Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2017, Vol. 4 Issue (3) : 319-326    https://doi.org/10.15302/J-FASE-2017161
RESEARCH ARTICLE
Genome-wide analysis reveals selection for Chinese Rongchang pigs
Lei CHEN1, Shilin TIAN2, Long JIN2, Zongyi GUO1, Dan ZHU1, Lan JING1, Tiandong CHE2, Qianzi TANG2, Siqing CHEN1, Liang ZHANG1, Tinghuan ZHANG1, Zuohua LIU1, Jinyong WANG1(), Mingzhou LI2()
1. Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing Academy of Animal Sciences, Chongqing 402460, China
2. Institute of Animal Genetics and Breeding/College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
 Download: PDF(1463 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Livestock have undergone domestication and consequently strong selective pressure on genes or genomic regions that control desirable traits. To identify selection signatures in the genome of Chinese Rongchang pigs, we generated a total of about 170 Gb of DNA sequence data with about 6.4-fold coverage for each of six female individuals. By combining these data with the publically available genome data of 10 Asian wild boars, we identified 449 protein-coding genes with selection signatures in Rongchang pigs, which are mainly involved in growth and hormone binding, nervous system development, and drug metabolism. The accelerated evolution of these genes may contribute to the dramatic phenotypic differences between Rongchang pigs and Chinese wild boars. This study illustrated how domestication and subsequent artificial selection have shaped patterns of genetic variation in Rongchang pigs and provides valuable genetic resources that can enhance the use of pigs in agricultural production and biomedical studies.

Keywords domestication      genome      pig      re-sequencing      selection     
Corresponding Author(s): Jinyong WANG,Mingzhou LI   
Just Accepted Date: 16 May 2017   Online First Date: 05 June 2017    Issue Date: 12 September 2017
 Cite this article:   
Lei CHEN,Shilin TIAN,Long JIN, et al. Genome-wide analysis reveals selection for Chinese Rongchang pigs[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 319-326.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2017161
https://academic.hep.com.cn/fase/EN/Y2017/V4/I3/319
Fig.1  Phylogenetic relationship of Rongchang pigs. (a) Neighbor-joining phylogenetic tree of pig breeds. The scale bar represents p-distance; (b) two-way principle component plot of pig breeds. The fractions of the variance explained are 12.2% and 5.74% for eigenvectors 1 and 2, respectively, with a Tracy-Widom P value<1078 (Table S5).
Fig.2  Genomic regions with strong selective sweep signals in Rongchang pigs. (a) Genome-wide distribution of pooled heterozygosity values (Hp), genetic differentiation (FST), and corresponding Z transformations (Z(Hp)) and Z(FST), which were calculated in 100-kb windows with 10-kb steps (n = 229772, contain≥100 SNPs). Data points located to the right of the vertical line (where Z(FST) is 2) and below the horizontal line (where Z(Hp) is −2) were identified as selected regions in Rongchang pigs (red points). m, mean; s, standard deviation; (b) violin plot of Z(Hp)Rongchang, Z(FST), and |Tajima’s DRongchang pigs – Tajima’s DAsian wild boars| in genomic regions with strong selective sweep signals for Rongchang pigs compared with the whole genome. Out of 229772 100-kb windows that contained≥100 SNPs with 10-kb steps across the pig reference genome (gray violin), 1852 windows were picked out as regions with strong selective sweep signals (green violin). Each violin with the width depicting a 90°-rotated kernel density trace and its reflection. Vertical black boxes denote the interquartile range between the first and third quartiles (25th and 75th percentiles, respectively) and the white point inside denotes the median. Vertical black lines denote the lowest and highest values within a 1.5 times interquartile range from the first and third quartiles, respectively. The statistical significance was calculated by the Mann–Whitney U test; (c) phylogenetic tree (scale bar represents p-distance); (d) two-way principle component plot of Rongchang pigs (n = 6) and Asian wild boars (n = 10) based on SNPs in regions with strong selective sweep signals with 25.0% of variance explained for eigenvector 1, (P = 0.030, Tracy-Widom test) and 13.7% for eigenvector 2 (P = 0.277, Tracy-Widom test).
