|
|
Transcriptomic basis of neutrophil ratio variation induced by poly I:C stimulation in porcine peripheral blood |
Haiyan WANG1,2,3, Qiaoxia ZHANG1,2, Lilin YIN1,2, Xiangdong LIU1,2, Shuhong ZHAO1,2, Mengjin ZHU1,2, Changchun LI1,2( ) |
1. Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China 2. The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China 3. College of Informatics, Huazhong Agricultural University, Wuhan 430070, China |
|
|
Abstract Neutrophils are vital components of defense mechanisms against invading pathogens and are closely linked with the individual antiviral capacity of pigs and other mammals. Neutrophilia is a well-known clinical characteristic of viral and bacterial infections. Using Affymetrix porcine genome microarrays, we investigated the gene expression profiles associated with neutrophil variation in porcine peripheral blood before and after polyriboinosinic-polyribocytidylic acid stimulation. Transcriptomic analysis showed 796 differentially expressed genes (DEGs) in extreme response (ER) pigs and 192 DEGs in moderate response (MR) pigs. Most DEGs were related to immune responses, included MXD1, CXCR4, CREG1, MyD88, CD14, TLR2, TLR4, IRF3 and IRF7. Gene ontology analysis indicated that the DEGs of both ER and MR pigs were involved in common biological processes, such as cell proliferation, growth regulation, immune response, inflammatory response and cell activation. The ER and MR groups also showed differences in DEGs involved in biological processes. DEGs involved in cell division and cell cycle were specifically found in the ER pigs, whereas DEGs involved in cell migration were specifically found in the MR pigs. The study provides a basic understanding of the molecular basis for the antiviral capacity of pigs and other mammals.
|
Keywords
neutrophil
peripheral blood
pig
poly I:C
transcriptome
|
Corresponding Author(s):
Changchun LI
|
Just Accepted Date: 27 May 2017
Online First Date: 21 June 2017
Issue Date: 12 September 2017
|
|
1 |
Vissche A H, Janss L L G, Niewold T A, de Greef K H. Disease incidence and immunological traits for the selection of healthy pigs. A review. Veterinary Quarterly, 2002, 24(1): 29–34
https://doi.org/10.1080/01652176.2002.9695121
pmid: 11924559
|
2 |
Borregaard N. Neutrophils, from marrow to microbes. Immunity, 2010, 33(5): 657–670
https://doi.org/10.1016/j.immuni.2010.11.011
pmid: 21094463
|
3 |
Mócsai A. Diverse novel functions of neutrophils in immunity, inflammation, and beyond. Journal of Experimental Medicine, 2013, 210(7): 1283–1299
https://doi.org/10.1084/jem.20122220
pmid: 23825232
|
4 |
Segal A W. How neutrophils kill microbes.Annual Review of Immunology , 2005, 23(1): 197–223
https://doi.org/10.1146/annurev.immunol.23.021704.115653
pmid: 15771570
|
5 |
Christopher M J, Link D C. Regulation of neutrophil homeostasis. Current Opinion in Hematology, 2007, 14(1): 3–8
https://doi.org/10.1097/00062752-200701000-00003
pmid: 17133093
|
6 |
Cham B, Bonilla M A, Winkelstein J. Neutropenia associated with primary immunodeficiency syndromes.Seminars in Hematology , 2002, 39(2): 107–112
https://doi.org/10.1053/shem.2002.31916
pmid: 11957193
|
7 |
Rezaei N, Moazzami K, Aghamohammadi A, Klein C. Neutropenia and primary immunodeficiency diseases. International Reviews of Immunology, 2009, 28(5): 335–366
https://doi.org/10.1080/08830180902995645
pmid: 19811314
|
8 |
Stevens B, Maxson J, Tyner J, Smith C A, Gutman J A, Robinson W, Jordan C T, Lee C K, Swisshelm K, Tobin J, Wei Q, Schowinsky J, Rinella S, Lee H G, Pollyea D A. Clonality of neutrophilia associated with plasma cell neoplasms: report of a SETBP1 mutation and analysis of a single institution series. Leukemia & Lymphoma, 2016, 57(4): 927–934
https://doi.org/10.3109/10428194.2015.1094697
pmid: 26389776
|
9 |
Su Z, Mao Y P, OuYang P Y, Tang J, Xie F Y. Initial hyperleukocytosis and neutrophilia in nasopharyngeal carcinoma: incidence and prognostic impact. PLoS One, 2015, 10(9): e0136752
https://doi.org/10.1371/journal.pone.0136752
pmid: 26336064
|
10 |
Fei M, Bhatia S, Oriss T B, Yarlagadda M, Khare A, Akira S, Saijo S, Iwakura Y, Fallert Junecko B A, Reinhart T A, Foreman O, Ray P, Kolls J, Ray A. TNF-α from inflammatory dendritic cells (DCs) regulates lung IL-17A/IL-5 levels and neutrophilia versus eosinophilia during persistent fungal infection. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(13): 5360–5365
https://doi.org/10.1073/pnas.1015476108
pmid: 21402950
|
11 |
Roos A B, Sethi S, Nikota J, Wrona C T, Dorrington M G, Sandén C, Bauer C M, Shen P, Bowdish D, Stevenson C S, Erjefält J S, Stampfli M R. IL-17A and the promotion of neutrophilia in acute exacerbation of chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine, 2015, 192(4): 428–437
https://doi.org/10.1164/rccm.201409-1689OC
pmid: 26039632
|
12 |
Ubags N D, Vernooy J H, Burg E, Hayes C, Bement J, Dilli E, Zabeau L, Abraham E, Poch K R, Nick J A, Dienz O, Zuñiga J, Wargo M J, Mizgerd J P, Tavernier J, Rincón M, Poynter M E, Wouters E F, Suratt B T. The role of leptin in the development of pulmonary neutrophilia in infection and acute lung injury. Critical Care Medicine, 2014, 42(2): e143–e151
https://doi.org/10.1097/CCM.0000000000000048
pmid: 24231757
|
13 |
Nedeljkovic M, He S, Szer J, Juneja S. Chronic neutrophilia associated with myeloma: is it clonal? Leukemia & Lymphoma, 2014, 55(2): 439–440
https://doi.org/10.3109/10428194.2013.809080
pmid: 23713456
|
14 |
Kohmura K, Miyakawa Y, Kameyama K, Kizaki M, Ikeda Y. Granulocyte colony stimulating factor-producing multiple myeloma associated with neutrophilia. Leukemia & Lymphoma, 2004, 45(7): 1475–1479
https://doi.org/10.1080/10428190310001645870
pmid: 15359652
|
15 |
Fu J J, Baines K J, Wood L G, Gibson P G. Systemic inflammation is associated with differential gene expression and airway neutrophilia in asthma. OMICS: A Journal of Integrative Biology, 2013, 17(4): 187–199
https://doi.org/10.1089/omi.2012.0104
pmid: 23438328
|
16 |
Biggar W D, Bohn D, Kent G. Neutrophil circulation and release from bone marrow during hypothermia. Infection and Immunity, 1983, 40(2): 708–712
pmid: 6840858
|
17 |
Chabot-Roy G, Willson P, Segura M, Lacouture S, Gottschalk M. Phagocytosis and killing of Streptococcus suis by porcine neutrophils.Microbial Pathogenesis , 2006, 41(1): 21–32
https://doi.org/10.1016/j.micpath.2006.04.001
pmid: 16714092
|
18 |
Baarsch M J, Foss D L, Murtaugh M P. Pathophysiologic correlates of acute porcine pleuropneumonia. American Journal of Veterinary Research, 2000, 61(6): 684–690
https://doi.org/10.2460/ajvr.2000.61.684
pmid: 10850846
|
19 |
Ichinohe T, Watanabe I, Ito S, Fujii H, Moriyama M, Tamura S, Takahashi H, Sawa H, Chiba J, Kurata T, Sata T, Hasegawa H. Synthetic double-stranded RNA poly(I:C) combined with mucosal vaccine protects against influenza virus infection. Journal of Virology, 2005, 79(5): 2910–2919
https://doi.org/10.1128/JVI.79.5.2910-2919.2005
pmid: 15709010
|
20 |
Fortier M E, Kent S, Ashdown H, Poole S, Boksa P, Luheshi G N. The viral mimic, polyinosinic:polycytidylic acid, induces fever in rats via an interleukin-1-dependent mechanism. Ajp Regulatory Integrative & Comparative Physiology, 2004, 287(4): R759–R766
https://doi.org/10.1152/ajpregu.00293.2004
pmid: 15205185
|
21 |
Matsumoto M, Seya T. TLR3: interferon induction by double-stranded RNA including poly(I:C). Advanced Drug Delivery Reviews, 2008, 60(7): 805–812
https://doi.org/10.1016/j.addr.2007.11.005
pmid: 18262679
|
22 |
Wang H, Hou Y, Guo J, Chen H, Liu X, Wu Z, Zhao S, Zhu M. Transcriptomic landscape for lymphocyte count variation in poly I:C-induced porcine peripheral blood. Animal Genetics, 2016, 47(1): 49–61
https://doi.org/10.1111/age.12379
pmid: 26607402
|
23 |
Cunningham C, Campion S, Teeling J, Felton L, Perry V H. The sickness behaviour and CNS inflammatory mediator profile induced by systemic challenge of mice with synthetic double-stranded RNA (poly I:C). Brain, Behavior, and Immunity, 2007, 21(4): 490–502
https://doi.org/10.1016/j.bbi.2006.12.007
pmid: 17321719
|
24 |
Farina G A, York M R, Di Marzio M, Collins C A, Meller S, Homey B, Rifkin I R, Marshak-Rothstein A, Radstake T R, Lafyatis R. Poly(I:C) drives type I IFN- and TGF b-mediated inflammation and dermal fibrosis simulating altered gene expression in systemic sclerosis. Journal of Investigative Dermatology, 2010, 130(11): 2583–2593
https://doi.org/10.1038/jid.2010.200
pmid: 20613770
|
25 |
Kimura G, Ueda K, Eto S, Watanabe Y, Masuko T, Kusama T, Barnes P J, Ito K, Kizawa Y. Toll-like receptor 3 stimulation causes corticosteroid-refractory airway neutrophilia and hyperresponsiveness in mice. Chest, 2013, 144(1): 99–105
https://doi.org/10.1378/chest.12-2610
pmid: 23348232
|
26 |
He J, Lang G, Ding S, Li L. Pathological role of interleukin-17 in poly I:C-induced hepatitis. PLoS One, 2013, 8(9): e73909
https://doi.org/10.1371/journal.pone.0073909
pmid: 24069246
|
27 |
Jovanović B, Goetz F W, Goetz G W, Palić D. Immunological stimuli change expression of genes and neutrophil function in fathead minnow Pimephales promelas Rafinesque. Journal of Fish Biology, 2011, 78(4): 1054–1072
https://doi.org/10.1111/j.1095-8649.2011.02919.x
pmid: 21463307
|
28 |
Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball C A, Causton H C, Gaasterland T, Glenisson P, Holstege F C, Kim I F, Markowitz V, Matese J C, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nature Genetics, 2001, 29(4): 365–371
https://doi.org/10.1038/ng1201-365
pmid: 11726920
|
29 |
Gautier L, Cope L, Bolstad B M, Irizarry R A. affy--analysis of Affymetrix GeneChip data at the probe level. Bioinformatics, 2004, 20(3): 307–315
https://doi.org/10.1093/bioinformatics/btg405
pmid: 14960456
|
30 |
Smyth G K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics & Molecular Biology, 2004, 3: Article3
|
31 |
Huang W, Sherman B T, Lempicki R A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research, 2009, 37(1): 1–13
https://doi.org/10.1093/nar/gkn923
pmid: 19033363
|
32 |
Oliveros J C. VENNY. An interactive tool for comparing lists with Venn Diagrams. , 2016-2
|
33 |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods, 2001, 25(4): 402–408
https://doi.org/10.1006/meth.2001.1262
pmid: 11846609
|
34 |
Poortinga G, Hannan K M, Snelling H, Walkley C R, Jenkins A, Sharkey K, Wall M, Brandenburger Y, Palatsides M, Pearson R B, McArthur G A, Hannan R D. MAD1 and c-MYC regulate UBF and rDNA transcription during granulocyte differentiation. EMBO Journal, 2004, 23(16): 3325–3335
https://doi.org/10.1038/sj.emboj.7600335
pmid: 15282543
|
35 |
Rottmann S, Menkel A R, Bouchard C, Mertsching J, Loidl P, Kremmer E, Eilers M, Lüscher-Firzlaff J, Lilischkis R, Lüscher B. Mad1 function in cell proliferation and transcriptional repression is antagonized by cyclin E/CDK2. Journal of Biological Chemistry, 2005, 280(16): 15489–15492
https://doi.org/10.1074/jbc.C400611200
pmid: 15722557
|
36 |
Zhou Z, Wang N, Woodson S E, Dong Q, Wang J, Liang Y, Rijnbrand R, Wei L, Nichols J E, Guo J T, Holbrook M R, Lemon S M, Li K. Antiviral activities of ISG20 in positive-strand RNA virus infections. Virology, 2011, 409(2): 175–188
https://doi.org/10.1016/j.virol.2010.10.008
pmid: 21036379
|
37 |
Lace M J, Anson J R, Haugen T H, Turek L P. Interferon regulatory factor (IRF)-2 activates the HPV-16 E6-E7 promoter in keratinocytes. Virology, 2010, 399(2): 270–279
https://doi.org/10.1016/j.virol.2009.12.025
pmid: 20129639
|
38 |
Cui L, Deng Y, Rong Y, Lou W, Mao Z, Feng Y, Xie D, Jin D. IRF-2 is over-expressed in pancreatic cancer and promotes the growth of pancreatic cancer cells. Tumour Biology, 2012, 33(1): 247–255
https://doi.org/10.1007/s13277-011-0273-3
pmid: 22119988
|
39 |
Strezoska Z, Pestov D G, Lau L F. Functional inactivation of the mouse nucleolar protein Bop1 inhibits multiple steps in pre-rRNA processing and blocks cell cycle progression. Journal of Biological Chemistry, 2002, 277(33): 29617–29625
https://doi.org/10.1074/jbc.M204381200
pmid: 12048210
|
40 |
Pestov D G, Strezoska Z, Lau L F. Evidence of p53-dependent cross-talk between ribosome biogenesis and the cell cycle: effects of nucleolar protein Bop1 on G(1)/S transition. Molecular and Cellular Biology, 2001, 21(13): 4246–4255
https://doi.org/10.1128/MCB.21.13.4246-4255.2001
pmid: 11390653
|
41 |
Ma Q, Jones D, Springer T A. The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment. Immunity, 1999, 10(4): 463–471
https://doi.org/10.1016/S1074-7613(00)80046-1
pmid: 10229189
|
42 |
Strydom N, Rankin S M. Regulation of circulating neutrophil numbers under homeostasis and in disease. Journal of Innate Immunity, 2013, 5(4): 304–314
https://doi.org/10.1159/000350282
pmid: 23571274
|
43 |
Eash K J, Means J M, White D W, Link D C. CXCR4 is a key regulator of neutrophil release from the bone marrow under basal and stress granulopoiesis conditions. Blood, 2009, 113(19): 4711–4719
https://doi.org/10.1182/blood-2008-09-177287
pmid: 19264920
|
44 |
Chen D, Zhang T L, Wang L M. The association of CSF-1 gene polymorphism with chronic periodontitis in the Han Chinese population. Journal of Periodontology, 2014, 85(8): e304–e312
https://doi.org/10.1902/jop.2014.130688
pmid: 24592910
|
45 |
Yan C, Fang P, Zhang H, Tao J, Tian X, Li Y, Zhang J, Sun M, Li S, Wang H, Han Y. CREG1 promotes angiogenesis and neovascularization. Frontiers in Bioscience, 2014, 19(7): 1151–1161
https://doi.org/10.2741/4272
pmid: 24896341
|
46 |
Martin C, Burdon P C, Bridger G, Gutierrez-Ramos J C, Williams T J, Rankin S M. Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity, 2003, 19(4): 583–593
https://doi.org/10.1016/S1074-7613(03)00263-2
pmid: 14563322
|
47 |
Burdon P C, Martin C, Rankin S M. The CXC chemokine MIP-2 stimulates neutrophil mobilization from the rat bone marrow in a CD49d-dependent manner. Blood, 2005, 105(6): 2543–2548
https://doi.org/10.1182/blood-2004-08-3193
pmid: 15542579
|
48 |
Płóciennikowska A, Hromada-Judycka A, Borzęcka K, Kwiatkowska K. Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling. Cellular and Molecular Life Sciences, 2015, 72(3): 557–581
https://doi.org/10.1007/s00018-014-1762-5
pmid: 25332099
|
49 |
Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nature Immunology, 2001, 2(8): 675–680
https://doi.org/10.1038/90609
pmid: 11477402
|
50 |
Huang Q Q, Pope R M. The role of toll-like receptors in rheumatoid arthritis. Current Rheumatology Reports, 2009, 11(5): 357–364
https://doi.org/10.1007/s11926-009-0051-z
pmid: 19772831
|
51 |
Ioannou S, Voulgarelis M. Toll-like receptors, tissue injury, and tumourigenesis. Mediators of Inflammation, 2010, 2010(9629351): 60–68
pmid: 20871832
|
52 |
Loiarro M, Volpe E, Ruggiero V, Gallo G, Furlan R, Maiorino C, Battistini L, Sette C. Mutational analysis identifies residues crucial for homodimerization of myeloid differentiation factor 88 (MyD88) and for its function in immune cells. Journal of Biological Chemistry, 2013, 288(42): 30210–30222
https://doi.org/10.1074/jbc.M113.490946
pmid: 24019529
|
53 |
Clark S R, Ma A C, Tavener S A, McDonald B, Goodarzi Z, Kelly M M, Patel K D, Chakrabarti S, McAvoy E, Sinclair G D, Keys E M, Allen-Vercoe E, Devinney R, Doig C J, Green F H, Kubes P. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nature Medicine, 2007, 13(4): 463–469
https://doi.org/10.1038/nm1565
pmid: 17384648
|
54 |
McAvoy E F, McDonald B, Parsons S A, Wong C H, Landmann R, Kubes P. The role of CD14 in neutrophil recruitment within the liver microcirculation during endotoxemia. Journal of Immunology, 2011, 186(4): 2592–2601
https://doi.org/10.4049/jimmunol.1002248
pmid: 21217012
|
55 |
Haziot A, Tsuberi B Z, Goyert S M. Neutrophil CD14: biochemical properties and role in the secretion of tumor necrosis factor-alpha in response to lipopolysaccharide. Journal of Immunology, 1993, 150(12): 5556–5565
pmid: 7685797
|
56 |
Serwacka A, Protaziuk T, Zagozda M, Popow A M, Kierzkiewicz M, Manitius J, Myśliwiec M, Daniewska D, Gołebiewski S, Rydzewska-Rosołowska A, Flisiński M, Stępień K, Rydzewska G, Olszewski W L, Rydzewski A. Lack of effect of the CD14 promoter gene C-159T polymorphism on nutritional status parameters in hemodialysis patients. Medical Science Monitor, 2011, 17(2): CR117–CR121
https://doi.org/10.12659/MSM.881397
pmid: 21278688
|
57 |
Janova H, Böttcher C, Holtman I R, Regen T, van Rossum D, Götz A, Ernst A S, Fritsche C, Gertig U, Saiepour N, Gronke K, Wrzos C, Ribes S, Rolfes S, Weinstein J, Ehrenreich H, Pukrop T, Kopatz J, Stadelmann C, Salinas-Riester G, Weber M S, Prinz M, Brück W, Eggen B J, Boddeke H W, Priller J, Hanisch U K. CD14 is a key organizer of microglial responses to CNS infection and injury. Glia, 2016, 64(4): 635–649
https://doi.org/10.1002/glia.22955
pmid: 26683584
|
58 |
Neufeld T P, de la Cruz A F, Johnston L A, Edgar B A. Coordination of growth and cell division in the Drosophila wing. Cell, 1998, 93(7): 1183–1193
https://doi.org/10.1016/S0092-8674(00)81462-2
pmid: 9657151
|
59 |
Blagosklonny M V, Pardee A B. The restriction point of the cell cycle. Cell Cycle, 2002, 1(2): 102–109
https://doi.org/10.4161/cc.1.2.108
pmid: 12429916
|
60 |
Raftopoulou M, Hall A. Cell migration: Rho GTPases lead the way. Developmental Biology, 2004, 265(1): 23–32
https://doi.org/10.1016/j.ydbio.2003.06.003
pmid: 14697350
|
61 |
Luster A D, Alon R, von Andrian U H. Immune cell migration in inflammation: present and future therapeutic targets. Nature Immunology, 2005, 6(12): 1182–1190
https://doi.org/10.1038/ni1275
pmid: 16369557
|
62 |
Lauffenburger D A, Horwitz A F. Cell migration: a physically integrated molecular process. Cell, 1996, 84(3): 359–369
https://doi.org/10.1016/S0092-8674(00)81280-5
pmid: 8608589
|
63 |
Nordenfelt P, Tapper H. Phagosome dynamics during phagocytosis by neutrophils. Journal of Leukocyte Biology, 2011, 90(2): 271–284
https://doi.org/10.1189/jlb.0810457
pmid: 21504950
|
64 |
Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Frontiers in Immunology, 2014, 5(461): 461
pmid: 25309543
|
65 |
Akira S. Toll-like receptor signaling. Journal of Biological Chemistry, 2003, 278(40): 38105–38108
https://doi.org/10.1074/jbc.R300028200
pmid: 12893815
|
66 |
Hiscott J. Triggering the innate antiviral response through IRF-3 activation. Journal of Biological Chemistry, 2007, 282(21): 15325–15329
https://doi.org/10.1074/jbc.R700002200
pmid: 17395583
|
67 |
Sato M, Suemori H, Hata N, Asagiri M, Ogasawara K, Nakao K, Nakaya T, Katsuki M, Noguchi S, Tanaka N, Taniguchi T. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-alpha/beta gene induction. Immunity, 2000, 13(4): 539–548
https://doi.org/10.1016/S1074-7613(00)00053-4
pmid: 11070172
|
68 |
Kurt-Jones E A, Popova L, Kwinn L, Haynes L M, Jones L P, Tripp R A, Walsh E E, Freeman M W, Golenbock D T, Anderson L J, Finberg R W. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nature Immunology, 2000, 1(5): 398–401
https://doi.org/10.1038/80833
pmid: 11062499
|
69 |
Zhou J, Zhang X, Liu S, Wang Z, Chen Q, Wu Y, He Z, Huang Z. Genetic association of TLR4 Asp299Gly, TLR4 Thr399Ile, and CD14 C-159T polymorphisms with the risk of severe RSV infection: a meta-analysis. Influenza and Other Respiratory Viruses, 2016, 10(3): 224–233
https://doi.org/10.1111/irv.12378
pmid: 26901241
|
70 |
Li Q, Shirabe K, Kuwada J Y. Chemokine signaling regulates sensory cell migration in zebrafish. Developmental Biology, 2004, 269(1): 123–136
https://doi.org/10.1016/j.ydbio.2004.01.020
pmid: 15081362
|
71 |
Scapini P, Lapinet-Vera J A, Gasperini S, Calzetti F, Bazzoni F, Cassatella M A. The neutrophil as a cellular source of chemokines. Immunological Reviews, 2000, 177(1): 195–203
https://doi.org/10.1034/j.1600-065X.2000.17706.x
pmid: 11138776
|
72 |
Tecchio C, Cassatella M A. Neutrophil-derived chemokines on the road to immunity. Seminars in Immunology, 2016, 28(2): 119–128
https://doi.org/10.1016/j.smim.2016.04.003
pmid: 27151246
|
73 |
Németh T, Mócsai A, Lowell C A. Neutrophils in animal models of autoimmune disease. Seminars in Immunology, 2016, 28(2): 174–186
https://doi.org/10.1016/j.smim.2016.04.001
pmid: 27067180
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|