Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2014, Vol. 1 Issue (1) : 28-36    https://doi.org/10.15302/J-FASE-2014012
RESEARCH ARTICLE
In vivo and in vitro development of Tibetan antelope (Pantholops hodgsonii) interspecific cloned embryos
Guanghua SU,Lei CHENG,Yu GAO,Kun LIU,Zhuying WEI,Chunling BAI,Fengxia YIN,Li GAO,Guangpeng LI,Shorgan BOU()
The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Key Laboratory of Herbivore Reproductive Biotechnology and Breeding Ministry of Agriculture, Inner Mongolia University, Hohhot 010021, China
 Download: PDF(1008 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The Tibetan antelope is endemic to the Tibetan Plateau, China, and is now considered an endangered species. As a possible rescue strategy, the development of embryos constructed by interspecies somatic cell nuclear transfer (iSCNT) was examined. Tibetan antelope fibroblast cells were transferred into enucleated bovine, ovine and caprine oocytes. These cloned embryos were then cultured in vitro or in the oviducts of intermediate animals.

Less than 0.5% of the reconstructed antelope-bovine embryos cultured in vitro developed to the blastocyst stage. However, when the cloned antelope-bovine embryos were transferred to caprine oviducts, about 1.6% of the embryos developed to the blastocyst stage. In contrast, only 0.7% of the antelope-ovine embryos developed to the morula stage and none developed to blastocysts in ovine oviducts. The treatment of donor cells and bovine oocytes with trichostatin A did not improve the embryo development even when cultured in the oviducts of ovine and caprine. When the antelope-bovine embryos, constructed from oocytes treated with roscovitine or trichostatin A, were cultured in rabbit oviducts 2.3% and 14.3% developed to blastocysts, respectively. It is concluded that although some success was achieved with the protocols used, interspecies cloning of Tibetan antelope presents difficulties still to be overcome. The mechanisms resulting in the low embryo development need investigation and progress might require a deeper understanding of cellular reprogramming.

Keywords interspecific nuclear transfer      bovine      ovine      caprine      oviduct      apoptosis     
Corresponding Author(s): Shorgan BOU   
Issue Date: 22 May 2014
 Cite this article:   
Guanghua SU,Lei CHENG,Yu GAO, et al. In vivo and in vitro development of Tibetan antelope (Pantholops hodgsonii) interspecific cloned embryos[J]. Front. Agr. Sci. Eng. , 2014, 1(1): 28-36.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2014012
https://academic.hep.com.cn/fase/EN/Y2014/V1/I1/28
Fig.1  Karyotype analyses of Tibetan antelope, bovine, caprine and ovine. (a) Tibetan antelope, 2n = 60; (b) bovine, 2n = 60; (c) caprine, 2n = 60; and (d) ovine, 2n = 54. ( × 1000).
Fig.2  Representative images of the Tibetan antelope interspecific SCNT embryos cultured in vitro or in vivo. (a) Antelope-bovine blastocyst derived from roscovitine-treated oocytes and incubated in rabbit oviduct; (b) antelope-bovine blastocyst derived from TSA-treated oocytes and incubated in rabbit oviduct; (c) antelope-bovine blastocyst incubated in caprine oviduct; (d) blastocyst obtained from in vitro culture; (e) 8- to 16-cell stage antelope-ovine cloned embryos cultured in vitro; (F) 8- to 16-cell stage antelope-bovine cloned embryos cultured in vitro. Each scale bar represents 100 μm.
Donor cellsOocytesReplicatesEmbryos culturedEmbryos cleaved /%8- to 16-cell embryos /%Morulae /%Blastocysts /%
AntelopeBovine9420234 (55.7)a82 (19.5)a3 (0.71)a2 (0.47)a
AntelopeOvine7236152 (64.4)a122 (51.7)c00
BovineBovine5257168 (75.1)b142 (55.3)c112 (43.6)c82 (31.9)c
OvineOvine6195158 (81.0)b59 (30.1)b28 (14.3)a23 (11.8)a
Tab.1  The in vitro development of the Tibetan antelope interspecific cloned embryos
OocytesIntermediate animalsReplicatesEmbryos fused /%Embryos transferredEmbryos recovered /%Over 2-cell /%8- cell embryos /%Morulae /%Blastocysts /%
OvineOvine7435 (81.9)429130 (30.3)a31 (23.8)a4 (3.1)a1 (0.7)a0
BovineOvine338 (79.1)3520 (57.1)a10 (50)b2 (10)a00
BovineCaprine4178 (81.3)16862 (36.9)a16 (25.8)a5 (8.1)a1 (1.6)a1 (1.6)
Tab.2  The in vivo development in intermediate animal oviducts of the Tibetan antelope interspecific cloned embryos
TreatmentsOocytesIntermediate animalsReplicatesCleaved /%Embryos transferredEmbryos recovered /%Morulae /%Blastocysts /%
ROSBovineRabbit4136 (52.9)13643 (31.7)a01 (2.3)a
TSABovineRabbit358 (58.6)587 (12.1)b01 (14.3)a
TSAOvineOvine322 (60.1)224 (18.2)b2 (50)0
TSACaprineCaprine372 (52.8)7219 (25.3)ab00
Untreated controlBovineRabbit4128 (54.0)12849 (38.3)a00
Tab.3  Oviduct in vivo development of Tibetan antelope interspecific embryos from ROS- and TSA-treated oocytes
Fig.3  Apoptosis in interspecific cloned embryos. (a) Antelope-bovine morulae cultured in vitro; (b) antelope-bovine morulae cultured in vivo. TUNEL stain or apoptosis appears green and nucleic acid appears red. The arrows indicate the sites of apoptosis. Each scale bar represents 100 μm.
1 Lei R H, Jian Z G, Hu Z, Yang W. Phylogenetic relationships of Chinese antelopes (sub family Antilopinae) based on mitochondrial ribosomal RNA gene sequences. Journal of Zoology, 2003, 261(3): 227-237
https://doi.org/10.1017/S0952836903004163
2 Ruan X D, He P J, Zhang J L, Wan Q H, Fang S G. Evolutionary history and current population relationships of the chiru (Pantholops hodgsonii) inferred from mtDNA variation. Journal of Mammalogy, 2005, 86(5): 881-886
https://doi.org/10.1644/1545-1542(2005)86[881:EHACPR]2.0.CO;2
3 Leslie D M, Schaller G B. Pantholops hodgsonii (Artiodactyla: Bovidae). Mammalian Species, 2008, 817(1): 1-13
https://doi.org/10.1644/817.1
4 Mallon D P. Pantholops hodgsonii. In: IUCN 2008. IUCN Red List of Threatened Species, 2008
5 Fei J, Yang J, Zhou H, Tang M, Lu W, Yan A, Hou Y, Zhang S. A novel method for identifying shahtoosh. Journal of Forensic Sciences, 2014. 〔first published online〕
https://doi.org/10.1111/1556-4029.12374 pmid: 24502476
6 Chen D, Sun Q, Liu J, Li G, Lian L, Wang M, Han Z, Song X, Li J, Sun Q, Chen Y, Zhang Y, Ding B. The giant panda (Ailuropoda melanoleuca) somatic nucleus can dedifferentiate in rabbit ooplasm and support early development of the reconstructed egg. Science in China (Series C), 1999, 42(4): 346-353
https://doi.org/10.1007/BF02882053 pmid: 18763124
7 Li J S, Chen D Y, Han Z M, Zhu Z Y, Wen R C, Liu Z H, Wang M K, Lian L, Du J, Wang P Y, Zhang H M. The effect of series nuclear transfer protocol on the embryonic development of the giant panda interpecies cloning. Chinese Science Bulletin, 2001, 46(22): 1899-1901
8 Zhao Z J, Li R C, Cao H H, Zhang Q J, Jiang M X, Ouyang Y C, Nan C L, Lei Z L, Song X F, Sun Q Y, Chen D Y. Interspecies nuclear transfer of Tibetan antelope using caprine oocyte as recipient. Molecular Reproduction and Development, 2007, 74(4): 412-419
https://doi.org/10.1002/mrd.20608 pmid: 17034044
9 Ty L V, Hanh N V, Uoc N T, Duc N H, Thanh N T, Huu Q X, Nguyen B X. Preliminary results of cell cryobanking and embryo production of black bear (Ursus thibetanus) by interspecies somatic cell nuclear transfer. Theriogenology, 2003, 59: 290
10 White K L, Bunch T D, Mitalipov S, Reed W A. Establishment of pregnancy after the transfer of nuclear transfer embryos produced from the fusion of argali (Ovis ammon) nuclei into domestic sheep (Ovis aries) enucleated oocytes. Cloning, 1999, 1(1): 47-54
https://doi.org/10.1089/15204559950020085 pmid: 16218829
11 Sansinena M J, Hylan D, Hebert K, Denniston R S, Godke R A. Banteng (Bos javanicus) embryos and pregnancies produced by interspecies nuclear transfer. Theriogenology, 2005, 63(4): 1081-1091
https://doi.org/10.1016/j.theriogenology.2004.05.025 pmid: 15710195
12 Ikumi S, Sawai K, Takeuchi Y, Iwayama H, Ishikawa H, Ohsumi S, Fukui Y. Interspecies somatic cell nuclear transfer for in vitro production of Antarctic minke whale (Balaenoptera bonaerensis) embryos. Cloning and Stem Cells, 2004, 6(3): 284-293
https://doi.org/10.1089/clo.2004.6.284 pmid: 15671674
13 Williams J B, Shin T, Liu L, Flores-Foxworth G, Romano J, Blue-McClendon A, Kraemer D, Westhusin M E. Cloning of exotic/endangered species: desert bighorn sheep. Methods in Molecular Biology, 2006, 348: 169-181
https://doi.org/10.1007/978-1-59745-154-3_11 pmid: 16988379
14 Li Y, Dai Y, Du W, Zhao C, Wang L, Wang H, Liu Y, Li R, Li N. In vitro development of yak (Bos grunniens) embryos generated by interspecies nuclear transfer. Animal Reproduction Science, 2007, 101(1-2): 45-59
https://doi.org/10.1016/j.anireprosci.2006.09.018 pmid: 17055195
15 Li Y, Dai Y, Du W, Zhao C, Wang H, Wang L, Li R, Liu Y, Wan R, Li N. Cloned endangered species takin (Budorcas taxicolor)?by inter-species nuclear transfer and comparison of the blastocyst development with yak (Bos grunniens)?and bovine. Molecular Reproduction and Development, 2006, 73(2): 189-195
https://doi.org/10.1002/mrd.20405 pmid: 16220543
16 Song J, Hua S, Song K, Zhang Y. Culture, characteristics and chromosome complement of Siberian tiger fibroblasts for nuclear transfer. In Vitro Cellular& Developmental Biology-Animal, 2007, 43(7): 203-209
https://doi.org/10.1007/s11626-007-9043-3 pmid: 17763919
17 Damiani P, Wirtu G, Miller F. Development of gianteland (Taurotragus oryx) and bovine (Bos taurus) oocytes. Theriogenology, 2007, 59: 390
18 Tao Y, Liu J, Zhang Y, Zhang M, Fang J, Han W, Zhang Z, Liu Y, Ding J, Zhang X. Fibroblast cell line establishment, cryopreservation and interspecies embryos reconstruction in red panda (Ailurus fulgens). Zygote, 2009, 17(2): 117-124
https://doi.org/10.1017/S0967199408004966 pmid: 19232145
19 Bhuiyan M M, Suzuki Y, Watanabe H, Lee E, Hirayama H, Matsuoka K, Fujise Y, Ishikawa H, Ohsumi S, Fukui Y. Production of sei whale (Balaenoptera borealis) cloned embryos by inter- and intra-species somatic cell nuclear transfer. Journal of Reproduction and Development, 2010, 56(1): 131-139
https://doi.org/10.1262/jrd.09-158A pmid: 19893277
20 Vogel G. Cloned gaur a short-lived success. Science, 2001, 291(5503): 409
https://doi.org/10.1126/science.291.5503.409A pmid: 11228123
21 Yang C Y, Li R C, Pang C Y, Yang B Z, Qin G S, Chen M T, Zhang X F, Huang F X, Zheng H Y, Huang Y J, Liang X W. Study on the inter-subspecies nuclear transfer of river buffalo somatic cell nuclei into swamp buffalo oocyte cytoplasm. Animal Reproduction Science, 2010, 121(1-2): 78-83
https://doi.org/10.1016/j.anireprosci.2010.05.011 pmid: 20621244
22 Liu K, Wu X, Wei Z Y, Bai C L, Su G H, Li G P. Comparative of the cytogenetic characteristics of Pantholops hodgsonii and other three species in Bovidae. Acta Theriologica Sinica, 2014, 34(1): 71-79
23 Xue L, Cheng L, Su G, Kang F, Wu X, Bai C, Zhang L, Li G P. Nuclear transfer procedures in the ovine can induce early embryo fragmentation and compromise cloned embryo development. Animal Reproduction Science, 2011, 126(3-4): 179-186
https://doi.org/10.1016/j.anireprosci.2011.05.015 pmid: 21700405
24 Duan B, Cheng L, Gao Y, Yin F X, Su G H, Shen Q Y, Liu K, Hu X, Liu X, Li G P. Silencing of fat-1 transgene expression in sheep may result from hypermethylation of its driven cytomegalovirus (CMV) promoter. Theriogenology, 2012, 78(4): 793-802
https://doi.org/10.1016/j.theriogenology.2012.03.027 pmid: 22541322
25 Li G P, Bunch T D, White K L, Rickords L, Liu Y, Sessions B R. Denuding and centrifugation of maturing bovine oocytes alters oocyte spindle integrity and the ability of cytoplasm to support parthenogenetic and nuclear transfer embryo development. Molecular Reproduction and Development, 2006, 73(4): 446-451
https://doi.org/10.1002/mrd.20436 pmid: 16425229
26 Bai C, Liu H, Liu Y, Wu X, Cheng L, Bou S, Li G P. Diploid oocyte formation and tetraploid embryo development induced by cytochalasin B in bovine. Cellular Reprogramming, 2011, 13(1): 37-45
https://doi.org/10.1089/cell.2010.0038 pmid: 21235344
27 Frankfurt O S, Krishan A. Identification of apoptotic cells by formamide-induced DNA denaturation in condensed chromatin. Journal of Histochemistry and Cytochemistry, 2001, 49(3): 369-378
https://doi.org/10.1177/002215540104900311 pmid: 11181740
28 Zhao Z J, Ouyang Y C, Nan C L, Lei Z L, Song X F, Sun Q Y, Chen D Y. Rabbit oocyte cytoplasm supports development of nuclear transfer embryos derived from the somatic cells of the camel and Tibetan antelope. Journal of Reproduction and Development, 2006, 52(3): 449-459
https://doi.org/10.1262/jrd.17095 pmid: 16575155
29 Dominko T, Mitalipova M, Haley B, Beyhan Z, Memili E, McKusick B, First N L. Bovine oocyte cytoplasm supports development of embryos produced by nuclear transfer of somatic cell nuclei from various mammalian species. Biology of Reproduction, 1999, 60(6): 1496-1502
https://doi.org/10.1095/biolreprod60.6.1496 pmid: 10330111
30 Chen D Y, Wen D C, Zhang Y P, Sun Q Y, Han Z M, Liu Z H, Shi P, Li J S, Xiangyu J G, Lian L, Kou Z H, Wu Y Q, Chen Y C, Wang P Y, Zhang H M. Interspecies implantation and mitochondria fate of panda-rabbit cloned embryos. Biology of Reproduction, 2002, 67(2): 637-642
https://doi.org/10.1095/biolreprod67.2.637 pmid: 12135908
31 Yang X, Smith S L, Tian X C, Lewin H A, Renard J P, Wakayama T. Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nature Genetics, 2007, 39(3): 295-302
https://doi.org/10.1038/ng1973 pmid: 17325680
32 Beebe L F, McIlfatrick S J, Nottle M B. Cytochalasin B and trichostatin a treatment postactivation improves in vitro development of porcine somatic cell nuclear transfer embryos. Cloning and Stem Cells, 2009, 11(4): 477-482
https://doi.org/10.1089/clo.2009.0029 pmid: 19780698
33 Bui H T, Wakayama S, Kishigami S, Park K K, Kim J H, Thuan N V, Wakayama T. Effect of trichostatin A on chromatin remodeling, histone modifications, DNA replication, and transcriptional activity in cloned mouse embryos. Biology of Reproduction, 2010, 83(3): 454-463
https://doi.org/10.1095/biolreprod.109.083337 pmid: 20505166
34 Wittayarat M, Namula Z, Luu V, Do L T, Sato Y, Taniguchi M, Otoi T. Effect of trichostatin A on in vitro embryo development of interspecies nuclear transfer embryos reconstructed from cat donor nuclei and bovine cytoplasm. Reproduction, Fertility, and Development, 2012, 25(1): 161
https://doi.org/10.1071/RDv25n1Ab28
35 Hofmann J F, Sykora M, Redemann N, Beug H. G1-Cdk activity is required for both proliferation and viability of cytokine-dependent myeloid and erythroid cells. Oncogene, 2001, 20(31): 4198-4208
https://doi.org/10.1038/sj.onc.1204550 pmid: 11464286
36 Van Blerkom J. Mitochondria as regulatory forces in oocytes, preimplantation embryos and stem cells. Reproductive Biomedicine Online, 2008, 16(4): 553-569
https://doi.org/10.1016/S1472-6483(10)60463-4 pmid: 18413065
37 Wen D C, Bi C M, Xu Y, Yang C X, Zhu Z Y, Sun Q Y, Chen D Y. Hybrid embryos produced by transferring panda or cat somatic nuclei into rabbit MII oocytes can develop to blastocyst in vitro. Journal of Experimental Zoology Part A: Comparative Experimental Biology, 2005, 303A(8): 689-697
https://doi.org/10.1002/jez.a.191 pmid: 16013061
38 Song J, Hua S, Song K, Zhang Y. Culture, characteristics and chromosome complement of Siberian tiger fibroblasts for nuclear transfer. In Vitro Cellular & Developmental Biology-Animal, 2007, 43(7): 203-209
https://doi.org/10.1007/s11626-007-9043-3 pmid: 17763919
[1] Yanna DANG, Kun ZHANG. Factors affecting early embryonic development in cattle: relevance for bovine cloning[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 33-41.
[2] Xiuchun TIAN. The past, present and future of bovine pluripotent stem cells: a brief overview[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 3-7.
[3] Min ZHANG,Xueqian CHENG,Dan CHU,Jingwen LIANG,Yi SUN,Li MA,Beilei XU,Min ZHENG,Meili WANG,Liming REN,Xiaoxiang HU,Qingyong MENG,Ran ZHANG,Ying GUO,Yunping DAI,Robert AITKEN,Ning LI,Yaofeng ZHAO. Depletion of conventional mature B cells and compromised specific antibody response in bovine immunoglobulin μ heavy-chain transgenic mice[J]. Front. Agr. Sci. Eng. , 2014, 1(2): 158-173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed