| 
					
						|  |  
    					|  |  
    					| The past, present and future of bovine pluripotent stem cells: a brief overview |  
						| Xiuchun TIAN(  ) |  
						| Department of Animal Science, University of Connecticut/UCONN Stem Cell Institute, Storrs, CT 06268-4163, USA |  
						|  |  
					
						| 
								
									|  
          
          
            
              
				
								                
													
													    |  |  
														| 
													
													    | Abstract Although the pursuit of bovine embryonic stem cells started more than 26 years ago for the purpose of gene-targeting, true pluripotent stem cells in this economically important species are still elusive. With the rapid advances in genome-editing and cloning using homologously recombined somatic cells, the need for pluripotent stem cells for precise genetic modification in any species became questionable. With the pig being the better model for human regenerative biology, the identification of the commonalities and uniqueness of the pluripotency circuitry across mammalian species may be the main objective for studying pluripotent stem cells in the bovine. |  
															| Keywords 
																																																				bovine  
																		  																																				embryonic  
																		  																																				induced  
																		  																																				pluripotent stem cells |  
															| Corresponding Author(s):
																Xiuchun TIAN |  
															| Just Accepted Date: 19 December 2018  
																																														Online First Date: 10 January 2019   
																																														Issue Date: 25 February 2019 |  |  
								            
								                
																																												
															| 1 | SSaito,  N Strelchenko,  HNiemann. Bovine embryonic stem cell-like cell lines cultured over several passages. Roux’s Archives of Developmental Biology, 1992, 201(3): 134–141 https://doi.org/10.1007/BF00188711
														     															     															     		pmid: 28305579
 |  
															| 2 | PLi,  C Tong,  RMehrian-Shai,   LJia,  N Wu,  YYan,   R EMaxson,   E NSchulze,   HSong,  C L Hsieh,  M F Pera,  Q L Ying. Germline competent embryonic stem cells derived from rat blastocysts. Cell, 2008, 135(7): 1299–1310 https://doi.org/10.1016/j.cell.2008.12.006
														     															     															     		pmid: 19109898
 |  
															| 3 | F DWest,  E W Uhl,  Y Liu,  HStowe,   YLu,  P Yu,  AGallegos-Cardenas,  S LPratt,   S LStice. Brief report: chimeric pigs produced from induced pluripotent stem cells demonstrate germline transmission and no evidence of tumor formation in young pigs. Stem Cells, 2011, 29(10): 1640–1643 https://doi.org/10.1002/stem.713
														     															     															     		pmid: 22039609
 |  
															| 4 | ABradley,  M Evans,  M HKaufman,   ERobertson. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature, 1984, 309(5965): 255–256 https://doi.org/10.1038/309255a0
														     															     															     		pmid: 6717601
 |  
															| 5 | J AThomson,  J Itskovitz-Eldor,  S SShapiro,   M AWaknitz,   J JSwiergiel,   V SMarshall,   J MJones. Embryonic stem cell lines derived from human blastocysts. Science, 1998, 282(5391): 1145–1147 https://doi.org/10.1126/science.282.5391.1145
														     															     															     		pmid: 9804556
 |  
															| 6 | JNichols,  A Smith. Naive and primed pluripotent states. Cell Stem Cell, 2009, 4(6): 487–492 |  
															| 7 | I GBrons,  L E Smithers,  M W Trotter,  P Rugg-Gunn,  BSun,   S MChuva de Sousa Lopes,  S KHowlett,   AClarkson,   LAhrlund-Richter,   R APedersen,   LVallier. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature, 2007, 448(7150): 191–195 https://doi.org/10.1038/nature05950
														     															     															     		pmid: 17597762
 |  
															| 8 | P JTesar,  J G Chenoweth,  F A Brook,  T J Davies,  E P Evans,  D L Mack,  R L Gardner,  R D McKay. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature, 2007, 448(7150): 196–199 https://doi.org/10.1038/nature05972
														     															     															     		pmid: 17597760
 |  
															| 9 | DJames,  A J Levine,  D Besser,  AHemmati-Brivanlou. TGFβ/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development, 2005, 132(6): 1273–1282 https://doi.org/10.1242/dev.01706
														     															     															     		pmid: 15703277
 |  
															| 10 | KTakahashi,  S Yamanaka. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4): 663–676 https://doi.org/10.1016/j.cell.2006.07.024
														     															     															     		pmid: 16904174
 |  
															| 11 | JYu,  M A Vodyanik,  K Smuga-Otto,  JAntosiewicz-Bourget,  J LFrane,   STian,  J Nie,  G AJonsdottir,   VRuotti,   RStewart,   I ISlukvin,   J AThomson. Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007, 318(5858): 1917–1920 https://doi.org/10.1126/science.1151526
														     															     															     		pmid: 18029452
 |  
															| 12 | CBuecker,  H H Chen,  J M Polo,  L Daheron,  LBu,   T SBarakat,   POkwieka,   APorter,   JGribnau,   KHochedlinger,   NGeijsen. A murine ESC-like state facilitates transgenesis and homologous recombination in human pluripotent stem cells. Cell Stem Cell, 2010, 6(6): 535–546 https://doi.org/10.1016/j.stem.2010.05.003
														     															     															     		pmid: 20569691
 |  
															| 13 | JHanna,  A W Cheng,  K Saha,  JKim,   C JLengner,   FSoldner,   J PCassady,   JMuffat,   B WCarey,   RJaenisch. Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(20): 9222–9227 https://doi.org/10.1073/pnas.1004584107
														     															     															     		pmid: 20442331
 |  
															| 14 | OGafni,  L Weinberger,  A AMansour,   Y SManor,   EChomsky,   DBen-Yosef,   YKalma,   SViukov,   IMaza,  A Zviran,  YRais,   ZShipony,   ZMukamel,   VKrupalnik,   MZerbib,   SGeula,   ICaspi,   DSchneir,   TShwartz,   SGilad,   DAmann-Zalcenstein,   SBenjamin,   IAmit,  A Tanay,  RMassarwa,   NNovershtern,   J HHanna. Derivation of novel human ground state naive pluripotent stem cells. Nature, 2013, 504(7479): 282–286 https://doi.org/10.1038/nature12745
														     															     															     		pmid: 24172903
 |  
															| 15 | JWu,  A Platero-Luengo,  MSakurai,   ASugawara,   M AGil,   TYamauchi,   KSuzuki,   Y SBogliotti,   CCuello,   MMorales Valencia,   DOkumura,   JLuo,  M Vilariño,  IParrilla,   D ASoto,   C AMartinez,   THishida,   SSánchez-Bautista,   M LMartinez-Martinez,   HWang,  A Nohalez,  EAizawa,   PMartinez-Redondo,   AOcampo,   PReddy,   JRoca,  E A Maga,  C R Esteban,  W T Berggren,  E Nuñez Delicado,  JLajara,   IGuillen,   PGuillen,   J MCampistol,   E AMartinez,   P JRoss,   J CIzpisua Belmonte. Interspecies chimerism with mammalian pluripotent stem cells. Cell, 2017, 168(3): 473–486 https://doi.org/10.1016/j.cell.2016.12.036
														     															     															     		pmid: 28129541
 |  
															| 16 | YYang,  B Liu,  JXu,   JWang,  J Wu,  CShi,   YXu,  J Dong,  CWang,   WLai,  J Zhu,  LXiong,   DZhu,  X Li,  WYang,   TYamauchi,   ASugawara,   ZLi,  F Sun,  XLi,   CLi,  A He,  YDu,   TWang,  C Zhao,  HLi,   XChi,  H Zhang,  YLiu,   CLi,  S Duo,  MYin,   HShen,  J C I Belmonte,  H Deng. Derivation of pluripotent stem cells with in vivo embryonic and extraembryonic potency. Cell, 2017, 169(2): 243–257 https://doi.org/10.1016/j.cell.2017.02.005
														     															     															     		pmid: 28388409
 |  
															| 17 | XWu,  M Song,  XYang,   XLiu,  K Liu,  CJiao,   JWang,  C Bai,  GSu,   XLiu,  G Li. Establishment of bovine embryonic stem cells after knockdown of CDX2. Scientific Reports, 2016, 6(1): 28343 https://doi.org/10.1038/srep28343
														     															     															     		pmid: 27320776
 |  
															| 18 | J BCibelli,  S L Stice,  P J Golueke,  J J Kane,  J Jerry,  CBlackwell,   F A Pde León,   J MRobl. Transgenic bovine chimeric offspring produced from somatic cell-derived stem-like cells. Nature Biotechnology, 1998, 16(7): 642–646 https://doi.org/10.1038/nbt0798-642
														     															     															     		pmid: 9661197
 |  
															| 19 | Y SBogliotti,   JWu,  M Vilarino,  DOkamura,   D ASoto,   CZhong,   MSakurai,   R VSampaio,   KSuzuki,   J CIzpisua Belmonte,   P JRoss. Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(9): 2090–2095 https://doi.org/10.1073/pnas.1716161115
														     															     															     		pmid: 29440377
 |  
															| 20 | HSumer,  J Liu,  L FMalaver-Ortega,   M LLim,   KKhodadadi,   P JVerma. NANOG is a key factor for induction of pluripotency in bovine adult fibroblasts. Journal of Animal Science, 2011, 89(9): 2708–2716 https://doi.org/10.2527/jas.2010-3666
														     															     															     		pmid: 21478453
 |  
															| 21 | XHan,  J Han,  FDing,   SCao,  S S Lim,  Y Dai,  RZhang,   YZhang,   BLim,  N Li. Generation of induced pluripotent stem cells from bovine embryonic fibroblast cells. Cell Research, 2011, 21(10): 1509–1512 https://doi.org/10.1038/cr.2011.125
														     															     															     		pmid: 21826109
 |  
															| 22 | HCao,  P Yang,  YPu,   XSun,  H Yin,  YZhang,   YZhang,   YLi,  Y Liu,  FFang,   ZZhang,   YTao,  X Zhang. Characterization of bovine induced pluripotent stem cells by lentiviral transduction of reprogramming factor fusion proteins. International Journal of Biological Sciences, 2012, 8(4): 498–511 https://doi.org/10.7150/ijbs.3723
														     															     															     		pmid: 22457605
 |  
															| 23 | T RTalluri,  D Kumar,  SGlage,   WGarrels,   ZIvics,   KDebowski,   RBehr,  H Niemann,  W AKues. Derivation and characterization of bovine induced pluripotent stem cells by transposon-mediated reprogramming. Cellular Reprogramming, 2015, 17(2): 131–140 https://doi.org/10.1089/cell.2014.0080
														     															     															     		pmid: 25826726
 |  
															| 24 | L FMalaver-Ortega,   HSumer,   JLiu,  P J Verma. Inhibition of JAK-STAT ERK/MAPK and glycogen synthase kinase-3 induces a change in gene expression profile of bovine induced pluripotent stem cells. Stem Cells International, 2016, 2016: 5127984 https://doi.org/10.1155/2016/5127984
														     															     															     		pmid: 26880968
 |  
															| 25 | S WWang,  S S Wang,  D C Wu,  Y C Lin,  C C Ku,  C C Wu,  C Y Chai,  J N Lee,  E M Tsai,  C L Lin,  R C Yang,  Y C Ko,  H S Yu,  C Huo,  C PChuu,   YMurayama,   YNakamura,   SHashimoto,   KMatsushima,   CJin,  R Eckner,  C SLin,   SSaito,   K KYokoyama. Androgen receptor-mediated apoptosis in bovine testicular induced pluripotent stem cells in response to phthalate esters. Cell Death & Disease, 2013, 4(11): e907 https://doi.org/10.1038/cddis.2013.420
														     															     															     		pmid: 24201806
 |  
															| 26 | Y CLin,  K K Kuo,  K Wuputra,  S HLin,   C CKu,   Y HYang,   S WWang,   S WWang,   D CWu,   C CWu,   C YChai,   C LLin,   C SLin,   MKajitani,   HMiyoshi,   YNakamura,   SHashimoto,   KMatsushima,   CJin,  S K Huang,  S Saito,  K KYokoyama. Bovine induced pluripotent stem cells are more resistant to apoptosis than testicular cells in response to mono-(2-ethylhexyl) phthalate. International Journal of Molecular Sciences, 2014, 15(3): 5011–5031 https://doi.org/10.3390/ijms15035011
														     															     															     		pmid: 24658443
 |  
															| 27 | Y THeo,  X Quan,  Y NXu,   SBaek,  H Choi,  N HKim,   JKim. CRISPR/Cas9 nuclease-mediated gene knock-in in bovine-induced pluripotent cells. Stem Cells and Development, 2015, 24(3): 393–402 https://doi.org/10.1089/scd.2014.0278
														     															     															     		pmid: 25209165
 |  
															| 28 | TKawaguchi,  T Tsukiyama,  KKimura,   SMatsuyama,   NMinami,   MYamada,   HImai. Generation of naïve bovine induced pluripotent stem cells using piggyBac transposition of doxycycline-inducible transcription factors. PLoS One, 2015, 10(8): e0135403 https://doi.org/10.1371/journal.pone.0135403
														     															     															     		pmid: 26287611
 |  
															| 29 | TKawaguchi,  D Cho,  MHayashi,   TTsukiyama,   KKimura,   SMatsuyama,   NMinami,   MYamada,   HImai. Derivation of induced trophoblast cell lines in cattle by doxycycline-inducible piggyBac vectors. PLoS One, 2016, 11(12): e0167550 https://doi.org/10.1371/journal.pone.0167550
														     															     															     		pmid: 27907214
 |  
															| 30 | N CTalbot,  W O Sparks,  C E Phillips,  A D Ealy,  A M Powell,  T J Caperna,  W M Garrett,  D M Donovan,  L A Blomberg. Bovine trophectoderm cells induced from bovine fibroblasts with induced pluripotent stem cell reprogramming factors. Molecular Reproduction and Development, 2017, 84(6): 468–485 https://doi.org/10.1002/mrd.22797
														     															     															     		pmid: 28332752
 |  
															| 31 | TEzashi,  H Matsuyama,  B PTelugu,   R MRoberts. Generation of colonies of induced trophoblast cells during standard reprogramming of porcine fibroblasts to induced pluripotent stem cells. Biology of Reproduction, 2011, 85(4): 779–787 https://doi.org/10.1095/biolreprod.111.092809
														     															     															     		pmid: 21734265
 |  
															| 32 | T JWilliams,  R K Munro,  J N Shelton. Production of interspecies chimeric calves by aggregation of Bos indicus and Bos taurus demi-embryos. Reproduction, Fertility, and Development, 1990, 2(4): 385–394 https://doi.org/10.1071/RD9900385
														     															     															     		pmid: 2217895
 |  
															| 33 | ABoediono,  T Suzuki,  L YLi,   R AGodke. Offspring born from chimeras reconstructed from parthenogenetic and in vitro fertilized bovine embryos. Molecular Reproduction and Development, 1999, 53(2): 159–170 https://doi.org/10.1002/(SICI)1098-2795(199906)53:2<159::AID-MRD5>3.0.CO;2-X
														     															     															     		pmid: 10331454
 |  
															| 34 | M IHiriart,  R J Bevacqua,  N G Canel,  R Fernández-Martín,  D FSalamone. Production of chimeric embryos by aggregation of bovine egfp eight-cell stage blastomeres with two-cell fused and asynchronic embryos. Theriogenology, 2013, 80(4): 357–364 https://doi.org/10.1016/j.theriogenology.2013.04.023
														     															     															     		pmid: 23735715
 |  
															| 35 | KSimmet,  M Reichenbach,  H DReichenbach,   EWolf. Phytohemagglutinin facilitates the aggregation of blastomere pairs from Day 5 donor embryos with Day 4 host embryos for chimeric bovine embryo multiplication. Theriogenology, 2015, 84(9): 1603–1610 https://doi.org/10.1016/j.theriogenology.2015.08.012
														     															     															     		pmid: 26409823
 |  
															| 36 | E MRazza,  R A Satrapa,  I P Emanuelli,  C M Barros,  M F Nogueira. Screening of biotechnical parameters for production of bovine inter-subspecies embryonic chimeras by the aggregation of tetraploid Bos indicus and diploid crossbred Bos taurus embryos. Reproductive Biology, 2016, 16(1): 34–40 https://doi.org/10.1016/j.repbio.2015.11.003
														     															     															     		pmid: 26952751
 |  
															| 37 | SSaito,  K Sawai,  HUgai,   SMoriyasu,   AMinamihashi,   YYamamoto,   HHirayama,   SKageyama,   JPan,  T Murata,  YKobayashi,   YObata,   K KYokoyama. Generation of cloned calves and transgenic chimeric embryos from bovine embryonic stem-like cells. Biochemical and Biophysical Research Communications, 2003, 309(1): 104–113 https://doi.org/10.1016/S0006-291X(03)01536-5
														     															     															     		pmid: 12943670
 |  
															| 38 | SIwasaki,  K H Campbell,  C Galli,  KAkiyama,   SIwasaki. Production of live calves derived from embryonic stem-like cells aggregated with tetraploid embryos. Biology of Reproduction, 2000, 62(2): 470–475 https://doi.org/10.1095/biolreprod62.2.470
														     															     															     		pmid: 10642589
 |  
															| 39 | TFurusawa,  K Ohkoshi,  KKimura,   SMatsuyama,   SAkagi,   MKaneda,   MIkeda,   MHosoe,   KKizaki,   TTokunaga. Characteristics of bovine inner cell mass-derived cell lines and their fate in chimeric conceptuses. Biology of Reproduction, 2013, 89(2): 28 https://doi.org/10.1095/biolreprod.112.106641
														     															     															     		pmid: 23782837
 |  
															| 40 | MCasal,  M Haskins. Large animal models and gene therapy. European Journal of Human Genetics, 2006, 14(3): 266–272 https://doi.org/10.1038/sj.ejhg.5201535
														     															     															     		pmid: 16333317
 |  
															| 41 | P AHarper,  P J Healy,  J A Dennis. Animal model of human disease. Citrullinemia (argininosuccinate synthetase deficiency). American Journal of Pathology, 1989, 135(6): 1213–1215 pmid: 2596577
 |  
								            
												
											    	
											        	|  | Viewed |  
											        	|  |  |  
												        |  | Full text 
 | 
 
 |  
												        |  |  |  
												        |  | Abstract 
 | 
 |  
												        |  |  |  
												        |  | Cited |  |  
												        |  |  |  |  
													    |  | Shared |  |  
													    |  |  |  |  
													    |  | Discussed |  |  |  |  |