CategoryTerm descriptionInvolved gene numberP value
GO-BP:0010648Negative regulation of cell communication130.007
GO-BP:0007242Intracellular signaling cascade400.011
GO-BP:0048009Insulin-like growth factor receptor signaling pathway30.015
GO-MF:0017046Peptide hormone binding40.018
GO-MF:0042562Hormone binding50.019
GO-MF:0005158Insulin receptor binding40.020
GO-BP:0051960Regulation of nervous system development100.022
GO-BP:0032868Response to insulin stimulus60.033
GO-BP:0050769Positive regulation of neurogenesis50.037
GO-BP:0050767Regulation of neurogenesis80.040
GO-BP:0045664Regulation of neuron differentiation70.041
GO-BP:0010975Regulation of neuron projection development50.041
KEGG-Pathway: 00983Drug metabolism40.041
GO-BP:0006396RNA processing190.046
GO-BP:0010720Positive regulation of cell development50.047
GO-MF:0019899Enzyme binding180.049
GO-BP:0009725Response to hormone stimulus140.049
Tab.1  Functional gene categories enriched for genes affected by selection in Rongchang pigs
Fig.3  Genes related to nervous system development that show selective sweep signatures in Rongchang pigs. (a) Z(Hp), Z(FST), and Tajima’s D values are plotted using a 10-kb sliding window. Genomic regions located above the upper horizontal dashed red line (Z(FST) = 2) and below the lower horizontal dashed black line (Z(Hp) = −2) were considered regions with strong selective sweep signals for Rongchang pigs (beige regions). Genome annotations are shown at the bottom (black bar: coding sequences, blue bar: genes). The boundaries of genes related to nervous system development are marked in red; (b) the gene trees for 10 genes related to nervous system development of 10 Asian wild boars and six Rongchang pigs.
17 Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25(14): 1754–1760
https://doi.org/10.1093/bioinformatics/btp324 pmid: 19451168
18 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics, 2009, 25(16): 2078–2079
https://doi.org/10.1093/bioinformatics/btp352 pmid: 19505943
19 Huang W, Sherman B T, Lempicki R A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 2009, 4(1): 44–57
https://doi.org/10.1038/nprot.2008.211 pmid: 19131956
20 Patterson N, Price A L, Reich D. Population structure and eigenanalysis. PLoS Genetics, 2006, 2(12): e190
https://doi.org/10.1371/journal.pgen.0020190 pmid: 17194218
21 Nguyen D T, Lee K, Choi H, Choi M K, Le M T, Song N, Kim J H, Seo H G, Oh J W, Lee K, Kim T H, Park C. The complete swine olfactory subgenome: expansion of the olfactory gene repertoire in the pig genome. BMC Genomics, 2012, 13(1): 584
https://doi.org/10.1186/1471-2164-13-584 pmid: 23153364
22 Marchese S, Pes D, Scaloni A, Carbone V, Pelosi P. Lipocalins of boar salivary glands binding odours and pheromones. European Journal of Biochemistry, 1998, 252(3): 563–568
https://doi.org/10.1046/j.1432-1327.1998.2520563.x pmid: 9546674
1 Groenen M A M, Archibald A L, Uenishi H, Tuggle C K, Takeuchi Y, Rothschild M F, Rogel-Gaillard C, Park C, Milan D, Megens H J, Li S, Larkin D M, Kim H, Frantz L A F, Caccamo M, Ahn H, Aken B L, Anselmo A, Anthon C, Auvil L, Badaoui B, Beattie C W, Bendixen C, Berman D, Blecha F, Blomberg J, Bolund L, Bosse M, Botti S, Bujie Z, Bystrom M, Capitanu B, Carvalho-Silva D, Chardon P, Chen C, Cheng R, Choi S H, Chow W, Clark R C, Clee C, Crooijmans R P M A, Dawson H D, Dehais P, De Sapio F, Dibbits B, Drou N, Du Z Q, Eversole K, Fadista J, Fairley S, Faraut T, Faulkner G J, Fowler K E, Fredholm M, Fritz E, Gilbert J G R, Giuffra E, Gorodkin J, Griffin D K, Harrow J L, Hayward A, Howe K, Hu Z L, Humphray S J, Hunt T, Hornshøj H, Jeon J T, Jern P, Jones M, Jurka J, Kanamori H, Kapetanovic R, Kim J, Kim J H, Kim K W, Kim T H, Larson G, Lee K, Lee K T, Leggett R, Lewin H A, Li Y, Liu W, Loveland J E, Lu Y, Lunney J K, Ma J, Madsen O, Mann K, Matthews L, McLaren S, Morozumi T, Murtaugh M P, Narayan J, Truong Nguyen D, Ni P, Oh S J, Onteru S, Panitz F, Park E W, Park H S, Pascal G, Paudel Y, Perez-Enciso M, Ramirez-Gonzalez R, Reecy J M, Rodriguez-Zas S, Rohrer G A, Rund L, Sang Y, Schachtschneider K, Schraiber J G, Schwartz J, Scobie L, Scott C, Searle S, Servin B, Southey B R, Sperber G, Stadler P, Sweedler J V, Tafer H, Thomsen B, Wali R, Wang J, Wang J, White S, Xu X, Yerle M, Zhang G, Zhang J, Zhang J, Zhao S, Rogers J, Churcher C, Schook L B. Analyses of pig genomes provide insight into porcine demography and evolution. Nature, 2012, 491(7424): 393–398
https://doi.org/10.1038/nature11622 pmid: 23151582
23 Mak G K, Enwere E K, Gregg C, Pakarainen T, Poutanen M, Huhtaniemi I, Weiss S. Male pheromone-stimulated neurogenesis in the adult female brain: possible role in mating behavior. Nature Neuroscience, 2007, 10(8): 1003–1011
https://doi.org/10.1038/nn1928 pmid: 17603480
24 Larson G, Dobney K, Albarella U, Fang M, Matisoo-Smith E, Robins J, Lowden S, Finlayson H, Brand T, Willerslev E, Rowley-Conwy P, Andersson L, Cooper A. Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. Science, 2005, 307(5715): 1618–1621
https://doi.org/10.1126/science.1106927 pmid: 15761152
25 Albert F W, Somel M, Carneiro M, Aximu-Petri A, Halbwax M, Thalmann O, Blanco-Aguiar J A, Plyusnina I Z, Trut L, Villafuerte R, Ferrand N, Kaiser S, Jensen P, Pääbo S. A comparison of brain gene expression levels in domesticated and wild animals. PLoS Genetics, 2012, 8(9): e1002962
https://doi.org/10.1371/journal.pgen.1002962 pmid: 23028369
26 Amaral A J, Ferretti L, Megens H J, Crooijmans R P, Nie H, Ramos-Onsins S E, Perez-Enciso M, Schook L B, Groenen M A. Genome-wide footprints of pig domestication and selection revealed through massive parallel sequencing of pooled DNA. PLoS One, 2011, 6(4): e14782
https://doi.org/10.1371/journal.pone.0014782 pmid: 21483733
27 Li Y, Vonholdt B M, Reynolds A, Boyko A R, Wayne R K, Wu D D, Zhang Y P. Artificial selection on brain-expressed genes during the domestication of dog. Molecular Biology and Evolution, 2013, 30(8): 1867–1876
https://doi.org/10.1093/molbev/mst088 pmid: 23660689
28 Hare B, Plyusnina I, Ignacio N, Schepina O, Stepika A, Wrangham R, Trut L. Social cognitive evolution in captive foxes is a correlated by-product of experimental domestication. Current Biology, 2005, 15(3): 226–230
https://doi.org/10.1016/j.cub.2005.01.040 pmid: 15694305
29 Topál J, Gergely G, Erdohegyi A, Csibra G, Miklósi A. Differential sensitivity to human communication in dogs, wolves, and human infants. Science, 2009, 325(5945): 1269–1272
https://doi.org/10.1126/science.1176960 pmid: 19729660
30 Meyer U A, Zanger U M, Schwab M. Omics and drug response. Annual Review of Pharmacology and Toxicology, 2013, 53(53): 475–502
https://doi.org/10.1146/annurev-pharmtox-010510-100502 pmid: 23140244
2 Chen K, Baxter T, Muir W M, Groenen M A, Schook L B. Genetic resources, genome mapping and evolutionary genomics of the pig (Sus scrofa). International Journal of Biological Sciences, 2007, 3(3): 153–165
https://doi.org/10.7150/ijbs.3.153 pmid: 17384734
3 Rubin C J, Megens H J, Barrio A M, Maqbool K, Sayyab S, Schwochow D, Wang C, Carlborg O, Jern P, Jorgensen C B, Archibald A L, Fredholm M, Groenen M A M, Andersson L. Strong signatures of selection in the domestic pig genome. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(48): 19529–19536
https://doi.org/10.1073/pnas.1217149109 pmid: 23151514
4 Ai H, Fang X, Yang B, Huang Z, Chen H, Mao L, Zhang F, Zhang L, Cui L, He W, Yang J, Yao X, Zhou L, Han L, Li J, Sun S, Xie X, Lai B, Su Y, Lu Y, Yang H, Huang T, Deng W, Nielsen R, Ren J, Huang L. Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing. Nature Genetics, 2015, 47(3): 217–225
https://doi.org/10.1038/ng.3199 pmid: 25621459
5 Xia Q, Guo Y, Zhang Z, Li D, Xuan Z, Li Z, Dai F, Li Y, Cheng D, Li R, Cheng T, Jiang T, Becquet C, Xu X, Liu C, Zha X, Fan W, Lin Y, Shen Y, Jiang L, Jensen J, Hellmann I, Tang S, Zhao P, Xu H, Yu C, Zhang G, Li J, Cao J, Liu S, He N, Zhou Y, Liu H, Zhao J, Ye C, Du Z, Pan G, Zhao A, Shao H, Zeng W, Wu P, Li C, Pan M, Li J, Yin X, Li D, Wang J, Zheng H, Wang W, Zhang X, Li S, Yang H, Lu C, Nielsen R, Zhou Z, Wang J, Xiang Z, Wang J. Complete resequencing of 40 genomes reveals domestication events and genes in silkworm (Bombyx). Science, 2009, 326(5951): 433–436
https://doi.org/10.1126/science.1176620 pmid: 19713493
6 Rubin C J, Zody M C, Eriksson J, Meadows J R, Sherwood E, Webster M T, Jiang L, Ingman M, Sharpe T, Ka S, Hallböök F, Besnier F, Carlborg O, Bed’hom B, Tixier-Boichard M, Jensen P, Siegel P, Lindblad-Toh K, Andersson L. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature, 2010, 464(7288): 587–591
https://doi.org/10.1038/nature08832 pmid: 20220755
7 Shapiro M D, Kronenberg Z, Li C, Domyan E T, Pan H, Campbell M, Tan H, Huff C D, Hu H, Vickrey A I, Nielsen S C, Stringham S A, Hu H, Willerslev E, Gilbert M T, Yandell M, Zhang G, Wang J. Genomic diversity and evolution of the head crest in the rock pigeon. Science, 2013, 339(6123): 1063–1067
https://doi.org/10.1126/science.1230422 pmid: 23371554
8 Carneiro M, Rubin C J, Di Palma F, Albert F W, Alföldi J, Barrio A M, Pielberg G, Rafati N, Sayyab S, Turner-Maier J, Younis S, Afonso S, Aken B, Alves J M, Barrell D, Bolet G, Boucher S, Burbano H A, Campos R, Chang J L, Duranthon V, Fontanesi L, Garreau H, Heiman D, Johnson J, Mage R G, Peng Z, Queney G, Rogel-Gaillard C, Ruffier M, Searle S, Villafuerte R, Xiong A, Young S, Forsberg-Nilsson K, Good J M, Lander E S, Ferrand N, Lindblad-Toh K, Andersson L. Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science, 2014, 345(6200): 1074–1079
https://doi.org/10.1126/science.1253714 pmid: 25170157
9 Axelsson E, Ratnakumar A, Arendt M L, Maqbool K, Webster M T, Perloski M, Liberg O, Arnemo J M, Hedhammar A, Lindblad-Toh K. The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature, 2013, 495(7441): 360–364
https://doi.org/10.1038/nature11837 pmid: 23354050
10 Daetwyler H D, Capitan A, Pausch H, Stothard P, van Binsbergen R, Brøndum R F, Liao X, Djari A, Rodriguez S C, Grohs C, Esquerré D, Bouchez O, Rossignol M N, Klopp C, Rocha D, Fritz S, Eggen A, Bowman P J, Coote D, Chamberlain A J, Anderson C, VanTassell C P, Hulsegge I, Goddard M E, Guldbrandtsen B, Lund M S, Veerkamp R F, Boichard D A, Fries R, Hayes B J. Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle. Nature Genetics, 2014, 46(8): 858–865
https://doi.org/10.1038/ng.3034 pmid: 25017103
11 Li M, Tian S, Jin L, Zhou G, Li Y, Zhang Y, Wang T, Yeung C K, Chen L, Ma J, Zhang J, Jiang A, Li J, Zhou C, Zhang J, Liu Y, Sun X, Zhao H, Niu Z, Lou P, Xian L, Shen X, Liu S, Zhang S, Zhang M, Zhu L, Shuai S, Bai L, Tang G, Liu H, Jiang Y, Mai M, Xiao J, Wang X, Zhou Q, Wang Z, Stothard P, Xue M, Gao X, Luo Z, Gu Y, Zhu H, Hu X, Zhao Y, Plastow G S, Wang J, Jiang Z, Li K, Li N, Li X, Li R. Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars. Nature Genetics, 2013, 45(12): 1431–1438
https://doi.org/10.1038/ng.2811 pmid: 24162736
12 Li M, Chen L, Tian S, Lin Y, Tang Q, Zhou X, Li D, Yeung C K L, Che T, Jin L, Fu Y, Ma J, Wang X, Jiang A, Lan J, Pan Q, Liu Y, Luo Z, Guo Z, Liu H, Zhu L, Shuai S, Tang G, Zhao J, Jiang Y, Bai L, Zhang S, Mai M, Li C, Wang D, Gu Y, Wang G, Lu H, Li Y, Zhu H, Li Z, Li M, Gladyshev V N, Jiang Z, Zhao S, Wang J, Li R, Li X. Comprehensive variation discovery and recovery of missing sequence in the pig genome using multiple de novo assemblies. Genome Research, 2017, 27(5): 865–874
https://doi.org/10.1101/gr.207456.116 pmid: 27646534
13 Fu Y, Li C, Tang Q, Tian S, Jin L, Chen J, Li M, Li C. Genomic analysis reveals selection in Chinese native black pig. Scientific Reports, 2016, 6(1): 36354
https://doi.org/10.1038/srep36354 pmid: 27808243
14 Li M, Tian S, Yeung C K, Meng X, Tang Q, Niu L, Wang X, Jin L, Ma J, Long K, Zhou C, Cao Y, Zhu L, Bai L, Tang G, Gu Y, Jiang A, Li X, Li R. Whole-genome sequencing of Berkshire (European native pig) provides insights into its origin and domestication. Scientific Reports, 2014, 4(4): 4678
pmid: 24728479
15 Bosse M, Megens H J, Frantz L A, Madsen O, Larson G, Paudel Y, Duijvesteijn N, Harlizius B, Hagemeijer Y, Crooijmans R P, Groenen M A. Genomic analysis reveals selection for Asian genes in European pigs following human-mediated introgression. Nature Communications, 2014, 5: 4392
https://doi.org/10.1038/ncomms5392 pmid: 25025832
16 Frantz L A, Schraiber J G, Madsen O, Megens H J, Bosse M, Paudel Y, Semiadi G, Meijaard E, Li N, Crooijmans R P, Archibald A L, Slatkin M, Schook L B, Larson G, Groenen M A. Genome sequencing reveals fine scale diversification and reticulation history during speciation in Sus. Genome Biology, 2013, 14(9): R107
https://doi.org/10.1186/gb-2013-14-9-r107 pmid: 24070215
[1] FASE-17161-OF-CL_suppl_1 Download
[1] Kunling CHEN, Caixia GAO. Genome-edited crops: how to move them from laboratory to market[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 181-187.
[2] Mengke YUAN, Yuanpeng GAO, Jing HAN, Teng WU, Jingcheng ZHANG, Yongke WEI, Yong ZHANG. The development and application of genome editing technology in ruminants: a review[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 171-180.
[3] Ruigao SONG, Yu WANG, Yanfang WANG, Jianguo ZHAO. Base editing in pigs for precision breeding[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 161-170.
[4] Chris PROUDFOOT, Gus MCFARLANE, Bruce WHITELAW, Simon LILLICO. Livestock breeding for the 21st century: the promise of the editing revolution[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 129-135.
[5] Zachariah MCLEAN, Björn OBACK, Götz LAIBLE. Embryo-mediated genome editing for accelerated genetic improvement of livestock[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 148-160.
[6] Haoyi WANG, Sen WU, Mario R. CAPECCHI, Rudolf JAENISCH. A brief review of genome editing technology for generating animal models[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 123-128.
[7] Dongdong LI, Meng WANG, Xianyan KUANG, Wenxin LIU. Genetic study and molecular breeding for high phosphorus use efficiency in maize[J]. Front. Agr. Sci. Eng. , 2019, 6(4): 366-379.
[8] Minxia LU, Liang CHEN, Jinxiu WANG, Ruiliang LIU, Yang YANG, Meng WEI, Guanghui DONG. A brief history of wheat utilization in China[J]. Front. Agr. Sci. Eng. , 2019, 6(3): 288-295.
[9] Caiyun LIU, Francisco PINTO, C. Mariano COSSANI, Sivakumar SUKUMARAN, Matthew P. REYNOLDS. Spectral reflectance indices as proxies for yield potential and heat stress tolerance in spring wheat: heritability estimates and marker-trait associations[J]. Front. Agr. Sci. Eng. , 2019, 6(3): 296-308.
[10] Rudi APPELS. Wheat research and breeding in the new era of a high-quality reference genome[J]. Front. Agr. Sci. Eng. , 2019, 6(3): 225-232.
[11] Ning WANG, Sile WANG, Yaxian WANG, Yuanxing CAI, Fan YANG, Huayan WANG. SALL4 maintains self-renewal of porcine pluripotent stem cells through downregulation of OTX2[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 81-92.
[12] Yong JIN, Manling ZHANG, Xinrong JU, Shuang LIANG, Qiang XIONG, Lihua ZHAO, Xiaowei NIE, Daorong HOU, Qiang LIU, Junzheng WANG, Chenyu WANG, Xiaokang LI, Lining ZHANG, Xiaorui LIU, Ying WANG, Haiyuan YANG, Yifan DAI, Rongfeng LI. Factors influencing the somatic cell nuclear transfer efficiency in pigs[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 73-80.
[13] Jianwen CHEN, Kaiyuan PAN, Zhen CHEN, Biao DING, Dandan SONG, Wenbin BAO, Yunhai ZHANG. Construction of multiple shRNA vectors targeting PEDV and TGEV and production of transgenic SCNT porcine embryos in vitro[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 66-72.
[14] Chengcheng ZHAO, Junsong SHI, Rong ZHOU, Ranbiao MAI, Lvhua LUO, Xiaoyan HE, Hongmei JI, Gengyuan CAI, Dewu LIU, Enqin ZHENG, Zhenfang WU, Zicong LI. Effects of enucleation method on in vitro and in vivo development rate of cloned pig embryos[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 61-65.
[15] Zheng AO, Chengfa ZHAO, Yanmin GAN, Xiao WU, Junsong SHI, Enqin ZHENG, Dewu LIU, Gengyuan CAI, Zhenfang WU, Zicong LI. Comparison of birth weight and umbilical and placental characteristics of cloned and artificial insemination-derived piglets[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 54-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed