Chiba T. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. Journal of Cell Biology, 2005, 169(3): 425–434 https://doi.org/10.1083/jcb.200412022
 |  
															| 10 | Rabinowitz J D, White E. Autophagy and metabolism. Science, 2010, 330(6009): 1344–1348 https://doi.org/10.1126/science.1193497
 |  
															| 11 | Deretic V, Levine B. Autophagy, immunity, and microbial adaptations. Cell Host & Microbe, 2009, 5(6): 527–549 https://doi.org/10.1016/j.chom.2009.05.016
 |  
															| 12 | Levine B, Mizushima N, Virgin H W. Autophagy in immunity and inflammation. Nature, 2011, 469(7330): 323–335 https://doi.org/10.1038/nature09782
 |  
															| 13 | Jia K, Thomas C, Akbar M, Sun Q, Adams-Huet B, Gilpin C, Levine B. Autophagy genes protect against Salmonella typhimurium infection and mediate insulin signaling-regulated pathogen resistance. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(34): 14564–14569 https://doi.org/10.1073/pnas.0813319106
 |  
															| 14 | Kuballa P, Huett A, Rioux J D, Daly M J, Xavier R J. Impaired autophagy of an intracellular pathogen induced by a Crohn’s disease associated ATG16L1 variant. PLoS ONE, 2008, 3(10): e3391 https://doi.org/10.1371/journal.pone.0003391
 |  
															| 15 | Wild P, Farhan H, McEwan D G, Wagner S, Rogov V V, Brady N R, Richter B, Korac J, Waidmann O, Choudhary C, Dötsch V, Bumann D, Dikic I. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science, 2011, 333(6039): 228–233 https://doi.org/10.1126/science.1205405
 |  
															| 16 | Benjamin J L, Sumpter R Jr, Levine B, Hooper L V. Intestinal epithelial autophagy is essential for host defense against invasive bacteria. Cell Host & Microbe, 2013, 13(6): 723–734 https://doi.org/10.1016/j.chom.2013.05.004
 |  
															| 17 | Ravikumar B, Moreau K, Jahreiss L, Puri C, Rubinsztein D C. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nature Cell Biology, 2010, 12(8): 747–757 https://doi.org/10.1038/ncb2078
 |  
															| 18 | Yamamoto A, Masaki R, Tashiro Y. Characterization of the isolation membranes and the limiting membranes of autophagosomes in rat hepatocytes by lectin cytochemistry. Journal of Histochemistry and Cytochemistry, 1990, 38(4): 573–580 https://doi.org/10.1177/38.4.2319125
 |  
															| 19 | Suzuki K, Kirisako T, Kamada Y, Mizushima N, Noda T, Ohsumi Y. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO Journal, 2001, 20(21): 5971–5981 https://doi.org/10.1093/emboj/20.21.5971
 |  
															| 20 | Itakura E, Mizushima N. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy, 2010, 6(6): 764–776 https://doi.org/10.4161/auto.6.6.12709
 |  
															| 21 | Simonsen A, Stenmark H. Self-eating from an ER-associated cup. Journal of Cell Biology, 2008, 182(4): 621–622 https://doi.org/10.1083/jcb.200807061
 |  
															| 22 | Noda T, Kim J, Huang W, Baba M, Tokunaga C, Ohsumi Y, Klionsky D J. Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. Journal of Cell Biology, 2000, 148(3): 465–480 https://doi.org/10.1083/jcb.148.3.465
 |  
															| 23 | Reggiori F, Shintani T, Chong H, Nair U, Klionsky D J. Atg9 cycles between mitochondria and the pre-autophagosomal structure in yeasts. Autophagy, 2005, 1(2): 101–109 https://doi.org/10.4161/auto.1.2.1840
 |  
															| 24 | Guan J, Stromhaug P E, George M D, Habibzadegah-Tari P, Bevan A, Dunn W A Jr, Klionsky D J. Cvt18/Gsa12 is required for cytoplasm-to-vacuole transport, pexophagy, and autophagy in Saccharomyces cerevisiae and Pichia pastoris. Molecular Biology of the Cell, 2001, 12(12): 3821–3838 https://doi.org/10.1091/mbc.12.12.3821
 |  
															| 25 | Matsuura A, Tsukada M, Wada Y, Ohsumi Y. Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene, 1997, 192(2): 245–250 https://doi.org/10.1016/S0378-1119(97)00084-X
 |  
															| 26 | Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T, Ohsumi M, Takao T, Noda T, Ohsumi Y. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. Journal of Cell Biology, 2000, 151(2): 263–276 https://doi.org/10.1083/jcb.151.2.263
 |  
															| 27 | Mizushima N, Kuma A, Kobayashi Y, Yamamoto A, Matsubae M, Takao T, Natsume T, Ohsumi Y, Yoshimori T. Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. Journal of Cell Science, 2003, 116(9): 1679–1688 https://doi.org/10.1242/jcs.00381
 |  
															| 28 | Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO Journal, 2000, 19(21): 5720–5728 https://doi.org/10.1093/emboj/19.21.5720
 |  
															| 29 | Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, Tokuhisa T, Ohsumi Y, Yoshimori T. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. Journal of Cell Biology, 2001, 152(4): 657–668 https://doi.org/10.1083/jcb.152.4.657
 |  
															| 30 | Kim J, Kamada Y, Stromhaug P E, Guan J, Hefner-Gravink A, Baba M, Scott S V, Ohsumi Y, Dunn W A Jr, Klionsky D J. Cvt9/Gsa9 functions in sequestering selective cytosolic cargo destined for the vacuole. Journal of Cell Biology, 2001, 153(2): 381–396 https://doi.org/10.1083/jcb.153.2.381
 |  
															| 31 | Takáts S, Nagy P, Varga Á, Pircs K, Kárpáti M, Varga K, Kovács A L, Hegedűs K, Juhász G. Autophagosomal Syntaxin17-dependent lysosomal degradation maintains neuronal function in Drosophila. Journal of Cell Biology, 2013, 201(4): 531–539 https://doi.org/10.1083/jcb.201211160
 |  
															| 32 | Atlashkin V, Kreykenbohm V, Eskelinen E L, Wenzel D, Fayyazi A, Fischer von Mollard G. Deletion of the SNARE vti1b in mice results in the loss of a single SNARE partner, syntaxin 8. Molecular and Cellular Biology, 2003, 23(15): 5198–5207 https://doi.org/10.1128/MCB.23.15.5198-5207.2003
 |  
															| 33 | Fader C M, Sánchez D G, Mestre M B, Colombo M I. TI-VAMP/VAMP7 and VAMP3/cellubrevin: two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways. Biochimica et Biophysica Acta, 2009, 1793(12): 1901–1916 https://doi.org/10.1016/j.bbamcr.2009.09.011
 |  
															| 34 | Itakura E, Kishi-Itakura C, Mizushima N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell, 2012, 151(6): 1256–1269 https://doi.org/10.1016/j.cell.2012.11.001
 |  
															| 35 | Diao J, Liu R, Rong Y, Zhao M, Zhang J, Lai Y, Zhou Q, Wilz L M, Li J, Vivona S, Pfuetzner R A, Brunger A T, Zhong Q. ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature, 2015, 520(7548): 563–566 https://doi.org/10.1038/nature14147
 |  
															| 36 | Razi M, Chan E Y, Tooze S A. Early endosomes and endosomal coatomer are required for autophagy. Journal of Cell Biology, 2009, 185(2): 305–321 https://doi.org/10.1083/jcb.200810098
 |  
															| 37 | Lee J A, Beigneux A, Ahmad S T, Young S G, Gao F B. ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration. Current Biology, 2007, 17(18): 1561–1567 https://doi.org/10.1016/j.cub.2007.07.029
 |  
															| 38 | Nickerson D P, Brett C L, Merz A J. Vps-C complexes: gatekeepers of endolysosomal traffic. Current Opinion in Cell Biology, 2009, 21(4): 543–551 https://doi.org/10.1016/j.ceb.2009.05.007
 |  
															| 39 | Eskelinen E L, Illert A L, Tanaka Y, Schwarzmann G, Blanz J, von Figura K, Saftig P. Role of LAMP-2 in lysosome biogenesis and autophagy. Molecular Biology of the Cell, 2002, 13(9): 3355– 3368 https://doi.org/10.1091/mbc.E02-02-0114
 |  
															| 40 | Hyttinen J M T, Niittykoski M, Salminen A, Kaarniranta K. Maturation of autophagosomes and endosomes: a key role for Rab7.  Biochimica et Biophysica Acta, 2013, 1833(3): 503–510 |  
															| 41 | Liang C, Lee J S, Inn K S, Gack M U, Li Q, Roberts E A, Vergne I, Deretic V, Feng P, Akawa C, Jung J U. Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nature Cell Biology, 2008, 10(7): 776–787 https://doi.org/10.1038/ncb1740
 |  
															| 42 | Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N, Maejima I, Shirahama-Noda K, Ichimura T, Isobe T, Akira S, Noda T, Yoshimori T. Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nature Cell Biology, 2009, 11(4): 385–396 https://doi.org/10.1038/ncb1846
 |  
															| 43 | Chen D, Fan W, Lu Y, Ding X, Chen S, Zhong Q. A mammalian autophagosome maturation mechanism mediated by TECPR1 and the Atg12-Atg5 conjugate. Molecular Cell, 2012, 45(5): 629–641 https://doi.org/10.1016/j.molcel.2011.12.036
 |  
															| 44 | Jewell J L, Russell R C, Guan K L. Amino acid signalling upstream of mTOR. Nature Reviews Molecular Cell Biology, 2013, 14(3): 133–139 https://doi.org/10.1038/nrm3522
 |  
															| 45 | Avruch J, Long X, Ortiz-Vega S, Rapley J, Papageorgiou A, Dai N. Amino acid regulation of TOR complex 1. American Journal of Physiology: Endocrinology and Metabolism, 2009, 296(4): 592–602 https://doi.org/10.1152/ajpendo.90645.2008
 |  
															| 46 | Oshiro N, Takahashi R, Yoshino K I, Tanimura K, Nakashima A, Eguchi S, Miyamoto T, Hara K, Takehana K, Avruch J, Kikkawa U, Yonezawa K. The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1. Journal of Biological Chemistry, 2007, 282(28): 20329–20339 https://doi.org/10.1074/jbc.M702636200
 |  
															| 47 | Laplante M, Sabatini D M. mTOR signaling in growth control and disease. Cell, 2012, 149(2): 274–293 https://doi.org/10.1016/j.cell.2012.03.017
 |  
															| 48 | Hardie D G. AMP-activated protein kinase—an energy sensor that regulates all aspects of cell function. Genes & Development, 2011, 25(18): 1895–1908 https://doi.org/10.1101/gad.17420111
 |  
															| 49 | Habets D D, Coumans W A, El Hasnaoui M, Zarrinpashneh E, Bertrand L, Viollet B, Kiens B, Jensen T E, Richter E A, Bonen A, Glatz J F. Crucial role for LKB1 to AMPKa2 axis in the regulation of CD36-mediated long-chain fatty acid uptake into cardiomyocytes. Biochimica et Biophysica Acta, 2009, 1791(3): 212–219 https://doi.org/10.1016/j.bbalip.2008.12.009
 |  
															| 50 | Winder W W, Holmes B F, Rubink D S, Jensen E B, Chen M, Holloszy J O. Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle. Journal of Applied Physiology, 2000, 88(6): 2219–2226 |  
															| 51 | Cantó C, Gerhart-Hines Z, Feige J N, Lagouge M, Noriega L, Milne J C, Elliott P J, Puigserver P, Auwerx J. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature, 2009, 458(7241): 1056–1060 https://doi.org/10.1038/nature07813
 |  
															| 52 | Ganley I G, Lam D H, Wang J, Ding X, Chen S, Jiang X. ULK1–ATG13–FIP200 complex mediates mTOR signaling and is essential for autophagy. Journal of Biological Chemistry, 2009, 284(18): 12297–12305 https://doi.org/10.1074/jbc.M900573200
 |  
															| 53 | Papinski D, Kraft C. Regulation of autophagy by signaling through the Atg1/ULK1 complex. Journal of Molecular Biology, 2016, 428(9): 1725–1741 https://doi.org/10.1016/j.jmb.2016.03.030
 |  
															| 54 | Ktistakis N T, Tooze S A. Digesting the expanding mechanisms of autophagy. Trends in Cell Biology, 2016, (first published online) https://doi.org/10.1016/j.tcb.2016.03.006
 |  
															| 55 | Reggiori F, Tucker K A, Stromhaug P E, Klionsky D J. The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Developmental Cell, 2004, 6(1): 79–90 https://doi.org/10.1016/S1534-5807(03)00402-7
 |  
															| 56 | Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. Journal of Cell Biology, 2000, 150(6): 1507–1513 https://doi.org/10.1083/jcb.150.6.1507
 |  
															| 57 | Chan E Y, Longatti A, McKnight N C, Tooze S A. Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism. Molecular and Cellular Biology, 2009, 29(1): 157–171 https://doi.org/10.1128/MCB.01082-08
 |  
															| 58 | Noda N N, Mizushima N. Atg101: not just an accessory subunit in the autophagy-initiation complex. Cell Structure and Function, 2016, 41(1): 13–20 https://doi.org/10.1247/csf.15013
 |  
															| 59 | Mercer C A, Kaliappan A, Dennis P B. A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy, 2009, 5(5): 649–662 https://doi.org/10.4161/auto.5.5.8249
 |  
															| 60 | Hara T, Takamura A, Kishi C, Iemura S I, Natsume T, Guan J L, Mizushima N. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. Journal of Cell Biology, 2008, 181(3): 497–510 https://doi.org/10.1083/jcb.200712064
 |  
															| 61 | Mizushima N. The role of the Atg1/ULK1 complex in autophagy regulation. Current Opinion in Cell Biology, 2010, 22(2): 132–139 https://doi.org/10.1016/j.ceb.2009.12.004
 |  
															| 62 | Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S I, Natsume T, Takehana K, Yamada N, Guan J L, Oshiro N, Mizushima N. Nutrient-dependent mTORC1 association with the ULK1-Atg13–FIP200 complex required for autophagy. Molecular Biology of the Cell, 2009, 20(7): 1981–1991 https://doi.org/10.1091/mbc.E08-12-1248
 |  
															| 63 | Jung C H, Ro S H, Cao J, Otto N M, Kim D H. mTOR regulation of autophagy. FEBS Letters, 2010, 584(7): 1287–1295 https://doi.org/10.1016/j.febslet.2010.01.017
 |  
															| 64 | Shintani T, Klionsky D J. Autophagy in health and disease: a double-edged sword. Science, 2004, 306(5698): 990–995 https://doi.org/10.1126/science.1099993
 |  
															| 65 | Kim J, Kundu M, Viollet B, Guan K L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature Cell Biology, 2011, 13(2): 132–141 https://doi.org/10.1038/ncb2152
 |  
															| 66 | Hardie D G. AMP-activated protein kinase-an energy sensor that regulates all aspects of cell function. Genes & Development, 2011, 25(18): 1895–1908 https://doi.org/10.1101/gad.17420111
 |  
															| 67 | Nazio F, Strappazzon F, Antonioli M, Bielli P, Cianfanelli V, Bordi M, Gretzmeier C, Dengjel J, Piacentini M, Fimia G M, Cecconi F. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nature Cell Biology, 2013, 15(4): 406–416 https://doi.org/10.1038/ncb2708
 |  
															| 68 | Liang J, Shao S H, Xu Z X, Hennessy B, Ding Z, Larrea M, Kondo S, Dumont D J, Gutterman J U, Walker C L, Slingerland J M, Mills G B. The energy sensing LKB1-AMPK pathway regulates p27kip1 phosphorylation mediating the decision to enter autophagy or apoptosis. Nature Cell Biology, 2007, 9(2): 218–224 https://doi.org/10.1038/ncb1537
 |  
															| 69 | Löffler A S, Alers S, Dieterle A M, Keppeler H, Franz-Wachtel M, Kundu M, Campbell D G, Wesselborg S, Alessi D R, Stork B. Ulk1-mediated phosphorylation of AMPK constitutes a negative regulatory feedback loop. Autophagy, 2011, 7(7): 696–706 https://doi.org/10.4161/auto.7.7.15451
 |  
															| 70 | Obara K, Ohsumi Y. PtdIns 3-kinase orchestrates autophagosome formation in yeast. Journal of Lipids, 2011, 2011: 498768 https://doi.org/10.1155/2011/498768
 |  
															| 71 | Kametaka S, Okano T, Ohsumi M, Ohsumi Y. Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast, Saccharomyces cerevisiae. Journal of Biological Chemistry, 1998, 273(35): 22284–22291 https://doi.org/10.1074/jbc.273.35.22284
 |  
															| 72 | Obara K, Sekito T, Ohsumi Y. Assortment of phosphatidylinositol 3-kinase complexes-Atg14p directs association of complex I to the pre-autophagosomal structure in Saccharomyces cerevisiae. Molecular Biology of the Cell, 2006, 17(4): 1527–1539 https://doi.org/10.1091/mbc.E05-09-0841
 |  
															| 73 | Chen J, Li Y, Tian Y, Huang C, Li D, Zhong Q, Ma X. Interaction between microbes and host intestinal health: modulation by dietary nutrients and gut-brain-endocrine-immune axis. Current Protein & Peptide Science, 2015, 16(7): 572–603 https://doi.org/10.1016/j.cell.2012.12.016
 |  
															| 74 | Fan P, Li L, Rezaei A, Eslamfam S, Che D, Ma X. Metabolites of dietary protein and peptides by intestinal microbes and their impacts on gut. Current Protein & Peptide Science, 2015, 16(7): 646–654 https://doi.org/10.2174/1389203716666150630133657
 |  
															| 75 | Ropolo A, Grasso D, Pardo R, Sacchetti M L, Archange C, Re A L, Seux M, Nowak J, Gonzalez C D, Iovanna J L, Vaccaro M I. The pancreatitis-induced vacuole membrane protein 1 triggers autophagy in mammalian cells. Journal of Biological Chemistry, 2007, 282(51): 37124–37133 https://doi.org/10.1074/jbc.M706956200
 |  
															| 76 | Fimia G M, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S, Nardacci R, Corazzari M, Fuoco C, Ucar A, Schwartz P, Gruss P. Ambra1 regulates autophagy and development of the nervous system. Nature, 2007, 447(7148): 1121–1125 |  
															| 77 | Takahashi Y, Coppola D, Matsushita N, Cualing H D, Sun M, Sato Y, Liang C, Jung J U, Cheng J Q, Mul J J, Pledger W J, Wang H G. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nature Cell Biology, 2007, 9(10): 1142–1151 https://doi.org/10.1038/ncb1634
 |  
															| 78 | Zhong Y, Wang Q, Li X, Yan Y, Backer J M, Chait B T, Heintz N, Yue Z. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nature Cell Biology, 2009, 11(4): 468–476 https://doi.org/10.1038/ncb1854
 |  
															| 79 | Yuan H, Russell R C, Guan K L. Regulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagy. Autophagy, 2013, 9(12): 1983–1995 https://doi.org/10.4161/auto.26058
 |  
															| 80 | Tang Y, Tan B, Xiong X, Li F, Ren W, Kong X, Qiu W, Hardwidge P R, Yin Y. Methionine deficiency reduces autophagy and accelerates death in intestinal epithelial cells infected with enterotoxigenic Escherichia coli. Amino Acids, 2015, 47(10): 2199–2204 https://doi.org/10.1007/s00726-014-1781-4
 |  
															| 81 | Chen R, Wang Q, Song S, Liu F, He B, Gao X. Protective role of autophagy in methionine–choline deficient diet-induced advanced nonalcoholic steatohepatitis in mice. European Journal of Pharmacology, 2016, 5(770): 126–133 https://doi.org/10.1016/j.ejphar.2015.11.012
 |  
															| 82 | Wang S, Tsun Z Y, Wolfson R L, Shen K, Wyant G A, Plovanich M E, Yuan E D, Jones T D, Chantranupong L, Comb W, Wang T, Bar-Peled L, Zoncu R, Straub C, Kim C, Park J, Sabatini B L, Sabatini D M. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science, 2015, 347(6218): 188–194 https://doi.org/10.1126/science.1257132
 |  
															| 83 | Munson M J, Allen G F, Toth R, Campbell D G, Lucocq J M, Ganley I G. mTOR activates the VPS34-UVRAG complex to regulate autolysosomal tubulation and cell survival. EMBO Journal, 2015, 34(17): 2272–2290 https://doi.org/10.15252/embj.201590992
 |  
															| 84 | Ma X, Chen J, Tian Y. Pregnane X receptor as the “sensor and effector” in regulating epigenome. Journal of Cellular Physiology, 2015, 230(4): 752–757 https://doi.org/10.1016/j.cell.2012.12.016
 |  
								            
												
											    	
											        	|  | Viewed |  
											        	|  |  |  
												        |  | Full text 
 | 
 
 |  
												        |  |  |  
												        |  | Abstract 
 | 
 |  
												        |  |  |  
												        |  | Cited |  |  
												        |  |  |  |  
													    |  | Shared |  |  
													    |  |  |  |  
													    |  | Discussed |  |  |  |  |