Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2015, Vol. 2 Issue (3) : 195-204    https://doi.org/10.15302/J-FASE-2015063
REVIEW
Progress in NMR-based metabolomics of Catharanthus roseus
Qifang PAN,Jingya ZHAO,Yuliang WANG,Kexuan TANG()
Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
 Download: PDF(1126 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Metabolomics has been rapidly developed as an important field in plant sciences and natural products chemistry. As the only natural source for a diversity of monoterpenoid indole alkaloids (MIAs), especially the low-abundance antitumor agents vinblastine and vincristine, Catharanthus roseus is highly valued and has been studied extensively as a model for medicinal plants improvement. Due to multistep enzymatic biosynthesis and complex regulation, genetic modification in the MIA pathway has resulted in complicated changes of both secondary and primary metabolism in C. roseus, affecting not only the MIA pathway but also other pathways. Research at the metabolic level is necessary to increase knowledge on the genetic regulation of the whole metabolic network connected to MIA biosynthesis. Nuclear magnetic resonance (NMR) is a very suitable and powerful complementary technique for the identification and quantification of metabolites in the plant matrix. NMR-based metabolomics has been used in studies of C. roseus for pathway elucidation, understanding stress responses, classification among different cultivars, safety and quality controls of transgenic plants, cross talk between pathways, and diversion of carbon fluxes, with the aim of fully unravelling MIA biosynthesis, its regulation and the function of the alkaloids in the plant from a systems biology point of view.

Keywords Catharanthus roseus      monoterpenoid indole alkaloids      NMR      metabolomics     
Corresponding Author(s): Kexuan TANG   
Just Accepted Date: 22 July 2015   Online First Date: 13 August 2015    Issue Date: 10 November 2015
 Cite this article:   
Qifang PAN,Jingya ZHAO,Yuliang WANG, et al. Progress in NMR-based metabolomics of Catharanthus roseus[J]. Front. Agr. Sci. Eng. , 2015, 2(3): 195-204.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2015063
https://academic.hep.com.cn/fase/EN/Y2015/V2/I3/195
Materials Identified metabolites NMR application Publication
Stem Syringetin-3-O-robinobioside 1H-NMR, 13C-NMR [6]
Leaf Glutamates, glucose, polyphenols, succinic acid, sucrose, chlorogenic acid, loganic acid, secologanin, and vindoline 1H-NMR, J-resolved, COSY, HMBC [7]
Hairy root Lysine, proline, tyrosine, hydroxyacetone, levulinic acid HSQC, TOCSY [8]
Flower Anthocyanindin-1-galactose, anthocyanindin-1-rhamnose, anthocyanindin-2-galactose, anthocyanindin-2-rhamnose 1H-NMR, 13C-NMR [9]
Root Flavonoid glucosides 13C-NMR, COSY, HETCOR, HSQC [10]
Calli Valine, lactic, threonine, alanine, arginine, acetic acid, glutamic acid, malic acid, succinic acid, citric acid, asparagine, 2-oxoglutaric acid, choline, oxalacetic acid, sucrose, lactose, glucose, fumaric acid, phenylalanine, tryptophan, formic acid 1H-NMR [11]
Cell cultures Leucine, isoleucine, valine, threonine, alanine, glutamic acid, aspartic acid, glucose, sucrose, fumaric acid, phenylalanine, salicylic acid, gentisic acid glucoside (2,5-dihydroxybenzoic acid glucoside) 1H-NMR, J-resolved, COSY [12]
Cell cultures Salicylic acid, 2,3-DHBA 13C-NMR, HSQC [13]
Flower, leaf, stem,root Isoleucine, leucine, valine, threonine, alanine, arginine, glutamic acid, glutamine, asparic acid, asparagine, serine, 2,3-butanediol, quinic acid, lactic acid, acetic acid, malic acid, citric acid, ketoglutaric acid, succinic acid, oxalacetic acid, fumaric acid, sucrose, α-glucose, β-glucose, choline, chlorogenic acid, 2,3-DHBA, quercetin analogs, kaemferol analogs, loganic acid, secologanin, catharanthine, vindoline, vindolinine, 4-O-caffeoyl quinic acid 1H-NMR, J-resolved, COSY [14,15]
Tab.1  Different types of NMR applied to identification of metabolites in Catharanthus roseus
Fig.1  Scheme of NMR-based metabolomics analysis in Catharanthus roseus
Fig.2  1H-NMR spectra of extracts of different organs of Catharanthus roseus with the assigned metabolites.1, root; 2, stem; 3, lower leaf; 4, upper leaf; 5, flower. (a) Alphatic amino acids in the range of δ 0.5−3.1; (b) aromatic metabolites in the range of δ 6.0−8.5.
Fig.3  1H-NMR investigation and multivariate data analysis of different organs in C. roseus. (a) PLS-DA score plot, in which blue color represents root, green color represents stem, red color represents old leaf, orange color represents young leaf, and black color represents flower; (b) PLS-DA loading plot.
Fig.4  13C dimension of HSQC spectra of amino acids (δ 10×10–6–55×10–6) in different organs (a) and 2-D [13C, 1H] HSQC spectrum displaying amino acid resonances in leaves (b) of Catharanthus roseus after feeding [1-13C] glucose. (a) L, labeled samples; N, non-labeled samples; M, malate; C2/3/4, the position of carbon in metabolites; (b) A, alanine; D, aspartate; E, glutamate; T, threonine; N, asparagine; Q, glutamine; R, arginine; LA, loganic acid; MA, malate; VI, vindoline; MeOH, methanol.
Fig.5  Schematic effects of ORCA3, or G10H, overexpression on the metabolism of Catharanthus roseus plants based on NMR spectrum. Green box shows ORCA3 overexpression (the OR lines) and pink box is for G10H and ORCA3 co-overexpression (the GO lines). The up arrow in the box represents the increase of metabolite content. The down arrow in the box represents the decrease of metabolite content. Arrows with star in the box represent significant difference (P<0.05 by ANOVA) of metabolite content compared with the controls[15].
1 Sumner  L W, Mendes  P, Dixon  R A. Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry, 2003, 62(6): 817–836
https://doi.org/10.1016/S0031-9422(02)00708-2 pmid: 12590110
2 Schauer  N, Fernie  A R. Plant metabolomics: towards biological function and mechanism. Trends in Plant Science, 2006, 11(10): 508–516
https://doi.org/10.1016/j.tplants.2006.08.007 pmid: 16949327
3 Miettinen  K, Dong  L, Navrot  N, Schneider  T, Burlat  V, Pollier  J, Woittiez  L, van der Krol  S, Lugan  R, Ilc  T, Verpoorte  R, Oksman-Caldentey  K M, Martinoia  E, Bouwmeester  H, Goossens  A, Memelink  J, Werck-Reichhart  D. The seco-iridoid pathway from Catharanthus roseus. Nature Communications, 2014, 5: 3606
https://doi.org/10.1038/ncomms4606 pmid: 24710322
4 De Luca  V, Salim  V, Thamm  A, Masada  S A, Yu  F. Making iridoids/secoiridoids and monoterpenoid indole alkaloids: progress on pathway elucidation. Current Opinion in Plant Biology, 2014, 19: 35–42
https://doi.org/10.1016/j.pbi.2014.03.006 pmid: 24709280
5 Kim  H K, Choi  Y H, Verpoorte  R. NMR-based metabolomic analysis of plants. Nature Protocols, 2010, 5(3): 536–549
https://doi.org/10.1038/nprot.2009.237 pmid: 20203669
6 Brun  G, Dijoux  M G, David  B, Mariotte  A M. A new flavonol glycoside from Catharanthus roseus. Phytochemistry, 1999, 50(1): 167–169
https://doi.org/10.1016/S0031-9422(98)00501-9
7 Choi  Y H, Tapias  E C, Kim  H K, Lefeber  A W M, Erkelens  C, Verhoeven  J T J, Brzin  J, Zel  J, Verpoorte  R. Metabolic discrimination of Catharanthus roseus leaves infected by phytoplasma using 1H-NMR spectroscopy and multivariate data analysis. Plant Physiology, 2004, 135(4): 2398–2410
https://doi.org/10.1104/pp.104.041012 pmid: 15286294
8 Sriram  G, Fulton  D B, Shanks  J V. Flux quantification in central carbon metabolism of Catharanthus roseus hairy roots by 13C labeling and comprehensive bondomer balancing. Phytochemistry, 2007, 68(16−18): 2243–2257
https://doi.org/10.1016/j.phytochem.2007.04.009 pmid: 17532015
9 Toki  K, Saito  N, Irie  Y, Tatsuzawa  F, Shigihara  A, Honda  T. 7-O-Methylated anthocyanidin glycosides from Catharanthus roseus. Phytochemistry, 2008, 69(5): 1215–1219
https://doi.org/10.1016/j.phytochem.2007.11.005 pmid: 18164044
10 Chung  I M, Ahmad  A, Ali  M, Lee  O K, Kim  M Y, Kim  J H, Yoon  D Y, Peebles  C A M, San  K Y. Flavonoid glucosides from the hairy roots of Catharanthus roseus. Journal of Natural Products, 2009, 72(4): 613–620
https://doi.org/10.1021/np800378q pmid: 19271765
11 Yang  S O, Kim  S H, Kim  Y, Kim  H S, Chun  Y J, Choi  H K. Metabolic discrimination of Catharanthus roseus calli according to their relative locations using 1H-NMR and principal component analysis. Bioscience, Biotechnology, and Biochemistry, 2009, 73(9): 2032–2036
https://doi.org/10.1271/bbb.90240 pmid: 19734668
12 Mustafa  N R, Kim  H K, Choi  Y H, Verpoorte  R. Metabolic changes of salicylic acid-elicited Catharanthus roseus cell suspension cultures monitored by NMR-based metabolomics. Biotechnology Letters, 2009, 31(12): 1967–1974
https://doi.org/10.1007/s10529-009-0107-1 pmid: 19701606
13 Mustafa  N R, Kim  H K, Choi  Y H, Erkelens  C, Lefeber  A W M, Spijksma  G, van der Heijden  R, Verpoorte  R. Biosynthesis of salicylic acid in fungus elicited Catharanthus roseus cells. Phytochemistry, 2009, 70(4): 532–539
https://doi.org/10.1016/j.phytochem.2009.01.009 pmid: 19251288
14 Pan  Q, Dai  Y, Nuringtyas  T R, Mustafa  N R, Schulte  A E, Verpoorte  R, Choi  Y H. Investigation of the chemomarkers correlated with flower colour in different organs of Catharanthus roseus using NMR-based metabolomics. Phytochemical Analysis, 2014, 25(1): 66–74
https://doi.org/10.1002/pca.2464 pmid: 24151112
15 Pan  Q, Wang  Q, Yuan  F, Xing  S, Zhao  J, Choi  Y H, Verpoorte  R, Tian  Y, Wang  G, Tang  K. Overexpression of ORCA3 and G10H in Catharanthus roseus plants regulated alkaloid biosynthesis and metabolism revealed by NMR-metabolomics. PLoS ONE, 2012, 7(8): e43038
https://doi.org/10.1371/journal.pone.0043038 pmid: 22916202
16 Pan  Q, Mustafa  N R, Tang  K, Choi  Y H, Verpoorte  R. Monoterpenoid indole alkaloids biosynthesis and its regulation in Catharanthus roseus: a literature review from genes to metabolites. Phytochemistry Reviews, 2015, DOI: 10.1007/s11101–015–9406–4 (first published online) 
17 Mahrous  E A, Farag  M A. Two dimensional NMR spectroscopic approaches for exploring plant metabolome: a review. Journal of Advanced Research, 2015, 6(1): 3–15
https://doi.org/10.1016/j.jare.2014.10.003 pmid: 25685540
18 van der Kooy  F, Maltese  F, Choi  Y H, Kim  H K, Verpoorte  R. Quality control of herbal material and phytopharmaceuticals with MS and NMR based metabolic fingerprinting. Planta Medica, 2009, 75(7): 763–775
https://doi.org/10.1055/s-0029-1185450 pmid: 19288400
19 Murata  J, Luca  V D. Localization of tabersonine 16-hydroxylase and 16-OH tabersonine-16-O-methyltransferase to leaf epidermal cells defines them as a major site of precursor biosynthesis in the vindoline pathway in Catharanthus roseus. Plant Journal, 2005, 44(4): 581–594
https://doi.org/10.1111/j.1365-313X.2005.02557.x pmid: 16262708
20 Murata  J, Roepke  J, Gordon  H, De Luca  V. The leaf epidermome of Catharanthus roseus reveals its biochemical specialization. Plant Cell, 2008, 20(3): 524–542
https://doi.org/10.1105/tpc.107.056630 pmid: 18326827
21 Ratcliffe  R G, Shachar-Hill  Y. Revealing metabolic phenotypes in plants: inputs from NMR analysis. Biological Reviews of the Cambridge Philosophical Society, 2005, 80(1): 27–43
https://doi.org/10.1017/S1464793104006530 pmid: 15727037
22 Stephanopoulos  G, Stafford  D E. Metabolic engineering: a new frontier of chemical reaction engineering. Chemical Engineering Science, 2002, 57(14): 2595–2602
https://doi.org/10.1016/S0009-2509(02)00088-X
23 Ratcliffe  R G, Shachar-Hill  Y. Measuring multiple fluxes through plant metabolic networks. The Plant Journal, 2006, 45(4): 490–511
https://doi.org/10.1111/j.1365-313X.2005.02649.x pmid: 16441345
24 Kim  S W, Ban  S H, Jeong  S C, Chung  H J, Ko  S M, Yoo  O J, Liu  J R. Genetic discrimination between Catharanthus roseus cultivars by metabolic fingerprinting using1H NMR spectra of aromatic compounds. Biotechnology and Bioprocess Engineering, 2007, 12(6): 646–652
https://doi.org/10.1007/BF02931081
25 Hoekenga  O A. Using metabolomics to estimate unintended effects in transgenic crop plants: problems, promises, and opportunities. Journal of Biomolecular Techniques, 2008, 19(3): 159–166
pmid: 19137102
26 Contin  A, van der Heijden  R, Lefeber  A W M, Verpoorte  R. The iridoid glucoside secologanin is derived from the novel triose phosphate/pyruvate pathway in a Catharanthus roseus cell culture. FEBS Letters, 1998, 434(3): 413–416
https://doi.org/10.1016/S0014-5793(98)01022-9 pmid: 9742965
27 Muljono  R A B, Scheffer  J J C, Verpoorte  R. Isochorismate is an intermediate in 2, 3-dihydroxybenzoic acid biosynthesis in Catharanthus roseus cell cultures. Plant Physiology and Biochemistry, 2002, 40(3): 231–234
https://doi.org/10.1016/S0981-9428(02)01369-4
28 Schuhr  C A, Radykewicz  T, Sagner  S, Latzel  C, Zenk  M H, Arigoni  D, Bacher  A, Rohdich  F, Eisenreich  W. Quantitative assessment of crosstalk between the two isoprenoid biosynthesis pathways in plants by NMR spectroscopy. Phytochemistry Reviews, 2003, 2(1−2): 3–16
https://doi.org/10.1023/B:PHYT.0000004180.25066.62
29 Sriram  G, González-Rivera  O, Shanks  J V. Determination of biomass composition of Catharanthus roseus hairy roots for metabolic flux analysis. Biotechnology Progress, 2006, 22(6): 1659–1663
pmid: 17137315
30 Fukushima  A, Kusano  M, Redestig  H, Arita  M, Saito  K. Integrated omics approaches in plant systems biology. Current Opinion in Chemical Biology, 2009, 13(5−6): 532–538
https://doi.org/10.1016/j.cbpa.2009.09.022 pmid: 19837627
31 Urbanczyk-Wochniak  E, Luedemann  A, Kopka  J, Selbig  J, Roessner-Tunali  U, Willmitzer  L, Fernie  A R. Parallel analysis of transcript and metabolic profiles: a new approach in systems biology. EMBO Reports, 2003, 4(10): 989–993
https://doi.org/10.1038/sj.embor.embor944 pmid: 12973302
32 Okazaki  Y, Shimojima  M, Sawada  Y, Toyooka  K, Narisawa  T, Mochida  K, Tanaka  H, Matsuda  F, Hirai  A, Hirai  M Y, Ohta  H, Saito  K. A chloroplastic UDP-glucose pyrophosphorylase from Arabidopsis is the committed enzyme for the first step of sulfolipid biosynthesis. Plant Cell, 2009, 21(3): 892–909
https://doi.org/10.1105/tpc.108.063925 pmid: 19286968
33 Lackman  P, González-Guzmán  M, Tilleman  S, Carqueijeiro  I, Pérez  A C, Moses  T, Seo  M, Kanno  Y, Häkkinen  S T, Van Montagu  M C, Thevelein  J M, Maaheimo  H, Oksman-Caldentey  K M, Rodriguez  P L, Rischer  H, Goossens  A. Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(14): 5891–5896
https://doi.org/10.1073/pnas.1103010108 pmid: 21436041
34 Rischer  H, Orešič  M, Seppänen-Laakso  T, Katajamaa  M, Lammertyn  F, Ardiles-Diaz  W, Van Montagu  M C, Inzé  D, Oksman-Caldentey  K M, Goossens  A. Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(14): 5614–5619
https://doi.org/10.1073/pnas.0601027103 pmid: 16565214
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed