|
|
Genome-wide association analysis reveals genetic loci and candidate genes associated with intramuscular fat in Duroc pigs |
Xingwang WANG1, Rongrong DING1, Jianping QUAN1, Linxue YANG1, Ming YANG2, Enqin ZHENG1, Dewu LIU1, Gengyuan CAI1,2, Zhenfang WU1,2( ), Jie YANG1( ) |
1. College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China 2. National Engineering Research Center for Breeding Swine Industry, Guangdong Wens Foodstuffs Group Co., Ltd., Yunfu 527400, China |
|
|
Abstract Intramuscular fat (IMF) is a major meat-quality trait in pigs. The content of IMF is directly associated with the taste and flavor of pork. As a complex trait, there could be multiple genes affecting IMF content in pork. Genome-wide association study is a powerful tool to detect genomic regions associated with phenotypic variations. The objectives of the present study were to identify or refine the positions of genomic regions affecting IMF, and to characterize candidate genes and pathways that may influence this trait. Of note, we identified a significant region in longissium dorsi muscle in a Duroc pig population for IMF content with PorcineSNP60 v2 BeadChip. This region spans 1.24 Mb on chromosome 8 and had been identified as a quantitative trait locus for IMF in Pietrain, Large White, Landrace, and Leicoma pigs. In this region, eight SNPs were significantly associated with IMF content. Three genes proximal to these significant SNPs were considered candidate genes, including ZDHHC16, LOC102162218 and PCDH7. Our results confirm several previous findings and highlight several genes that may contribute to IMF variation in Duroc pigs.
|
Keywords
Duroc pigs
genome-wide association analysis
intramuscular fat
|
Corresponding Author(s):
Zhenfang WU,Jie YANG
|
Just Accepted Date: 16 March 2017
Online First Date: 06 April 2017
Issue Date: 12 September 2017
|
|
1 |
Park G B, Moon S S, Ko Y D, Ha J K, Lee J G, Chang H H, Joo S T. Influence of slaughter weight and sex on yield and quality grades of Hanwoo (Korean native cattle) carcasses. Journal of Animal Science, 2002, 80(1): 129–136
https://doi.org/10.2527/2002.801129x
pmid: 11831510
|
2 |
Bosi P, Russo V. The production of the heavy pig for high quality processed products. Italian Journal of Animal Science, 2004, 3(4): 309–321
https://doi.org/10.4081/ijas.2004.309
|
3 |
Cabling M M, Kang H S, Lopez B M, Jang M, Kim H S, Nam K C, Choi J G, Seo K S. Estimation of genetic associations between production and meat quality traits in Duroc pigs. Asian-Australasian Journal of Animal Sciences, 2015, 28(8): 1061–1065
https://doi.org/10.5713/ajas.14.0783
pmid: 26104512
|
4 |
Ntawubizi M, Colman E, Janssens S, Raes K, Buys N, De Smet S. Genetic parameters for intramuscular fatty acid composition and metabolism in pigs. Journal of Animal Science, 2010, 88(4): 1286–1294
https://doi.org/10.2527/jas.2009-2355
pmid: 20042548
|
5 |
Bolormaa S, Neto L R, Zhang Y D, Bunch R J, Harrison B E, Goddard M E, Barendse W. A genome-wide association study of meat and carcass traits in Australian cattle. Journal of Animal Science, 2011, 89(8): 2297–2309
https://doi.org/10.2527/jas.2010-3138
pmid: 21421834
|
6 |
Moloney A P, Mooney M T, Kerry J P, Stanton C, O’Kiely P. Colour of fat, and colour, fatty acid composition and sensory characteristics of muscle from heifers offered alternative forages to grass silage in a finishing ration. Meat Science, 2013, 95(3): 608–615
https://doi.org/10.1016/j.meatsci.2013.05.030
pmid: 23806853
|
7 |
Pietro Lo Fiego D, Macchioni P, Minelli G, Santoro P. Lipid composition of covering and intramuscular fat in pigs at different slaughter age. Italian Journal of Animal Science, 2010, 9(2): e39
|
8 |
Casellas J, Vidal O, Pena R N, Gallardo D, Manunza A, Quintanilla R, Amills M. Genetics of serum and muscle lipids in pigs. Animal Genetics, 2013, 44(6): 609–619
https://doi.org/10.1111/age.12049
pmid: 23668618
|
9 |
Muñoz M, Rodríguez M C, Alves E, Folch J M, Ibañez-Escriche N, Silió L, Fernández A I. Genome-wide analysis of porcine backfat and intramuscular fat fatty acid composition using high-density genotyping and expression data. BMC Genomics, 2013, 14(1): 845
https://doi.org/10.1186/1471-2164-14-845
pmid: 24295214
|
10 |
Edwards D B, Ernst C W, Raney N E, Doumit M E, Hoge M D, Bates R O. Quantitative trait locus mapping in an F2 Duroc x Pietrain resource population: II. Carcass and meat quality traits. Journal of Animal Science, 2008, 86(2): 254–266
https://doi.org/10.2527/jas.2006-626
pmid: 17965326
|
11 |
Cristina Ó, Oliver A, Noguera J, Clop A, Barragán C, Varona L, Rodríguez C, Toro M, Sánchez A, Pérez-Enciso M, Silió L. Test for positional candidate genes for body composition on pig chromosome 6. Genetics, Selection, Evolution., 2002, 34(4): 465–479
https://doi.org/10.1186/1297-9686-34-4-465
pmid: 12270105
|
12 |
Grindflek E, Szyda J, Liu Z, Lien S. Detection of quantitative trait loci for meat quality in a commercial slaughter pig cross. Mammalian Genome, 2001, 12(4): 299–304
https://doi.org/10.1007/s003350010278
pmid: 11309662
|
13 |
Aslan O, Hamill R M, Davey G, McBryan J, Mullen A M, Gispert M, Sweeney T. Variation in the IGF2 gene promoter region is associated with intramuscular fat content in porcine skeletal muscle. Molecular Biology Reports, 2012, 39(4): 4101–4110
https://doi.org/10.1007/s11033-011-1192-5
pmid: 21779802
|
14 |
Ramos A M, Crooijmans R P, Affara N A, Amaral A J, Archibald A L, Beever J E, Bendixen C, Churcher C, Clark R, Dehais P, Hansen M S, Hedegaard J, Hu Z L, Kerstens H H, Law A S, Megens H J, Milan D, Nonneman D J, Rohrer G A, Rothschild M F, Smith T P, Schnabel R D, Van Tassell C P, Taylor J F, Wiedmann R T, Schook L B, Groenen M A. Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology. PLoS One, 2009, 4(8): e6524
https://doi.org/10.1371/journal.pone.0006524
pmid: 19654876
|
15 |
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M A, Bender D, Maller J, Sklar P, de Bakker P I, Daly M J, Sham P C. PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 2007, 81(3): 559–575
https://doi.org/10.1086/519795
pmid: 17701901
|
16 |
Yu J, Pressoir G, Briggs W H, Vroh Bi I, Yamasaki M, Doebley J F, McMullen M D, Gaut B S, Nielsen D M, Holland J B, Kresovich S, Buckler E S. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics, 2006, 38(2): 203–208
https://doi.org/10.1038/ng1702
pmid: 16380716
|
17 |
Aulchenko Y S, Ripke S, Isaacs A, van Duijn C M. GenABEL: an R library for genome-wide association analysis. Bioinformatics, 2007, 23(10): 1294–1296
https://doi.org/10.1093/bioinformatics/btm108
pmid: 17384015
|
18 |
Yang Q, Cui J, Chazaro I, Cupples L A, Demissie S. Power and type I error rate of false discovery rate approaches in genome-wide association studies. BMC Genetics, 2005, 6(Suppl. 1): S134
https://doi.org/10.1186/1471-2156-6-S1-S134
pmid: 16451593
|
19 |
Xiong X, Liu X, Zhou L, Yang J, Yang B, Ma H, Xie X, Huang Y, Fang S, Xiao S, Ren J, Chen C, Ma J, Huang L. Genome-wide association analysis reveals genetic loci and candidate genes for meat quality traits in Chinese Laiwu pigs. Mammalian Genome, 2015, 26(3-4): 181–190
https://doi.org/10.1007/s00335-015-9558-y
pmid: 25678226
|
20 |
Burton P R, Clayton D G, Cardon L R, Craddock N, Deloukas P, Duncanson A, Kwiatkowski D P, McCarthy M I, Ouwehand W H, Samani N J, Todd J A, Donnelly P, Barrett J C, Burton P R, Davison D, Donnelly P, Easton D, Evans D, Leung H T, Marchini J L, Morris A P, Spencer C C A, Tobin M D, Cardon L R, Clayton D G, Attwood A P, Boorman J P, Cant B, Everson U, Hussey J M, Jolley J D, Knight A S, Koch K, Meech E, Nutland S, Prowse C V, Stevens H E, Taylor N C, Walters G R, Walker N M, Watkins N A, Winzer T, Todd J A, Ouwehand W H, Jones R W, McArdle W L, Ring S M, Strachan D P, Pembrey M, Breen G, St Clair D, Caesar S, Gordon-Smith K, Jones L, Fraser C, Green E K, Grozeva D, Hamshere M L, Holmans P A, Jones I R, Kirov G, Moskvina V, Nikolov I, O’Donovan M C, Owen M J, Craddock N, Collier D A, Elkin A, Farmer A, Williamson R, McGuffin P, Young A H, Ferrier I N, Ball S G, Balmforth A J, Barrett J H, Bishop D T, Iles M M, Maqbool A, Yuldasheva N, Hall A S, Braund P S, Burton P R, Dixon R J, Mangino M, Stevens S, Tobin M D, Thompson J R, Samani N J, Bredin F, Tremelling M, Parkes M, Drummond H, Lees C W, Nimmo E R, Satsangi J, Fisher S A, Forbes A, Lewis C M, Onnie C M, Prescott N J, Sanderson J, Mathew C G, Barbour J, Mohiuddin M K, Todhunter C E, Mansfield J C, Ahmad T, Cummings F R, Jewell D P, Webster J, Brown M J, Clayton D G, Lathrop G M, Connell J, Dominiczak A, Samani N J, Marcano C A B, Burke B, Dobson R, Gungadoo J, Lee K L, Munroe P B, Newhouse S J, Onipinla A, Wallace C, Xue M, Caulfield M, Farrall M, Barton A, and Genomics (BRAGGS) T B R A G, Bruce I N, Donovan H, Eyre S, Gilbert P D, Hider S L, Hinks A M, John S L, Potter C, Silman A J, Symmons D P M, Thomson W, Worthington J, Clayton D G, Dunger D B, Nutland S, Stevens H E, Walker N M, Widmer B, Todd J A, Frayling T M, Freathy R M, Lango H, Perry J R B, Shields B M, Weedon M N, Hattersley A T, Hitman G A, Walker M, Elliott K S, Groves C J, Lindgren C M, Rayner N W, Timpson N J, Zeggini E, McCarthy M I, Newport M, Sirugo G, Lyons E, Vannberg F, Hill A V S, Bradbury L A, Farrar C, Pointon J J, Wordsworth P, Brown M A, Franklyn J A, Heward J M, Simmonds M J, Gough S C L, Seal S, Susceptibility Collaboration (UK) B C, Stratton M R, Rahman N, Ban M, Goris A, Sawcer S J, Compston A, Conway D, Jallow M, Newport M, Sirugo G, Rockett K A, Kwiatkowski D P, Bumpstead S J, Chaney A, Downes K, Ghori M J R, Gwilliam R, Hunt S E, Inouye M, Keniry A, King E, McGinnis R, Potter S, Ravindrarajah R, Whittaker P, Widden C, Withers D, Deloukas P, Leung H T, Nutland S, Stevens H E, Walker N M, Todd J A, Easton D, Clayton D G, Burton P R, Tobin M D, Barrett J C, Evans D, Morris A P, Cardon L R, Cardin N J, Davison D, Ferreira T, Pereira-Gale J, Hallgrimsdóttir I B, Howie B N, Marchini J L, Spencer C C A, Su Z, Teo Y Y, Vukcevic D, Donnelly P, Bentley D, Brown M A, Cardon L R, Caulfield M, Clayton D G, Compston A, Craddock N, Deloukas P, Donnelly P, Farrall M, Gough S C L, Hall A S, Hattersley A T, Hill A V S, Kwiatkowski D P, Mathew C G, McCarthy M I, Ouwehand W H, Parkes M, Pembrey M, Rahman N, Samani N J, Stratton M R, Todd J A, Worthington J. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature, 2007, 447(7145): 661–678
https://doi.org/10.1038/nature05911
pmid: 17554300
|
21 |
Hu Z L, Park C A, Wu X L, Reecy J M. Animal QTLdb: an improved database tool for livestock animal QTL/association data dissemination in the post-genome era. Nucleic Acids Research, 2013, 41(D1): D871–D879
https://doi.org/10.1093/nar/gks1150
pmid: 23180796
|
22 |
Shapiro S S, Wilk M B. An analysis of variance test for normality (complete samples). Biometrika, 1965, 52(3/4): 591–611
https://doi.org/10.2307/2333709
|
23 |
Duthie C, Simm G, Doeschl-Wilson A, Kalm E, Knap P W, Roehe R. Quantitative trait loci for chemical body composition traits in pigs and their positional associations with body tissues, growth and feed intake. Animal Genetics, 2008, 39(2): 130–140
https://doi.org/10.1111/j.1365-2052.2007.01689.x
pmid: 18307580
|
24 |
Putilina T, Wong P, Gentleman S. The DHHC domain: a new highly conserved cysteine-rich motif. Molecular and Cellular Biochemistry, 1999, 195(1): 219–226
https://doi.org/10.1023/A:1006932522197
pmid: 10395086
|
25 |
Ren W, Sun Y, Du K. DHHC17 palmitoylates ClipR-59 and modulates ClipR-59 association with the plasma membrane. Molecular and Cellular Biology, 2013, 33(21): 4255–4265
https://doi.org/10.1128/MCB.00527-13
pmid: 24001771
|
26 |
Ren W, Jhala U S, Du K. Proteomic analysis of protein palmitoylation in adipocytes. Adipocyte, 2013, 2(1): 17–27
https://doi.org/10.4161/adip.22117
pmid: 23599907
|
27 |
Abdel-Ghany M, Sharp G W, Straub S G. Glucose stimulation of protein acylation in the pancreatic b-cell. Life Sciences, 2010, 87(23-26): 667–671 doi:10.1016/j.lfs.2010.09.021
pmid: 20883703
|
28 |
Pandey N R, Zhou X, Qin Z, Zaman T, Gomez-Smith M, Keyhanian K, Anisman H, Brunel J M, Stewart A F, Chen H H. The LIM domain only 4 protein is a metabolic responsive inhibitor of protein tyrosine phosphatase 1B that controls hypothalamic leptin signaling. Journal of Neuroscience, 2013, 33(31): 12647–12655
https://doi.org/10.1523/JNEUROSCI.0746-13.2013
pmid: 23904601
|
29 |
Berchtold L A, Storling Z M, Ortis F, Lage K, Bang-Berthelsen C, Bergholdt R, Hald J, Brorsson C A, Eizirik D L, Pociot F, Brunak S, Storling J. Huntingtin-interacting protein 14 is a type 1 diabetes candidate protein regulating insulin secretion and β. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(37): E681–E688
https://doi.org/10.1073/pnas.1104384108
pmid: 21705657
|
30 |
Matakatsu H, Blair S S. The DHHC palmitoyltransferase approximated regulates Fat signaling and Dachs localization and activity. Current Biology, 2008, 18(18): 1390–1395
https://doi.org/10.1016/j.cub.2008.07.067
pmid: 18804377
|
31 |
D’Errico I, Gadaleta G, Saccone C. Pseudogenes in metazoa: origin and features. Briefings in Functional Genomics & Proteomics, 2004, 3(2): 157–167
https://doi.org/10.1093/bfgp/3.2.157
pmid: 15355597
|
32 |
Tam O H, Aravin A A, Stein P, Girard A, Murchison E P, Cheloufi S, Hodges E, Anger M, Sachidanandam R, Schultz R M, Hannon G J. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature, 2008, 453(7194): 534–538
https://doi.org/10.1038/nature06904
pmid: 18404147
|
33 |
Pink R C, Wicks K, Caley D P, Punch E K, Jacobs L, Francisco Carter D R. Pseudogenes: pseudo-functional or key regulators in health and disease? RNA, 2011, 17(5): 792–798
https://doi.org/10.1261/rna.2658311
pmid: 21398401
|
34 |
Watanabe T, Cheng E C, Zhong M, Lin H. Retrotransposons and pseudogenes regulate mRNAs and lncRNAs via the piRNA pathway in the germline. Genome Research, 2015, 25(3): 368–380
https://doi.org/10.1101/gr.180802.114
pmid: 25480952
|
35 |
Yoshida K, Yoshitomo-Nakagawa K, Seki N, Sasaki M, Sugano S. Cloning, expression analysis, and chromosomal localization of BH-protocadherin (PCDH7), a novel member of the cadherin superfamily. Genomics, 1998, 49(3): 458–461
https://doi.org/10.1006/geno.1998.5271
pmid: 9615233
|
36 |
Liu R, Sun Y, Zhao G, Wang F, Wu D, Zheng M, Chen J, Zhang L, Hu Y, Wen J. Genome-wide association study identifies Loci and candidate genes for body composition and meat quality traits in Beijing-You chickens. PLoS One, 2013, 8(4): e61172
https://doi.org/10.1371/journal.pone.0061172
pmid: 23637794
|
37 |
Zhang Y, Guo J, Gao Y, Niu S, Yang C, Bai C, Yu X, Zhao Z. Genome-wide methylation changes are associated with muscle fiber density and drip loss in male three-yellow chickens. Molecular Biology Reports, 2014, 41(5): 3509–3516
https://doi.org/10.1007/s11033-014-3214-6
pmid: 24566679
|
38 |
Zhou G, Wang S, Wang Z, Zhu X, Shu G, Liao W, Yu K, Gao P, Xi Q, Wang X, Zhang Y, Yuan L, Jiang Q. Global comparison of gene expression profiles between intramuscular and subcutaneous adipocytes of neonatal landrace pig using microarray. Meat Science, 2010, 86(2): 440–450
https://doi.org/10.1016/j.meatsci.2010.05.031
pmid: 20573458
|
39 |
Mariman E C, Bouwman F G, Aller E E, van Baak M A, Wang P. High frequency of rare variants with a moderate-to-high predicted biological effect in protocadherin genes of extremely obese. Genes & Nutrition, 2014, 9(3): 399
https://doi.org/10.1007/s12263-014-0399-1
pmid: 24682882
|
40 |
Su H, Marcheva B, Meng S, Liang F A, Kohsaka A, Kobayashi Y, Xu A W, Bass J, Wang X. Gamma-protocadherins regulate the functional integrity of hypothalamic feeding circuitry in mice. Developmental Biology, 2010, 339(1): 38–50
https://doi.org/10.1016/j.ydbio.2009.12.010
pmid: 20025866
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|