|
|
Base editing in pigs for precision breeding |
Ruigao SONG1,2, Yu WANG3, Yanfang WANG3( ), Jianguo ZHAO1,2( ) |
1. State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China 2. Medical School, University of Chinese Academy of Sciences, Beijing 100049, China 3. State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China |
|
|
Abstract Pigs are one of the most important domesticated animals and have great value in agriculture and biomedicine. Single nucleotide polymorphisms (SNPs) are a dominant type of genetic variation among individual pigs and contribute to the formation of traits. Precision single base substitution provides a strategy for accurate genetic improvement in pig production with the characterization of functional SNPs and genetic variants in pigs. Base editing has recently been developed as the latest gene-editing tool that can directly make changes in single nucleotides without introducing double-stranded DNA breaks (DSBs), providing a promising solution for precise genetic modification in large animals. This review summarizes gene-editing developments and highlights recent genetic dissection related to SNPs in major economic traits which may have the potential to be modified using SNP-editing applications. In addition, limitations and future directions of base editing in pig breeding are discussed.
|
Keywords
base editing
genetic improvement
pigs
single nucleotide polymorphisms
|
Corresponding Author(s):
Yanfang WANG,Jianguo ZHAO
|
Just Accepted Date: 02 March 2020
Online First Date: 27 March 2020
Issue Date: 28 April 2020
|
|
1 |
H S Park, B Min, S H Oh. Research trends in outdoor pig production—a review. Asian-Australasian Journal of Animal Sciences, 2017, 30(9): 1207–1214
https://doi.org/10.5713/ajas.17.0330
pmid: 28728401
|
2 |
M A M Groenen, A L Archibald, H Uenishi, C K Tuggle, Y Takeuchi, M F Rothschild, C Rogel-Gaillard, C Park, D Milan, H J Megens, S Li, D M Larkin, H Kim, L A F Frantz, M Caccamo, H Ahn, B L Aken, A Anselmo, C Anthon, L Auvil, B Badaoui, C W Beattie, C Bendixen, D Berman, F Blecha, J Blomberg, L Bolund, M Bosse, S Botti, Z Bujie, M Bystrom, B Capitanu, D Carvalho-Silva, P Chardon, C Chen, R Cheng, S H Choi, W Chow, R C Clark, C Clee, R P M A Crooijmans, H D Dawson, P Dehais, F De Sapio, B Dibbits, N Drou, Z Q Du, K Eversole, J Fadista, S Fairley, T Faraut, G J Faulkner, K E Fowler, M Fredholm, E Fritz, J G R Gilbert, E Giuffra, J Gorodkin, D K Griffin, J L Harrow, A Hayward, K Howe, Z L Hu, S J Humphray, T Hunt, H Hornshøj, J T Jeon, P Jern, M Jones, J Jurka, H Kanamori, R Kapetanovic, J Kim, J H Kim, K W Kim, T H Kim, G Larson, K Lee, K T Lee, R Leggett, H A Lewin, Y Li, W Liu, J E Loveland, Y Lu, J K Lunney, J Ma, O Madsen, K Mann, L Matthews, S McLaren, T Morozumi, M P Murtaugh, J Narayan, D Truong Nguyen, P Ni, S J Oh, S Onteru, F Panitz, E W Park, H S Park, G Pascal, Y Paudel, M Perez-Enciso, R Ramirez-Gonzalez, J M Reecy, S Rodriguez-Zas, G A Rohrer, L Rund, Y Sang, K Schachtschneider, J G Schraiber, J Schwartz, L Scobie, C Scott, S Searle, B Servin, B R Southey, G Sperber, P Stadler, J V Sweedler, H Tafer, B Thomsen, R Wali, J Wang, J Wang, S White, X Xu, M Yerle, G Zhang, J Zhang, J Zhang, S Zhao, J Rogers, C Churcher, L B Schook. Analyses of pig genomes provide insight into porcine demography and evolution. Nature, 2012, 491(7424): 393–398
https://doi.org/10.1038/nature11622
pmid: 23151582
|
3 |
K Chen, T Baxter, W M Muir, M A Groenen, L B Schook. Genetic resources, genome mapping and evolutionary genomics of the pig (Sus scrofa). International Journal of Biological Sciences, 2007, 3(3): 153–165
https://doi.org/10.7150/ijbs.3.153
pmid: 17384734
|
4 |
H Gilbert, Y Billon, L Brossard, J Faure, P Gatellier, F Gondret, E Labussière, B Lebret, L Lefaucheur, N Le Floch, I Louveau, E Merlot, M C Meunier-Salaün, L Montagne, P Mormede, D Renaudeau, J Riquet, C Rogel-Gaillard, J van Milgen, A Vincent, J Noblet. Review: divergent selection for residual feed intake in the growing pig. Animal, 2017, 11(9): 1427–1439
https://doi.org/10.1017/S175173111600286X
pmid: 28118862
|
5 |
M E Goddard, B J Hayes. Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nature Reviews: Genetics, 2009, 10(6): 381–391
https://doi.org/10.1038/nrg2575
pmid: 19448663
|
6 |
R E Hammer, V G Pursel, C E Rexroad Jr, R J Wall, D J Bolt, K M Ebert, R D Palmiter, R L Brinster. Production of transgenic rabbits, sheep and pigs by microinjection. Nature, 1985, 315(6021): 680–683
https://doi.org/10.1038/315680a0
pmid: 3892305
|
7 |
M R Capecchi. Altering the genome by homologous recombination. Science, 1989, 244(4910): 1288–1292
https://doi.org/10.1126/science.2660260
pmid: 2660260
|
8 |
I Wilmut, A E Schnieke, J McWhir, A J Kind, K H S Campbell. Viable offspring derived from fetal and adult mammalian cells. Nature, 1997, 385(6619): 810–813
https://doi.org/10.1038/385810a0
pmid: 9039911
|
9 |
D Yang, H Yang, W Li, B Zhao, Z Ouyang, Z Liu, Y Zhao, N Fan, J Song, J Tian, F Li, J Zhang, L Chang, D Pei, Y E Chen, L Lai. Generation of PPARg mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning. Cell Research, 2011, 21(6): 979–982
https://doi.org/10.1038/cr.2011.70
pmid: 21502977
|
10 |
H I Ahmad, M J Ahmad, A R Asif, M Adnan, M K Iqbal, K Mehmood, S A Muhammad, A A Bhuiyan, A Elokil, X Du, C Zhao, X Liu, S Xie. A review of CRISPR-based genome editing: survival, evolution and challenges. Current Issues in Molecular Biology, 2018, 28: 47–68
https://doi.org/10.21775/cimb.028.047
pmid: 29428910
|
11 |
Y Yang, S Liu, Y Cheng, L Nie, C Lv, G Wang, Y Zhang, L Hao. Highly efficient and rapid detection of the cleavage activity of Cas9/gRNA via a fluorescent reporter. Applied Biochemistry and Biotechnology, 2016, 180(4): 655–667
https://doi.org/10.1007/s12010-016-2122-8
pmid: 27209600
|
12 |
J J Whyte, J Zhao, K D Wells, M S Samuel, K M Whitworth, E M Walters, M H Laughlin, R S Prather. Gene targeting with zinc finger nucleases to produce cloned eGFP knockout pigs. Molecular Reproduction and Development, 2011, 78(1): 2
https://doi.org/10.1002/mrd.21271
pmid: 21268178
|
13 |
X J Huang, H X Zhang, H Wang, K Xiong, L Qin, H Liu. Disruption of the myostatin gene in porcine primary fibroblasts and embryos using zinc-finger nucleases. Molecules and Cells, 2014, 37(4): 302–306
https://doi.org/10.14348/molcells.2014.2209
pmid: 24802055
|
14 |
Y Yin, H Hao, X Xu, L Shen, W Wu, J Zhang, Q Li. Generation of an MC3R knock-out pig by CRSPR/Cas9 combined with somatic cell nuclear transfer (SCNT) technology. Lipids in Health and Disease, 2019, 18(1): 122
https://doi.org/10.1186/s12944-019-1073-9
pmid: 31138220
|
15 |
W Yang, S Li, X J Li. A CRISPR monkey model unravels a unique function of PINK1 in primate brains. Molecular Neurodegeneration, 2019, 14(1): 17
https://doi.org/10.1186/s13024-019-0321-9
pmid: 31046796
|
16 |
D Paquet, D Kwart, A Chen, A Sproul, S Jacob, S Teo, K M Olsen, A Gregg, S Noggle, M Tessier-Lavigne. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature, 2016, 533(7601): 125–129
https://doi.org/10.1038/nature17664
pmid: 27120160
|
17 |
K M Whitworth, K Lee, J A Benne, B P Beaton, L D Spate, S L Murphy, M S Samuel, J Mao, C O’Gorman, E M Walters, C N Murphy, J Driver, A Mileham, D McLaren, K D Wells, R S Prather. Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biology of Reproduction, 2014, 91(3): 78
https://doi.org/10.1095/biolreprod.114.121723
pmid: 25100712
|
18 |
K M Whitworth, R R R Rowland, C L Ewen, B R Trible, M A Kerrigan, A G Cino-Ozuna, M S Samuel, J E Lightner, D G McLaren, A J Mileham, K D Wells, R S Prather. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nature Biotechnology, 2016, 34(1): 20–22
https://doi.org/10.1038/nbt.3434
pmid: 26641533
|
19 |
G Xiang, J Ren, T Hai, R Fu, D Yu, J Wang, W Li, H Wang, Q Zhou. Editing porcine IGF2 regulatory element improved meat production in Chinese Bama pigs. Cellular and Molecular Life Sciences, 2018, 75(24): 4619–4628
https://doi.org/10.1007/s00018-018-2917-6
pmid: 30259067
|
20 |
Q Zheng, J Lin, J Huang, H Zhang, R Zhang, X Zhang, C Cao, C Hambly, G Qin, J Yao, R Song, Q Jia, X Wang, Y Li, N Zhang, Z Piao, R Ye, J R Speakman, H Wang, Q Zhou, Y Wang, W Jin, J Zhao. Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(45): E9474–E9482
https://doi.org/10.1073/pnas.1707853114
pmid: 29078316
|
21 |
Z Xie, D Pang, H Yuan, H Jiao, C Lu, K Wang, Q Yang, M Li, X Chen, T Yu, X Chen, Z Dai, Y Peng, X Tang, Z Li, T Wang, H Guo, L Li, C Tu, L Lai, H Ouyang. Genetically modified pigs are protected from classical swine fever virus. PLoS Pathogens, 2018, 14(12): e1007193
https://doi.org/10.1371/journal.ppat.1007193
pmid: 30543715
|
22 |
A Oladzad, T Porch, J C Rosas, S M Moghaddam, J Beaver, S E Beebe, J Burridge, C N Jochua, M A Miguel, P N Miklas, B Ratz, J W White, J Lynch, P E McClean. Single and multi-trait GWAS identify genetic factors associated with production traits in common bean under abiotic stress environments. Genetics, 2019, 9(6): 1881–1892
pmid: 31167806
|
23 |
S Yang, X Li, K Li, B Fan, Z Tang. A genome-wide scan for signatures of selection in Chinese indigenous and commercial pig breeds. BMC Genetics, 2014, 15(1): 7
https://doi.org/10.1186/1471-2156-15-7
pmid: 24422716
|
24 |
L Silió, C Barragán, A I Fernández, J García-Casco, M C Rodríguez. Assessing effective population size, coancestry and inbreeding effects on litter size using the pedigree and SNP data in closed lines of the Iberian pig breed. Journal of Animal Breeding and Genetics, 2016, 133(2): 145–154
https://doi.org/10.1111/jbg.12168
pmid: 26059912
|
25 |
B Servin, T Faraut, N Iannuccelli, D Zelenika, D Milan. High-resolution autosomal radiation hybrid maps of the pig genome and their contribution to the genome sequence assembly. BMC Genomics, 2012, 13(1): 585
https://doi.org/10.1186/1471-2164-13-585
pmid: 23153393
|
26 |
K T Lee, Y M Lee, M Alam, B H Choi, M R Park, K S Kim, T H Kim, J J Kim. A whole genome association study on meat quality traits using high density SNP chips in a cross between Korean native pig and Landrace. Asian-Australasian Journal of Animal Sciences, 2012, 25(11): 1529–1539
https://doi.org/10.5713/ajas.2012.12474
pmid: 25049513
|
27 |
X Ma, P H Li, M X Zhu, L C He, S P Sui, S Gao, G S Su, N S Ding, Y Huang, Z Q Lu, X G Huang, R H Huang. Genome-wide association analysis reveals genomic regions on Chromosome 13 affecting litter size and candidate genes for uterine horn length in Erhualian pigs. Animal, 2018, 12(12): 2453–2461
https://doi.org/10.1017/S1751731118000332
pmid: 29534777
|
28 |
A S Hess, Z Islam, M K Hess, R R R Rowland, J K Lunney, A Doeschl-Wilson, G S Plastow, J C M Dekkers. Comparison of host genetic factors influencing pig response to infection with two North American isolates of porcine reproductive and respiratory syndrome virus. Genetics, Selection, Evolution, 2016, 48(1): 43
https://doi.org/10.1186/s12711-016-0222-0
pmid: 27324857
|
29 |
L Andersson, C S Haley, H Ellegren, S A Knott, M Johansson, K Andersson, L Andersson-Eklund, I Edfors-Lilja, M Fredholm, I Hansson, J Håkansson. Genetic mapping of quantitative trait loci for growth and fatness in pigs. Science, 1994, 263(5154): 1771–1774
https://doi.org/10.1126/science.8134840
pmid: 8134840
|
30 |
P Uimari, A Sironen, M L Sevån-Aimonen. Whole-genome SNP association analysis of reproduction traits in the Finnish Landrace pig breed. Genetics, Selection, Evolution, 2011, 43(1): 42
https://doi.org/10.1186/1297-9686-43-42
pmid: 22132733
|
31 |
P Sellier, L Maignel, J P Bidanel. Genetic parameters for tissue and fatty acid composition of backfat, perirenal fat and longissimus muscle in Large White and Landrace pigs. Animal, 2010, 4(4): 497–504
https://doi.org/10.1017/S1751731109991261
pmid: 22444036
|
32 |
J Hernández-Sánchez, M Amills, R N Pena, A Mercadé, A Manunza, R Quintanilla. Genomic architecture of heritability and genetic correlations for intramuscular and back fat contents in Duroc pigs. Journal of Animal Science, 2013, 91(2): 623–632
https://doi.org/10.2527/jas.2012-5270
pmid: 23230112
|
33 |
R Ding, M Yang, J Quan, S Li, Z Zhuang, S Zhou, E Zheng, L Hong, Z Li, G Cai, W Huang, Z Wu, J Yang. Single-locus and multi-locus genome-wide association studies for intramuscular fat in Duroc pigs. Frontiers in Genetics, 2019, 10: 619
https://doi.org/10.3389/fgene.2019.00619
pmid: 31316554
|
34 |
M Zappaterra, D Luise, P Zambonelli, M Mele, A Serra, L N Costa, R Davoli. Association study between backfat fatty acid composition and SNPs in candidate genes highlights the effect of FASN polymorphism in large white pigs. Meat Science, 2019, 156: 75–84
https://doi.org/10.1016/j.meatsci.2019.05.013
pmid: 31132591
|
35 |
R N Pena, J L Noguera, M J García-Santana, E González, J F Tejeda, R Ros-Freixedes, N Ibáñez-Escriche. Five genomic regions have a major impact on fat composition in Iberian pigs. Scientific Reports, 2019, 9(1): 2031
https://doi.org/10.1038/s41598-019-38622-7
pmid: 30765794
|
36 |
S Casiró, D Velez-Irizarry, C W Ernst, N E Raney, R O Bates, M G Charles, J P Steibel. Genome-wide association study in an F2 Duroc x Pietrain resource population for economically important meat quality and carcass traits. Journal of Animal Science, 2017, 95(2): 545–558
https://doi.org/10.2527/jas2016.1003
pmid: 28380601
|
37 |
A S Van Laere, M Nguyen, M Braunschweig, C Nezer, C Collette, L Moreau, A L Archibald, C S Haley, N Buys, M Tally, G Andersson, M Georges, L Andersson. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature, 2003, 425(6960): 832–836
https://doi.org/10.1038/nature02064
pmid: 14574411
|
38 |
L Criado-Mesas, M Ballester, D Crespo-Piazuelo, A Castelló, R Benítez, A I Fernández, J M Folch. Analysis of porcine IGF2 gene expression in adipose tissue and its effect on fatty acid composition. PLoS One, 2019, 14(8): e0220708
https://doi.org/10.1371/journal.pone.0220708
pmid: 31393967
|
39 |
J Ma, J Yang, L Zhou, J Ren, X Liu, H Zhang, B Yang, Z Zhang, H Ma, X Xie, Y Xing, Y Guo, L Huang. A splice mutation in the PHKG1 gene causes high glycogen content and low meat quality in pig skeletal muscle. PLoS Genetics, 2014, 10(10): e1004710
https://doi.org/10.1371/journal.pgen.1004710
pmid: 25340394
|
40 |
C S Bruun, C B Jørgensen, V H Nielsen, L Andersson, M Fredholm. Evaluation of the porcine melanocortin 4 receptor (MC4R) gene as a positional candidate for a fatness QTL in a cross between Landrace and Hampshire. Animal Genetics, 2006, 37(4): 359–362
https://doi.org/10.1111/j.1365-2052.2006.01488.x
pmid: 16879346
|
41 |
C P Allison, R C Johnson, M E Doumit. The effects of halothane sensitivity on carcass composition and meat quality in HAL-1843-normal pigs. Journal of Animal Science, 2005, 83(3): 671–678
https://doi.org/10.2527/2005.833671x
pmid: 15705764
|
42 |
S K Onteru, J W Ross, M F Rothschild. The role of gene discovery, QTL analyses and gene expression in reproductive traits in the pig. Society of Reproduction and Fertility Supplement, 2009, 66: 87–102
pmid: 19848272
|
43 |
Pig Quantitative Trait Locus (QTL) Database (Pig QTLdb). Pig QTL/associations data summary, 2019. Available at Pig QTLdb website on February 14, 2020
|
44 |
Y Wang, X Ding, Z Tan, K Xing, T Yang, Y Pan, Y Wang, D Sun, C Wang. Genome-wide association study for reproductive traits in a Large White pig population. Animal Genetics, 2018, 49(2): 127–131
https://doi.org/10.1111/age.12638
pmid: 29411893
|
45 |
M Bosse, H J Megens, L A F Frantz, O Madsen, G Larson, Y Paudel, N Duijvesteijn, B Harlizius, Y Hagemeijer, R P M A Crooijmans, M A M Groenen. Genomic analysis reveals selection for Asian genes in European pigs following human-mediated introgression. Nature Communications, 2014, 5(1): 4392
https://doi.org/10.1038/ncomms5392
pmid: 25025832
|
46 |
D Bjerre, L B Madsen, T Mark, S Cirera, K Larsen, C B Jørgensen, M Fredholm. Potential role of the porcine superoxide dismutase 1 (SOD1) gene in pig reproduction. Animal Biotechnology, 2013, 24(1): 1–9
https://doi.org/10.1080/10495398.2012.723083
pmid: 23394364
|
47 |
N Boddicker, E H Waide, R R R Rowland, J K Lunney, D J Garrick, J M Reecy, J C M Dekkers. Evidence for a major QTL associated with host response to porcine reproductive and respiratory syndrome virus challenge. Journal of Animal Science, 2012, 90(6): 1733–1746
https://doi.org/10.2527/jas.2011-4464
pmid: 22205662
|
48 |
N J Boddicker, D J Garrick, R R R Rowland, J K Lunney, J M Reecy, J C M Dekkers. Validation and further characterization of a major quantitative trait locus associated with host response to experimental infection with porcine reproductive and respiratory syndrome virus. Animal Genetics, 2014, 45(1): 48–58
https://doi.org/10.1111/age.12079
pmid: 23914972
|
49 |
N J Boddicker, A Bjorkquist, R R R Rowland, J K Lunney, J M Reecy, J C M Dekkers. Genome-wide association and genomic prediction for host response to porcine reproductive and respiratory syndrome virus infection. Genetics, Selection, Evolution, 2014, 46(1): 18
https://doi.org/10.1186/1297-9686-46-18
pmid: 24592976
|
50 |
N V L Serão, R A Kemp, B E Mote, P Willson, J C S Harding, S C Bishop, G S Plastow, J C M Dekkers. Genetic and genomic basis of antibody response to porcine reproductive and respiratory syndrome (PRRS) in gilts and sows. Genetics, Selection, Evolution, 2016, 48(1): 51
https://doi.org/10.1186/s12711-016-0230-0
pmid: 27417876
|
51 |
C Burkard, S G Lillico, E Reid, B Jackson, A J Mileham, T Ait-Ali, C B Whitelaw, A L Archibald. Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function. PLoS Pathogens, 2017, 13(2): e1006206
https://doi.org/10.1371/journal.ppat.1006206
pmid: 28231264
|
52 |
P Skallerup, S M Thamsborg, C B Jørgensen, H Mejer, H H Göring, A L Archibald, M Fredholm, P Nejsum. Detection of a quantitative trait locus associated with resistance to infection with Trichuris suis in pigs. Veterinary Parasitology, 2015, 210(3–4): 264–269
https://doi.org/10.1016/j.vetpar.2015.03.014
pmid: 25858116
|
53 |
J Estellé, A I Fernández, M Pérez-Enciso, A Fernández, C Rodríguez, A Sánchez, J L Noguera, J M Folch. A non-synonymous mutation in a conserved site of the MTTP gene is strongly associated with protein activity and fatty acid profile in pigs. Animal Genetics, 2009, 40(6): 813–820
https://doi.org/10.1111/j.1365-2052.2009.01922.x
pmid: 19496770
|
54 |
B J Jungerius, A S van Laere, M F Te Pas, B A van Oost, L Andersson, M A Groenen. The IGF2-intron3-G3072A substitution explains a major imprinted QTL effect on backfat thickness in a Meishan x European white pig intercross. Genetical Research, 2004, 84(2): 95–101
https://doi.org/10.1017/S0016672304007098
pmid: 15678747
|
55 |
Q Yin, H W Yang, X L Han, B Fan, B Liu. Isolation, mapping, SNP detection and association with backfat traits of the porcine CTNNBL1 and DGAT2 genes. Molecular Biology Reports, 2012, 39(4): 4485–4490
https://doi.org/10.1007/s11033-011-1238-8
pmid: 21997828
|
56 |
Z G Chen, Z X Ma, B Zuo, M G Lei, Y Z Xiong. Molecular characterization and association with carcass traits of the porcine SLC39A7 gene. Journal of Animal Breeding and Genetics, 2009, 126(4): 288–295
https://doi.org/10.1111/j.1439-0388.2008.00740.x
pmid: 19630879
|
57 |
L Fontanesi, E Scotti, L Buttazzoni, S Dall’Olio, R Davoli, V Russo. A single nucleotide polymorphism in the porcine cathepsin K (CTSK) gene is associated with back fat thickness and production traits in Italian Duroc pigs. Molecular Biology Reports, 2010, 37(1): 491–495
https://doi.org/10.1007/s11033-009-9678-0
pmid: 19662513
|
58 |
E Muráni, M Murániová, S Ponsuksili, K Schellander, K Wimmers. Molecular characterization and evidencing of the porcine CRH gene as a functional-positional candidate for growth and body composition. Biochemical and Biophysical Research Communications, 2006, 342(2): 394–405
https://doi.org/10.1016/j.bbrc.2006.01.143
pmid: 16483545
|
59 |
M Ballester, M Revilla, A Puig-Oliveras, J A Marchesi, A Castelló, J Corominas, A I Fernández, J M Folch. Analysis of the porcine APOA2 gene expression in liver, polymorphism identification and association with fatty acid composition traits. Animal Genetics, 2016, 47(5): 552–559
https://doi.org/10.1111/age.12462
pmid: 27296287
|
60 |
L Fontanesi, F Bertolini, S Dall’Olio, L Buttazzoni, M Gallo, V Russo. Analysis of association between the MUC4 g.8227C>G polymorphism and production traits in Italian heavy pigs using a selective genotyping approach. Animal Biotechnology, 2012, 23(3): 147–155
https://doi.org/10.1080/10495398.2011.653462
pmid: 22870870
|
61 |
K Hirose, T Takizawa, K Fukawa, T Ito, M Ueda, Y Hayashi, K Tanaka. Association of an SNP marker in exon 24 of a class 3 phosphoinositide-3-kinase (PIK3C3) gene with production traits in Duroc pigs. Animal Science Journal, 2011, 82(1): 46–51
https://doi.org/10.1111/j.1740-0929.2010.00816.x
pmid: 21269358
|
62 |
S M An, J H Hwang, S Kwon, G E Yu, D H Park, D G Kang, T W Kim, H C Park, J Ha, C W Kim. Effect of single nucleotide polymorphisms in IGFBP2 and IGFBP3 genes on litter size traits in Berkshire pigs. Animal Biotechnology, 2018, 29(4): 301–308
https://doi.org/10.1080/10495398.2017.1395345
pmid: 29200313
|
63 |
A Gunawan, M U Cinar, M J Uddin, K Kaewmala, D Tesfaye, C Phatsara, E Tholen, C Looft, K Schellander. Investigation on association and expression of ESR2 as a candidate gene for boar sperm quality and fertility. Reproduction in Domestic Animals, 2012, 47(5): 782–790
https://doi.org/10.1111/j.1439-0531.2011.01968.x
pmid: 22212297
|
64 |
K Kaewmala, M J Uddin, M U Cinar, C Große-Brinkhaus, E Jonas, D Tesfaye, C Phatsara, E Tholen, C Looft, K Schellander. Investigation into association and expression of PLCz and COX-2 as candidate genes for boar sperm quality and fertility. Reproduction in Domestic Animals, 2012, 47(2): 213–223
https://doi.org/10.1111/j.1439-0531.2011.01831.x
pmid: 21752105
|
65 |
K Kaewmala, M J Uddin, M U Cinar, C Grosse-Brinkhaus, E Jonas, D Tesfaye, C Phatsara, E Tholen, C Looft, K Schellander. Association study and expression analysis of CD9 as candidate gene for boar sperm quality and fertility traits. Animal Reproduction Science, 2011, 125(1–4): 170–179
https://doi.org/10.1016/j.anireprosci.2011.02.017
pmid: 21398056
|
66 |
S J Wang, W J Liu, C A Sargent, S H Zhao, H B Liu, X D Liu, C Wang, G H Hua, L G Yang, N A Affara, S J Zhang. Effects of the polymorphisms of Mx1, BAT2 and CXCL12 genes on immunological traits in pigs. Molecular Biology Reports, 2012, 39(3): 2417–2427
https://doi.org/10.1007/s11033-011-0992-y
pmid: 21667240
|
67 |
N Sun, D Liu, H Chen, X Liu, F Meng, X Zhang, H Chen, S Xie, X Li, Z Wu. Localization, expression change in PRRSV infection and association analysis of the porcine TAP1 gene. International Journal of Biological Sciences, 2012, 8(1): 49–58
https://doi.org/10.7150/ijbs.8.49
pmid: 22211104
|
68 |
Y Sang, C R Ross, R R Rowland, F Blecha. Toll-like receptor 3 activation decreases porcine arterivirus infection. Viral Immunology, 2008, 21(3): 303–314
https://doi.org/10.1089/vim.2008.0042
pmid: 18788939
|
69 |
A J Brock, O Matika, A D Wilson, J Anderson, A C Morin, H A Finlayson, G Reiner, H Willems, S C Bishop, A L Archibald, T Ait-Ali. An intronic polymorphism in the porcine IRF7 gene is associated with better health and immunity of the host during Sarcocystis infection, and affects interferon signalling. Animal Genetics, 2011, 42(4): 386–394
https://doi.org/10.1111/j.1365-2052.2010.02154.x
pmid: 21749421
|
70 |
Y Liu, Y R Luo, X Lu, X T Qiu, J P Zhou, Y F Gong, X D Ding, Q Zhang. Association analysis of polymorphisms of porcine LMP2 and LMP7 genes with haematological traits. Molecular Biology Reports, 2011, 38(7): 4455–4460
https://doi.org/10.1007/s11033-010-0574-4
pmid: 21140225
|
71 |
Z C Wu, Y Liu, Q H Zhao, S P Zhu, Y J Huo, G Q Zhu, S L Wu, W B Bao. Association between polymorphisms in exons 4 and 10 of the BPI gene and immune indices in Sutai pigs. Genetics and Molecular Research, 2015, 14(2): 6048–6058
https://doi.org/10.4238/2015.June.8.2
pmid: 26125805
|
72 |
J D Kich, J J Uthe, M V Benavides, M E Cantão, R Zanella, C K Tuggle, S M Bearson. TLR4 single nucleotide polymorphisms (SNPs) associated with Salmonella shedding in pigs. Journal of Applied Genetics, 2014, 55(2): 267–271
https://doi.org/10.1007/s13353-014-0199-8
pmid: 24566961
|
73 |
X Wu, Y Wang, Y Sun. Molecular characterization, expression analysis and association study with immune traits of porcine PSMB6 gene. Molecular Biology Reports, 2011, 38(8): 5465–5470
https://doi.org/10.1007/s11033-011-0866-3
pmid: 21604174
|
74 |
J Huang, G J Ma, N N Sun, Z F Wu, X Y Li, S H Zhao. BCL10 as a new candidate gene for immune response in pigs: cloning, expression and association analysis. International Journal of Immunogenetics, 2010, 37(2): 103–110
https://doi.org/10.1111/j.1744-313X.2010.00898.x
pmid: 20193035
|
75 |
J R Butler, R M N Santos, G R Martens, J M Ladowski, Z Y Wang, P Li, M Tector, A J Tector. Efficient generation of targeted and controlled mutational events in porcine cells using nuclease-directed homologous recombination. Journal of Surgical Research, 2017, 212: 238–245
https://doi.org/10.1016/j.jss.2017.01.025
pmid: 28550913
|
76 |
L Tao, M Yang, X Wang, Z Zhang, Z Wu, J Tian, L An, S Wang. Efficient biallelic mutation in porcine parthenotes using a CRISPR-Cas9 system. Biochemical and Biophysical Research Communications, 2016, 476(4): 225–229
https://doi.org/10.1016/j.bbrc.2016.05.100
pmid: 27221047
|
77 |
C Yue, W L Bai, Y Y Zheng, T Y Hui, J M Sun, D Guo, S L Guo, Z Y Wang. Correlation analysis of candidate gene SNP for high-yield in Liaoning cashmere goats with litter size and cashmere performance. Animal Biotechnology, 2019 [Published Online] doi: 10.1080/10495398.2019.1652188
pmid: 31424321
|
78 |
J R Chapman, M R G Taylor, S J Boulton. Playing the end game: DNA double-strand break repair pathway choice. Molecular Cell, 2012, 47(4): 497–510
https://doi.org/10.1016/j.molcel.2012.07.029
pmid: 22920291
|
79 |
D B T Cox, R J Platt, F Zhang. Therapeutic genome editing: prospects and challenges. Nature Medicine, 2015, 21(2): 121–131
https://doi.org/10.1038/nm.3793
pmid: 25654603
|
80 |
S Q Tsai, Z Zheng, N T Nguyen, M Liebers, V V Topkar, V Thapar, N Wyvekens, C Khayter, A J Iafrate, L P Le, M J Aryee, J K Joung. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nature Biotechnology, 2015, 33(2): 187–197
https://doi.org/10.1038/nbt.3117
pmid: 25513782
|
81 |
H Y Shin, C Wang, H K Lee, K H Yoo, X Zeng, T Kuhns, C M Yang, T Mohr, C Liu, L Hennighausen. CRISPR/Cas9 targeting events cause complex deletions and insertions at 17 sites in the mouse genome. Nature Communications, 2017, 8(1): 15464
https://doi.org/10.1038/ncomms15464
pmid: 28561021
|
82 |
M Kosicki, K Tomberg, A Bradley. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nature Biotechnology, 2018, 36(8): 765–771
https://doi.org/10.1038/nbt.4192
pmid: 30010673
|
83 |
J M Gehrke, O Cervantes, M K Clement, Y Wu, J Zeng, D E Bauer, L Pinello, J K Joung. An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities. Nature Biotechnology, 2018, 36(10): 977–982
https://doi.org/10.1038/nbt.4199
pmid: 30059493
|
84 |
H A Rees, D R Liu. Base editing: precision chemistry on the genome and transcriptome of living cells. Nature Reviews: Genetics, 2018, 19(12): 770–788
https://doi.org/10.1038/s41576-018-0059-1
pmid: 30323312
|
85 |
R Dandage, P C Després, N Yachie, C R Landry. beditor: a computational workflow for designing libraries of guide RNAs for CRISPR-mediated base editing. Genetics, 2019, 212(2): 377–385
https://doi.org/10.1534/genetics.119.302089
pmid: 30936113
|
86 |
A C Komor, Y B Kim, M S Packer, J A Zuris, D R Liu. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 2016, 533(7603): 420–424
https://doi.org/10.1038/nature17946
pmid: 27096365
|
87 |
A C Komor, K T Zhao, M S Packer, N M Gaudelli, A L Waterbury, L W Koblan, Y B Kim, A H Badran, D R Liu. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Science Advances, 2017, 3(8): eaao4774
|
88 |
Y Zong, Q Song, C Li, S Jin, D Zhang, Y Wang, J L Qiu, C Gao. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nature Biotechnology, 2018, 36(10): 950–953
https://doi.org/10.1038/nbt.4261
pmid: 30272679
|
89 |
L W Koblan, J L Doman, C Wilson, J M Levy, T Tay, G A Newby, J P Maianti, A Raguram, D R Liu. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nature Biotechnology, 2018, 36(9): 843–846
https://doi.org/10.1038/nbt.4172
pmid: 29813047
|
90 |
Y B Kim, A C Komor, J M Levy, M S Packer, K T Zhao, D R Liu. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nature Biotechnology, 2017, 35(4): 371–376
https://doi.org/10.1038/nbt.3803
pmid: 28191901
|
91 |
K Hua, X Tao, J K Zhu. Expanding the base editing scope in rice by using Cas9 variants. Plant Biotechnology Journal, 2019, 17(2): 499–504
https://doi.org/10.1111/pbi.12993
pmid: 30051586
|
92 |
J H Hu, S M Miller, M H Geurts, W Tang, L Chen, N Sun, C M Zeina, X Gao, H A Rees, Z Lin, D R Liu. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature, 2018, 556(7699): 57–63
https://doi.org/10.1038/nature26155
pmid: 29512652
|
93 |
H Nishimasu, X Shi, S Ishiguro, L Gao, S Hirano, S Okazaki, T Noda, O O Abudayyeh, J S Gootenberg, H Mori, S Oura, B Holmes, M Tanaka, M Seki, H Hirano, H Aburatani, R Ishitani, M Ikawa, N Yachie, F Zhang, O Nureki. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science, 2018, 361(6408): 1259–1262
https://doi.org/10.1126/science.aas9129
pmid: 30166441
|
94 |
N M Gaudelli, A C Komor, H A Rees, M S Packer, A H Badran, D I Bryson, D R Liu. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage. Nature, 2017, 551(7681): 464–471
https://doi.org/10.1038/nature24644
pmid: 29160308
|
95 |
T P Huang, K T Zhao, S M Miller, N M Gaudelli, B L Oakes, C Fellmann, D F Savage, D R Liu. Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors. Nature Biotechnology, 2019, 37(6): 626–631
https://doi.org/10.1038/s41587-019-0134-y
pmid: 31110355
|
96 |
K Hua, X Tao, P Han, R Wang, J K Zhu. Genome engineering in rice using Cas9 variants that recognize NG PAM sequences. Molecular Plant, 2019, 12(7): 1003–1014
https://doi.org/10.1016/j.molp.2019.03.009
pmid: 30928636
|
97 |
P Chatterjee, N Jakimo, J M Jacobson. Minimal PAM specificity of a highly similar SpCas9 ortholog. Science Advcances, 2018, 4(10): eaau0766
|
98 |
A V Anzalone, P B Randolph, J R Davis, A A Sousa, L W Koblan, J M Levy, P J Chen, C Wilson, G A Newby, A Raguram, D R Liu. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 2019, 576(7785): 149–157
https://doi.org/10.1038/s41586-019-1711-4
pmid: 31634902
|
99 |
R Zhang, Y Wang, L Chen, R Wang, C Li, X Li, B Fang, X Ren, M Ruan, J Liu, Q Xiong, L Zhang, Y Jin, M Zhang, X Liu, L Li, Q Chen, D Pan, R Li, D K C Cooper, H Yang, Y Dai. Reducing immunoreactivity of porcine bioprosthetic heart valves by genetically-deleting three major glycan antigens, GGTA1/β4GalNT2/CMAH. Acta Biomaterialia, 2018, 72: 196–205
https://doi.org/10.1016/j.actbio.2018.03.055
pmid: 29631050
|
100 |
H M Yuan, T T Yu, L Y Wang, L Yang, Y Z Zhang, H Liu, M J Li, X C Tang, Z Q Liu, Z J Li, C Lu, X Chen, D X Pang, H S Ouyang. Efficient base editing by RNA-guided cytidine base editors (CBEs) in pigs. Cellular and Molecular Life Sciences, 2019 [Published Online] doi: 10.1007/s00018-019-03205-2
pmid: 31302752
|
101 |
J Xie, W Ge, N Li, Q Liu, F Chen, X Yang, X Huang, Z Ouyang, Q Zhang, Y Zhao, Z Liu, S Gou, H Wu, C Lai, N Fan, Q Jin, H Shi, Y Liang, T Lan, L Quan, X Li, K Wang, L Lai. Efficient base editing for multiple genes and loci in pigs using base editors. Nature Communications, 2019, 10(1): 2852
https://doi.org/10.1038/s41467-019-10421-8
pmid: 31253764
|
102 |
Z Li, X Duan, X An, T Feng, P Li, L Li, J Liu, P Wu, D Pan, X Du, S Wu. Efficient RNA-guided base editing for disease modeling in pigs. Cell Discovery, 2018, 4(1): 64
https://doi.org/10.1038/s41421-018-0065-7
pmid: 30588328
|
103 |
K A Molla, Y Yang. CRISPR/Cas-mediated base editing: technical considerations and practical applications. Trends in Biotechnology, 2019, 37(10): 1121–1142
https://doi.org/10.1016/j.tibtech.2019.03.008
pmid: 30995964
|
104 |
E Zuo, Y Sun, W Wei, T Yuan, W Ying, H Sun, L Yuan, L M Steinmetz, Y Li, H Yang. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science, 2019, 364(6437): 289–292
https://doi.org/10.1126/science.aav9973
pmid: 30819928
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|