Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2017, Vol. 4 Issue (1) : 28-36    https://doi.org/10.15302/J-FASE-2017130
REVIEW
The critical role of autophagy in plant responses to abiotic stresses
Yu WANG1,Jie ZHOU1,2(),Jingquan YU1,2,3
1. College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
2. Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
3. Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
 Download: PDF(651 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Autophagy is an evolutionary conserved recycling process in eukaryotes whereby intracellular components are engulfed by autophagosomes, which are subsequently transferred to the vacuoles for further degradation and reuse. In organisms like yeast and metazoans, autophagy is actively engaged during environmental perturbation either by degrading denatured proteins and organelles or by interfacing with stress related signaling molecules. Studies over the last decade have also revealed numerous important mechanisms where autophagy is widely involved in plant abiotic stress responses. Autophagy serves as a pivotal route for nutrient remobilization by the degradation of superfluous or damaged cellular cytoplasmic material and organelles. It is also reported to regulate the accumulation of reactive oxygen species, to maintain the cellular redox balance of plants under stressful conditions. Furthermore, autophagy is essential in regulating cellular toxicity by removing aggregated and/or denatured proteins and thereby improving plant stress tolerance. In this review, recent advances in our understanding of autophagy, along with pathways and regulatory networks through which it influences many aspects of plant growth and development in response to nutrient starvation, oxidative stress, osmotic stress and extreme temperatures are discussed.

Keywords abiotic stresses      autophagy      extreme temperature      nutrient starvation      osmotic stress      oxidative stress     
Corresponding Author(s): Jie ZHOU   
Just Accepted Date: 20 January 2017   Online First Date: 20 February 2017    Issue Date: 06 March 2017
 Cite this article:   
Yu WANG,Jie ZHOU,Jingquan YU. The critical role of autophagy in plant responses to abiotic stresses[J]. Front. Agr. Sci. Eng. , 2017, 4(1): 28-36.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2017130
https://academic.hep.com.cn/fase/EN/Y2017/V4/I1/28
Fig.1  Schematic representation of induction of autophagy by nutrient starvation in plants. When plants are exposed to deprived nutrient conditions, the activity of TOR is inhibited and subsequently promotes Atg13 association with Atg1 and Atg11 to induce formation of autophagy for engulfing cellular components including mitochondria, RCBs and fragments of ER, and then transfers them to the vacuole for degradation by hydrolases for nutrient reutilization. Atg, autophagy-related gene; P, phosphate group; TOR, targets of rapamycin; ER, endoplasmic reticulum; PE, phosphatidylethanolamine; RCBs, Rubisco-containing bodies; M, mitochondria; U, ubiquitin; NBR1, neighbor of the BRCA1 gene; VPS, vacuolar-protein-sorting.
Fig.2  A proposed model for the role and regulation of plant autophagy in response to osmotic, oxidative and extreme temperature stresses. Abiotic stresses, such as osmotic stress, oxidative stress and extreme temperature, increase the activity of TFs, the content of stress response hormones, the concentration of Ca2+ in the cytoplasm, the production of ROS and the accumulation of denatured and unfolded proteins. ROS can act as signaling molecules to activate autophagy, MAPKs and Ca2+, which in turn activates ROS. Excessive ROS further induces accumulation of oxidized proteins that are then ubiquitinated. In addition, TFs bind to the promoters of ATG genes and directly regulate their expression to induce the formation of autophagosomes to engulf the ubiquitinated proteins for breakdown by hydrolase in the vacuole. The potential regulation of autophagy by hormones, Ca2+ and MAPKs is shown in this model. TFs, transcription factors; autophagy-related genes; ROS, reactive oxygen species; MAPKs, mitogen-activated protein kinases.
1 Liu Y M, Bassham D C. Autophagy: pathways for self-eating in plant cells. Annual Review of Plant Biology, 2012, 63(1): 215–237
https://doi.org/10.1146/annurev-arplant-042811-105441
2 Michaeli S, Galili G, Genschik P, Fernie A R, Avin-Wittenberg T. Autophagy in plants—what’s new on the menu? Trends in Plant Science, 2016, 21(2): 134–144
https://doi.org/10.1016/j.tplants.2015.10.008
3 Mijaljica D, Prescott M, Devenish R J. Microautophagy in mammalian cells: revisiting a 40-year-old conundrum. Autophagy, 2011, 7(7): 673–682
https://doi.org/10.4161/auto.7.7.14733
4 Yang Z, Klionsky D J. An overview of the molecular mechanism of autophagy. Current Topics in Microbiology and Immunology, 2009, 335: 1–32
https://doi.org/10.1007/978-3-642-00302-8_1
5 Orenstein S J, Cuervo A M. Chaperone-mediated autophagy: molecular mechanisms and physiological relevance. Seminars in Cell & Developmental Biology, 2010, 21(7): 719–726
https://doi.org/10.1016/j.semcdb.2010.02.005
6 Reumann S, Voitsekhovskaja O, Lillo C. From signal transduction to autophagy of plant cell organelles: lessons from yeast and mammals and plant-specific features. Protoplasma, 2010, 247(3–4): 233–256
https://doi.org/10.1007/s00709-010-0190-0
7 Hofius D, Schultz-Larsen T, Joensen J, Tsitsigiannis D I, Petersen N H, Mattsson O, Jorgensen L B, Jones J D, Mundy J, Petersen M. Autophagic components contribute to hypersensitive cell death in Arabidopsis. Cell, 2009, 137(4): 773–783
https://doi.org/10.1016/j.cell.2009.02.036
8 Bassham D C, Laporte M, Marty F, Moriyasu Y, Ohsumi Y, Olsen L J, Yoshimoto K. Autophagy in development and stress responses of plants. Autophagy, 2006, 2(1): 2–11
https://doi.org/10.4161/auto.2092
9 Li F Q, Chung T, Pennington J G, Federico M L, Kaeppler H F, Kaeppler S M, Otegui M S, Vierstra R D. Autophagic recycling plays a central role in maize nitrogen remobilization. Plant Cell, 2015, 27(5): 1389–1408
https://doi.org/10.1105/tpc.15.00158
10 Wang P, Sun X, Jia X, Wang N, Gong X Q, Ma F W. Characterization of an autophagy-related gene Mdatg8i from apple. Frontiers in Plant Science, 2016, 7: 720
11 Han S J, Yu B J, Wang Y, Liu Y L. Role of plant autophagy in stress response. Protein & Cell, 2011, 2(10): 784–791
https://doi.org/10.1007/s13238-011-1104-4
12 Schmelzle T, Hall M N. TOR, a central controller of cell growth. Cell, 2000, 103(2): 253–262
https://doi.org/10.1016/S0092-8674(00)00117-3
13 Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. Journal of Cell Biology, 2000, 150(6): 1507–1513
https://doi.org/10.1083/jcb.150.6.1507
14 Thompson A R, Vierstra R D. Autophagic recycling: lessons from yeast help define the process in plants. Current Opinion in Plant Biology, 2005, 8(2): 165–173
https://doi.org/10.1016/j.pbi.2005.01.013
15 Xie Z P, Klionsky D J. Autophagosome formation: core machinery and adaptations. Nature Cell Biology, 2007, 9(10): 1102–1109
https://doi.org/10.1038/ncb1007-1102
16 Yoshimoto K, Hanaoka H, Sato S, Kato T, Tabata S, Noda T, Ohsumi Y. Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy. Plant Cell, 2004, 16(11): 2967–2983
https://doi.org/10.1105/tpc.104.025395
17 Thompson A R, Doelling J H, Suttangkakul A, Vierstra R D. Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiology, 2005, 138(4): 2097–2110
https://doi.org/10.1104/pp.105.060673
18 Phillips A R, Suttangkakul A, Vierstra R D. The ATG12-conjugating enzyme ATG10 is essential for autophagic vesicle formation in Arabidopsis thaliana. Genetics, 2008, 178(3): 1339–1353
https://doi.org/10.1534/genetics.107.086199
19 Yoshimoto K. Beginning to understand autophagy, an intracellular self-degradation system in plants. Plant & Cell Physiology, 2012, 53(8): 1355–1365
https://doi.org/10.1093/pcp/pcs099
20 Kwon S, Park O K. Autophagy in plants. Journal of Plant Biology, 2008, 51(5): 313–320
https://doi.org/10.1007/BF03036132
21 Farré J C, Krick R, Subramani S, Thumm M. Turnover of organelles by autophagy in yeast. Current Opinion in Cell Biology, 2009, 21(4): 522–530
https://doi.org/10.1016/j.ceb.2009.04.015
22 Liu Y M, Bassham D C. TOR is a negative regulator of autophagy in Arabidopsis thaliana. PLoS One, 2010, 5(7): e11883
https://doi.org/10.1371/journal.pone.0011883
23 Zhou J, Wang J, Cheng Y, Chi Y J, Fan B F, Yu J Q, Chen Z X. NBR1-mediated selective autophagy targets insoluble ubiquitinated protein aggregates in plant stress responses. PLOS Genetics, 2013, 9(1): e1003196
https://doi.org/10.1371/journal.pgen.1003196
24 Zhou J, Zhang Y, Qi J X, Chi Y J, Fan B F, Yu J Q, Chen Z X. E3 ubiquitin ligase CHIP and NBR1-mediated selective autophagy protect additively against proteotoxicity in plant stress responses. PLOS Genetics, 2014, 10(1): e1004116
https://doi.org/10.1371/journal.pgen.1004116
25 Wang Y, Cai S Y, Yin L L, Shi K, Xia X J, Zhou Y H, Yu J Q, Zhou J. Tomato HsfA1a plays a critical role in plant drought tolerance by activating ATG genes and inducing autophagy. Autophagy, 2015, 11(11): 2033–2047
https://doi.org/10.1080/15548627.2015.1098798
26 Lai Z B, Wang F, Zheng Z Y, Fan B F, Chen Z X. A critical role of autophagy in plant resistance to necrotrophic fungal pathogens. Plant Journal, 2011, 66(6): 953–968
https://doi.org/10.1111/j.1365-313X.2011.04553.x
27 Zhou J, Wang J, Zheng Z Y, Fan B F, Yu J Q, Chen Z X. Characterization of the promoter and extended C-terminal domain of Arabidopsis WRKY33 and functional analysis of tomato WRKY33 homologues in plant stress responses. Journal of Experimental Botany, 2015, 66(15): 4567–4583
https://doi.org/10.1093/jxb/erv221
28 Perez-Perez M E, Lemaire S D, Crespo J L. Reactive oxygen species and autophagy in plants and algae. Plant Physiology, 2012, 160(1): 156–164
https://doi.org/10.1104/pp.112.199992
29 Xiong Y, Contento A L, Nguyen P Q, Bassham D C. Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis. Plant Physiology, 2007, 143(1): 291–299
https://doi.org/10.1104/pp.106.092106
30 Liu Y M, Xiong Y, Bassham D C. Autophagy is required for tolerance of drought and salt stress in plants. Autophagy, 2009, 5(7): 954–963
https://doi.org/10.4161/auto.5.7.9290
31 Zhou J, Yu J Q, Chen Z X. The perplexing role of autophagy in plant innate immune responses. Molecular Plant Pathology, 2014, 15(6): 637–645
https://doi.org/10.1111/mpp.12118
32 Bassham D C. Plant autophagy-more than a starvation response. Current Opinion in Plant Biology, 2007, 10(6): 587–593
https://doi.org/10.1016/j.pbi.2007.06.006
33 Moriyasu Y, Ohsumi Y. Autophagy in tobacco suspension-cultured cells in response to sucrose starvation. Plant Physiology, 1996, 111(4): 1233–1241
https://doi.org/10.1104/pp.111.4.1233
34 Takatsuka C, Inoue Y, Matsuoka K, Moriyasu Y. 3-methyladenine inhibits autophagy in tobacco culture cells under sucrose starvation conditions. Plant & Cell Physiology, 2004, 45(3): 265–274
https://doi.org/10.1093/pcp/pch031
35 Rose T L, Bonneau L, Der C, Marty-Mazars D, Marty F. Starvation-induced expression of autophagy-related genes in Arabidopsis. Biology of the Cell, 2006, 98(1): 53–67
https://doi.org/10.1042/BC20040516
36 Chen M H, Liu L F, Chen Y R, Wu H K, Yu S M. Expression of α-amylases, carbohydrate-metabolism, and autophagy in cultured rice cells is coordinately regulated by sugar nutrient. Plant Journal, 1994, 6(5): 625–636
https://doi.org/10.1046/j.1365-313X.1994.6050625.x
37 Yoshimoto K, Jikumaru Y, Kamiya Y, Kusano M, Consonni C, Panstruga R, Ohsumi Y, Shirasu K. Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell, 2009, 21(9): 2914–2927
https://doi.org/10.1105/tpc.109.068635
38 Chung T, Phillips A R, Vierstra R D. ATG8 lipidation and ATG8-mediated autophagy in Arabidopsis require ATG12 expressed from the differentially controlled ATG12A and ATG12B loci. Plant Journal, 2010, 62(3): 483–493
https://doi.org/10.1111/j.1365-313X.2010.04166.x
39 Doelling J H, Walker J M, Friedman E M, Thompson A R, Vierstra R D. The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana. Journal of Biological Chemistry, 2002, 277(36): 33105–33114
https://doi.org/10.1074/jbc.M204630200
40 Hanaoka H, Noda T, Shirano Y, Kato T, Hayashi H, Shibata D, Tabata S, Ohsumi Y. Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiology, 2002, 129(3): 1181–1193
https://doi.org/10.1104/pp.011024
41 Suttangkakul A, Li F Q, Chung T, Vierstra R D. The ATG1/ATG13 protein kinase complex is both a regulator and a target of autophagic recycling in Arabidopsis. Plant Cell, 2011, 23(10): 3761–3779
https://doi.org/10.1105/tpc.111.090993
42 Xiong Y, Contento A L, Bassham D C. AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana. Plant Journal, 2005, 42(4): 535–546
https://doi.org/10.1111/j.1365-313X.2005.02397.x
43 Li F Q, Chung T, Vierstra R D. Autophagy-related11 plays a critical role in general autophagy- and senescence-induced mitophagy in Arabidopsis. Plant Cell, 2014, 26(2): 788–807
https://doi.org/10.1105/tpc.113.120014
44 Htwe N, Tanigawa H, Ishibashi Y, Zheng S H, Yuasa T, Iwaya-Inoue M. Nutrient starvation differentially regulates the autophagy-related gene GmATG8i in soybean seedlings. Plant Biotechnology (Sheffield, England), 2009, 26(3): 317–326
https://doi.org/10.5511/plantbiotechnology.26.317
45 Pérez-Pérez M E, Florencio F J, Crespo J L. Inhibition of target of rapamycin signaling and stress activate autophagy in Chlamydomonas reinhardtii. Plant Physiology, 2010, 152(4): 1874–1888
https://doi.org/10.1104/pp.109.152520
46 Mukae K, Inoue Y, Moriyasu Y. ATG5-knockout mutants of Physcomitrella provide a platform for analyzing the involvement of autophagy in senescence processes in plant cells. Plant Signaling & Behavior, 2015, 10(11): e1086859
https://doi.org/10.1080/15592324.2015.1086859
47 Liu Y M, Bassham D C. Degradation of the endoplasmic reticulum by autophagy in plants. Autophagy, 2013, 9(4): 622–623
https://doi.org/10.4161/auto.23559
48 Wada S, Ishida H, Izumi M, Yoshimoto K, Ohsumi Y, Mae T, Makino A. Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. Plant Physiology, 2009, 149(2): 885–893
https://doi.org/10.1104/pp.108.130013
49 Izumi M, Hidema J, Ishida H. From Arabidopsis to cereal crops: conservation of chloroplast protein degradation by autophagy indicates its fundamental role in plant productivity. Plant Signaling & Behavior, 2015, 10(11): e1101199
https://doi.org/10.1080/15592324.2015.1101199
50 Izumi M, Hidema J, Wada S, Kondo E, Kurusu T, Kuchitsu K, Makino A, Ishida H. Establishment of monitoring methods for autophagy in rice reveals autophagic recycling of chloroplasts and root plastids during energy limitation. Plant Physiology, 2015, 167(4): 1307–1320
https://doi.org/10.1104/pp.114.254078
51 Izumi M, Wada S, Makino A, Ishida H. The autophagic degradation of chloroplasts via rubisco-containing bodies is specifically linked to leaf carbon status but not nitrogen status in Arabidopsis. Plant Physiology, 2010, 154(3): 1196–1209
https://doi.org/10.1104/pp.110.158519
52 Zhou J, Wang J, Li X, Xia X J, Zhou Y H, Shi K, Chen Z, Yu J Q H. 2O2 mediates the crosstalk of brassinosteroid and abscisic acid in tomato responses to heat and oxidative stresses. Journal of Experimental Botany, 2014, 65(15): 4371–4383
https://doi.org/10.1093/jxb/eru217
53 Foyer C H, Noctor G. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxidants & Redox Signalling, 2009, 11(4): 861–905
https://doi.org/10.1089/ars.2008.2177
54 Suzuki S W, Onodera J, Ohsumi Y. Starvation induced cell death in autophagy-defective yeast mutants is caused by mitochondria dysfunction. PLoS One, 2011, 6(2): e17412
https://doi.org/10.1371/journal.pone.0017412
55 Perez-Martin M, Perez-Perez M E, Lemaire S D, Crespo J L. Oxidative stress contributes to autophagy induction in response to endoplasmic reticulum stress in Chlamydomonas reinhardtii. Plant Physiology, 2014, 166(2): 997–1008
https://doi.org/10.1104/pp.114.243659
56 Pérez-Pérez M E, , Couso I, Crespo J L. Carotenoid deficiency triggers autophagy in the model green alga Chlamydomonas reinhardtii. Autophagy, 2012, 8(3): 376–388
https://doi.org/10.4161/auto.18864
57 Chen L, Liao B, Qi H, Xie L J, Huang L, Tan W J, Zhai N, Yuan L B, Zhou Y, Yu L J, Chen Q F, Shu W S, Xiao S. Autophagy contributes to regulation of the hypoxia response during submergence in Arabidopsis thaliana. Autophagy, 2015, 11(12): 2233–2246
https://doi.org/10.1080/15548627.2015.1112483
58 Zhang W N, Chen W L. Autophagy induction upon reactive oxygen species in Cd-stressed Arabidopsis thaliana. San Francisco, CA. Proceedings of the Society for Photo-Instrumentation Engineers, 2010, 7568: 75681Y
https://doi.org/10.1117/12.841394
59 Ren H, Li Y N, Zhao F F, Pu X J, Wei L J, Lv X, Zhu F, Lin H H. The role of autophagy in alleviating damage of aluminum stress in Arabidopsis thaliana. Plant Growth Regulation, 2016, 79(2): 167–175
https://doi.org/10.1007/s10725-015-0122-2
60 Han S J, Wang Y, Zheng X Y, Jia Q, Zhao J P, Bai F, Hong Y G, Liu Y L. Cytoplastic glyceraldehyde-3-phosphate dehydrogenases interact with ATG3 to negatively regulate autophagy and immunity in Nicotiana benthamiana. Plant Cell, 2015, 27(4): 1316–1331
https://doi.org/10.1105/tpc.114.134692
61 Henry E, Fung N, Liu J, Drakakaki G, Coaker G. Beyond glycolysis: GAPDHs are multi-functional enzymes involved in regulation of ROS, autophagy, and plant immune responses. PLOS Genetics, 2015, 11(4): e1005199
https://doi.org/10.1371/journal.pgen.1005199
62 Wang P, Sun X, Wang N, Tan D X, Ma F W. Melatonin enhances the occurrence of autophagy induced by oxidative stress in Arabidopsis seedlings. Journal of Pineal Research, 2015, 58(4): 479–489
https://doi.org/10.1111/jpi.12233
63 Shin J H, Yoshimoto K, Ohsumi Y, Jeon J S, An G. OsATG10b, an autophagosome component, is needed for cell survival against oxidative stresses in rice. Molecules and Cells, 2009, 27(1): 67–74
https://doi.org/10.1007/s10059-009-0006-2
64 Chaves M M, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 2009, 103(4): 551–560
https://doi.org/10.1093/aob/mcn125
65 Zhu J K. Cell signaling under salt, water and cold stresses. Current Opinion in Plant Biology, 2001, 4(5): 401–406
https://doi.org/10.1016/S1369-5266(00)00192-8
66 Kuzuoglu-Ozturk D, Yalcinkaya O C, Akpinar B A, Mitou G, Korkmaz G, Gozuacik D, Budak H. Autophagy-related gene, TdAtg8, in wild emmer wheat plays a role in drought and osmotic stress response. Planta, 2012, 236(4): 1081–1092
https://doi.org/10.1007/s00425-012-1657-3
67 Rana R M, Dong S, Ali Z, Huang J, Zhang H S. Regulation of ATG6/Beclin-1 homologs by abiotic stresses and hormones in rice (Oryza sativa L.). Genetics and Molecular Research, 2012, 11(4): 3676–3687
https://doi.org/10.4238/2012.August.17.3
68 Li W W, Chen M, Zhong L, Liu J M, Xu Z S, Li L C, Zhou Y B, Guo C H, Ma Y Z. Overexpression of the autophagy-related gene SiATG8a from foxtail millet (Setaria italica L.) confers tolerance to both nitrogen starvation and drought stress in Arabidopsis. Biochemical and Biophysical Research Communications, 2015, 468(4): 800–806
https://doi.org/10.1016/j.bbrc.2015.11.035
69 Wang W X, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 2003, 218(1): 1–14
https://doi.org/10.1007/s00425-003-1105-5
70 Wang F, Guo Z X, Li H Z, Wang M M, Onac E, Zhou J, Xia X J, Shi K, Yu J Q, Zhou Y H. Phytochrome A and B function antagonistically to regulate cold tolerance via abscisic acid-dependent jasmonate signaling. Plant Physiology, 2016, 170(1): 459–471
https://doi.org/10.1104/pp.15.01171
71 Yang X C, Srivastava R, Howell S H, Bassham D C. Activation of autophagy by unfolded proteins during endoplasmic reticulum stress. Plant Journal, 2016, 85(1): 83–95
https://doi.org/10.1111/tpj.13091
72 Zhou J, Wang J, Yu J Q, Chen Z X. Role and regulation of autophagy in heat stress responses of tomato plants. Frontiers in Plant Science, 2014, 5: 174
https://doi.org/10.3389/fpls.2014.00174
73 Xu W, Cai S Y, Zhang Y, Wang Y, Ahammed G J, Xia X J, Shi K, Zhou Y H, Yu J Q, Reiter R J, Zhou J. Melatonin enhances thermotolerance by promoting cellular protein protection in tomato plants. Journal of Pineal Research, 2016, 61(4): 457–469
https://doi.org/10.1111/jpi.12359
74 Cheng F, Yin L L, Zhou J, Xia X J, Shi K, Yu J Q, Zhou Y H, Foyer C H. Interactions between 2-Cys peroxiredoxins and ascorbate in autophagosome formation during the heat stress response in Solanum lycopersicum. Journal of Experimental Botany, 2016, 67(6): 1919–1933
https://doi.org/10.1093/jxb/erw013
75 Zhai Y F, Guo M, Wang H, Lu J P, Liu J H, Zhang C, Gong Z H, Lu M H. Autophagy, a conserved mechanism for protein degradation, responds to heat, and other abiotic stresses in Capsicum annuum L. Frontiers in Plant Science, 2016, 7: 131
https://doi.org/10.3389/fpls.2016.00131
76 Zhou X M, Zhao P, Wang W, Zou J, Cheng T H, Peng X B, Sun M X. A comprehensive, genome-wide analysis of autophagy-related genes identified in tobacco suggests a central role of autophagy in plant response to various environmental cues. DNA Research, 2015, 22(4): 245–257
https://doi.org/10.1093/dnares/dsv012
77 Xia X J, Zhou Y H, Shi K, Zhou J, Foyer C H, Yu J Q. Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. Journal of Experimental Botany, 2015, 66(10): 2839–2856
https://doi.org/10.1093/jxb/erv089
78 Bose J, Pottosin I I, Shabala S S, Palmgren M G, Shabala S. Calcium efflux systems in stress signaling and adaptation in plants. Frontiers in Plant Science, 2011, 2: 85
https://doi.org/10.3389/fpls.2011.00085
79 Liu H, Zhang H, Iles K E, Rinna A, Merrill G, Yodoi J, Torres M, Forman H J. The ADP-stimulated NADPH oxidase activates the ASK-1/MKK4/JNK pathway in alveolar macrophages. Free Radical Research, 2006, 40(8): 865–874
https://doi.org/10.1080/10715760600758514
80 Lorin S, Pierron G, Ryan K M, Codogno P, Djavaheri-Mergny M. Evidence for the interplay between JNK and p53-DRAM signalling pathways in the regulation of autophagy. Autophagy, 2010, 6(1): 153–154
https://doi.org/10.4161/auto.6.1.10537
81 Nie W F, Wang M M, Xia X J, Zhou Y H, Shi K, Chen Z X, Yu J Q. Silencing of tomato RBOH1 and MPK2 abolishes brassinosteroid-induced H2O2 generation and stress tolerance. Plant, Cell & Environment, 2013, 36(4): 789–803
https://doi.org/10.1111/pce.12014
82 Zhou J, Xia X J, Zhou Y H, Shi K, Chen Z X, Yu J Q. RBOH1-dependent H2O2 production and subsequent activation of MPK1/2 play an important role in acclimation-induced cross-tolerance in tomato. Journal of Experimental Botany, 2014, 65(2): 595–607
https://doi.org/10.1093/jxb/ert404
83 Crawford S E, Estes M K. Viroporin-mediated calcium-activated autophagy. Autophagy, 2013, 9(5): 797–798
https://doi.org/10.4161/auto.23959
84 Medina D L, Ballabio A. Lysosomal calcium regulates autophagy. Autophagy, 2015, 11(6): 970–971
https://doi.org/10.1080/15548627.2015.1047130
85 Tian L, Ma L, Guo E E, Deng X J, Ma S Y, Xia Q Y, Cao Y, Li S. 20-hydroxyecdysone upregulates Atg genes to induce autophagy in the Bombyx fat body. Autophagy, 2013, 9(8): 1172–1187
https://doi.org/10.4161/auto.24731
86 Chen J Y, Wang L, Wu C, Hu Q, Gu C, Yan F, Li J R, Yan W, Chen G. Melatonin-enhanced autophagy protects against neural apoptosis via a mitochondrial pathway in early brain injury following a subarachnoid hemorrhage. Journal of Pineal Research, 2014, 56(1): 12–19
https://doi.org/10.1111/jpi.12086
[1] Alexey MORGOUNOV, Fatih OZDEMIR, Mesut KESER, Beyhan AKIN, Thomas PAYNE, Hans-Joachim BRAUN. International Winter Wheat Improvement Program: history, activities, impact and future[J]. Front. Agr. Sci. Eng. , 2019, 6(3): 240-250.
[2] Long HE,Shabnam ESLAMFAM,Xi MA,Defa LI. Autophagy and the nutritional signaling pathway[J]. Front. Agr. Sci. Eng. , 2016, 3(3): 222-230.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed