Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2015, Vol. 2 Issue (3) : 266-275    https://doi.org/10.15302/J-FASE-2015064
RESEARCH ARTICLE
Temporal changes in the characteristics of algae in Dianchi Lake, Yunnan Province, China
Ruixia SHEN1,Chunyan TIAN1,Zhidan LIU1,*(),Yuanhui ZHANG1,2,*(),Baoming LI1,Haifeng LU1,Na DUAN1
1. Laboratory of Environment-Enhancing Energy (E2E) and Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
2. Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
 Download: PDF(942 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Algal blooms have become a worldwide environmental concern due to water eutrophication. Dianchi Lake in Yunnan Province, China is suffering from severe eutrophication and is listed in the Three Important Lakes Restoration Act of China. Hydrothermal liquefaction allows a promising and direct conversion of algal biomass into biocrude oil. In this study, algal samples were collected from Dianchi Lake after a separation procedure including dissolved air flotation with polyaluminum chloride and centrifugation during four months, April, June, August and October. The algal biochemical components varied over the period; lipids from 0.7% to 2.1% ash-free dry weight (afdw), protein from 20.9% to 33.4% afdw and ash from 36.6% to 45.2% dry weight. The algae in June had the highest lipid and protein concentrations, leading to a maximum biocrude oil yield of 24.3% afdw. Biodiversity analysis using pyrosequencing revealed different distributions of microbial communities, specifically Microcystis in April (89.0%), June (63.7%) and August (84.0%), and Synechococcus in April (2.2%), June (12.0%) and August (1.0%). This study demonstrated remarkable temporal changes in the biochemical composition and biodiversity of algae harvested from Dianchi Lake and changes in biocrude oil production potential.

Keywords algal blooms      temporal change      biochemical property      biodiversity      hydrothermal liquefaction     
Corresponding Author(s): Zhidan LIU,Yuanhui ZHANG   
Just Accepted Date: 23 July 2015   Online First Date: 13 August 2015    Issue Date: 10 November 2015
 Cite this article:   
Ruixia SHEN,Chunyan TIAN,Zhidan LIU, et al. Temporal changes in the characteristics of algae in Dianchi Lake, Yunnan Province, China[J]. Front. Agr. Sci. Eng. , 2015, 2(3): 266-275.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2015064
https://academic.hep.com.cn/fase/EN/Y2015/V2/I3/266
Fig.1  Flow diagram of the harvest and separation process for algal samples from Dianchi Lake with temporal changes. The harvesting procedure mainly included dissolved air flotation, slurry regulation and centrifugation.
Sampling months April June August October
Proximate Analysis
Moisturea/% ?9.0±0.3 ?8.9±0.4 ?8.5±0.1 13.0±0.1
Volatile matterb/% 45.4±0.0 42.5±0.1 44.4±1.8 45.4±0.1
Ash contentb/% 41.0±0.4 36.6±0.1 45.2±0.2 40.9±0.1
Fixed carbonb/% 13.6±0.1 20.9±0.2 10.4±1.7 13.7±0.2
HHV*/(MJ·kg−1) ?9.3±0.1 11.2±0.2 ?7.2±0.1 ?8.0±0.0
Chemical Analysisc/%
Crude lipids ?1.0±0.4 ?2.1±1.4 ?0.8±0.5 ?0.7±0.4
Crude proteins 24.6±0.2 33.4±0.2 20.9±0.1 22.6±0.7
Crude fiber 12.8±6.4 13.9±0.1 25.9±5.3 19.2±3.9
Non-fibrous carbohydratesc,*/% 61.6±4.2 50.6±1.3 52.4±4.3 57.6±3.0
HTL Biocrude Oilc/%
Biocrude oil yields 16.5±1.0 24.3±1.7 14.5±0.3 16.5±0.3
Tab.1  Characteristics of the harvested algal samples from Dianchi Lake and their biocrude oil yields using HTL
Fig.2  Rarefaction curves of the harvested algal samples from Dianchi Lake at three sampling times, April, June and August. The curves of all samples were at a 97% similarity level.
Sampling months Reads Similarity level= 0.97
OTU Ace Chao Shannon Simpson
April 11912 40 43 43 1.39 0.36
June 9078 50 52 51 1.84 0.23
August 13880 46 46 46 1.45 0.34
Tab.2  Biodiversity analysis of the harvested algal samples from Dianchi Lake with temporal changes
Fig.3  Venn diagram for the harvested algal samples from Dianchi Lake at three sampling times, April, June and August. The numbers represents operational taxonomic units (OTU). The number of OTU and their overlaps between algal samples from different sampling times are indicated.
Fig.4  Pictures of algal samples (a) and taxonomic classification of pyrosequencing for the microbial communities of the harvested algal samples from Dianchi Lake at three sampling times, April, June and August for orders (b) and genera (c). No rank, indicates no scientific names in current taxonomic database; Unclassified, represents the communities with a classification score below 0.7.
Fig.5  Heatmap of the harvested algal samples from Dianchi Lake at three sampling times, April, June and August. The phylogenetic tree reveals the similarities between different algal samples from three sampling times.
Sampling months April June August October
Ultimate/organic elements analysis of algal samplesa/%
Carbon (C) 22.600? 27.470? 20.320? 23.330?
Hydrogen (H) 4.290 4.210 4.370 4.540
Nitrogen (N) 3.264 4.768 2.583 3.003
Oxygen (O) 28.200? 27.360? 27.970? 28.260?
Inorganic elements analysis of the algal ash a/%
Aluminum (Al) 10.156? 8.385 13.573? 11.378?
iron (Fe) 3.913 3.439 5.028 4.676
Silicon (Si) 3.206 2.912 2.912 3.090
Calcium (Ca) 2.936 3.120 1.252 1.533
Titanium (Ti) 0.356 0.257 0.338 0.327
Potassium (K) 0.268 0.310 0.226 0.281
Magnesium (Mg) 0.247 0.444 0.156 0.178
Manganum (Mn) 0.047 0.043 0.041 0.054
Sodium (Na) 0.042 0.044 0.066 0.063
Zirconium (Zr) 0.020 0.014 0.020 0.019
Chromium (Cr) 0.018 0.015 0.021 0.019
Strontium (Sr) 0.011 0.013 0.006 0.009
Zincum (Zn) 0.009 0.010 0.009 0.009
Gallium (Ga) 0.005 0.004 0.006 0.005
Copper (Cu) 0.004 0.003 0.004 0.004
Niccolum (Ni) 0.004 0.003 0.004 0.004
Yttrium (Y) 0.002 0.003 0.003 0.003
Oxygenb (O) 19.171? 16.956? 21.048? 18.766?
Sulfur (S) 0.318 0.218 0.319 0.289
Phosphorus (P) 0.246 0.330 0.203 0.220
Chlorine (Cl) 0.035 0.026 ND ND
Bromine (Br) 0.003 0.003 ND ND
Tab.3  Analysis of the elements in harvested algal samples and algal ash
1 Smolders  A J P, Lamers  L P M, Lucassen  E C H E, Van Der Velde  G, Roelofs  J G M. Internal eutrophication: how it works and what to do about it—a review. Chemistry and Ecology, 2006, 22(2): 93–111
https://doi.org/10.1080/02757540600579730
2 Wen  D H, Bai  Y H, Shi  Q, Li  Z X, Sun  Q H, Sun  R H, Feng  C P, Tang  X Y. Bacterial diversity in the polluted water of the Dianchi Lakeshore in China. Annals of Microbiology, 2012, 62(2): 715–723
https://doi.org/10.1007/s13213-011-0311-9
3 Catherine  Q, Susanna  W, Isidora  E S, Mark  H, Aurélie  V, Jean-François  H. A review of current knowledge on toxic benthic freshwater cyanobacteria—ecology, toxin production and risk management. Water Research, 2013, 47(15): 5464–5479
https://doi.org/10.1016/j.watres.2013.06.042 pmid: 23891539
4 Tian  C Y, Li  B M, Liu  Z D, Zhang  Y H, Lu  H F. Hydrothermal liquefaction for algal biorefinery: a critical review. Renewable & Sustainable Energy Reviews, 2014, 38: 933–950
https://doi.org/10.1016/j.rser.2014.07.030
5 Gouveia  L. Microalgae as a Feedstock for Biofuels. London: Springer, 2011.
6 Gupta  V, Ratha  S K, Sood  A, Chaudhary  V, Prasanna  R. New insights into the biodiversity and applications of cyanobacteria (blue-green algae)-Prospects and challenges. Algal Research, 2013, 2(2): 79–97
https://doi.org/10.1016/j.algal.2013.01.006
7 Li  H, Liu  Z, Zhang  Y, Li  B, Lu  H, Duan  N, Liu  M, Zhu  Z, Si  B. Conversion efficiency and oil quality of low-lipid high-protein and high-lipid low-protein microalgae via hydrothermal liquefaction. Bioresource Technology, 2014, 154: 322–329
https://doi.org/10.1016/j.biortech.2013.12.074 pmid: 24413449
8 Yu  G, Zhang  Y H, Schideman  L, Funk  T, Wang  Z C. Distributions of carbon and nitrogen in the products from hydrothermal liquefaction of low-lipid microalgae. Energy & Environmental Science, 2011, 4(11): 4587–4595
https://doi.org/10.1039/c1ee01541a
9 Biller  P, Ross  A B. Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresource Technology, 2011, 102(1): 215–225
https://doi.org/10.1016/j.biortech.2010.06.028 pmid: 20599375
10 Valdez  P J, Tocco  V J, Savage  P E. A general kinetic model for the hydrothermal liquefaction of microalgae. Bioresource Technology, 2014, 163: 123–127
https://doi.org/10.1016/j.biortech.2014.04.013 pmid: 24793402
11 Richmond  A. Handbook of microalgal culture: biotechnology and applied phycology. Oxford: Blackwell Publishing, 2004
12 Andersson  A F, Riemann  L, Bertilsson  S. Pyrosequencing reveals contrasting seasonal dynamics of taxa within Baltic Sea bacterioplankton communities. The ISME Journal, 2010, 4(2): 171–181
https://doi.org/10.1038/ismej.2009.108 pmid: 19829318
13 Xing  W, Huang  W M, Liu  Y D, Li  D H, Shen  Y W, Li  G B. Environmental mechanism of change in cyanobacterial species composition in the northeastern part of Lake Dianchi (China). Fresenius Environmental Bulletin, 2007, 16(1): 82–90
14 Anthony  R J, Ellis  J T, Sathish  A, Rahman  A, Miller  C D, Sims  R C. Effect of coagulant/flocculants on bioproducts from microalgae. Bioresource Technology, 2013, 149: 65–70
https://doi.org/10.1016/j.biortech.2013.09.028 pmid: 24084206
15 Sheng  H, Liu  H, Wang  C Y, Guo  H C, Liu  Y, Yang  Y H. Analysis of cyanobacteria bloom in the Waihai part of Dianchi Lake, China. Ecological Informatics, 2012, 10: 37–48
https://doi.org/10.1016/j.ecoinf.2012.03.007
16 Zhu  L, Wu  C Q, Yao  Y J, Zhang  Y J. Spatial and temporal distribution variation and meteorological factors analyzing of algal blooms based on HJ-1 satellites in Lake Dianchi, China, 2009. IEEE, 2010: 2769–2772
17 González López  C V, García  M C, Fernández  F G A, Bustos  C S, Chisti  Y, Sevilla  J M F. Protein measurements of microalgal and cyanobacterial biomass. Bioresource Technology, 2010, 101(19): 7587–7591
https://doi.org/ 10.1016/j.biortech.2010.04.077 pmid: 20494571
18 Tian  C, Liu  Z, Zhang  Y, Li  B, Cao  W, Lu  H, Duan  N, Zhang  L, Zhang  T. Hydrothermal liquefaction of harvested high-ash low-lipid algal biomass from Dianchi Lake: effects of operational parameters and relations of products. Bioresource Technology, 2015, 184: 336–343
https://doi.org/10.1016/j.biortech.2014.10.093 pmid: 25466998
19 Nübel  U, Garcia-Pichel  F, Muyzer  G. PCR primers to amplify 16S rRNA genes from cyanobacteria. Applied and Environmental Microbiology, 1997, 63(8): 3327–3332
pmid: 9251225
20 Singleton  D R, Jones  M D, Richardson  S D, Aitken  M D. Pyrosequence analyses of bacterial communities during simulated in situ bioremediation of polycyclic aromatic hydrocarbon-contaminated soil. Applied Microbiology and Biotechnology, 2013, 97(18): 8381–8391
https://doi.org/10.1007/s00253-012-4531-0 pmid: 23132343
21 Sun  F, Pei  H Y, Hu  W R, Li  X Q, Ma  C X, Pei  R T. The cell damage of Microcystis aeruginosa in PACl coagulation and floc storage processes. Separation and Purification Technology, 2013, 115: 123–128
https://doi.org/10.1016/j.seppur.2013.05.004
22 Hu  Z Q, Zheng  Y, Yan  F, Xiao  B, Liu  S M. Bio-oil production through pyrolysis of blue-green algae blooms (BGAB): product distribution and bio-oil characterization. Energy, 2013, 52: 119–125
https://doi.org/10.1016/j.energy.2013.01.059
23 Anderson  D M, Glibert  P M, Burkholder  J M. Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries, 2002, 25(4): 704–726
https://doi.org/10.1007/BF02804901
24 Khan  F A, Ansari  A A. Eutrophication: an ecological vision. Botanical Review, 2005, 71(4): 449–482
https://doi.org/10.1663/0006-8101(2005)071[0449:EAEV]2.0.CO;2
25 Wang  K, Colica  G, De Philippis  R, Liu  Y, Li  D. Biosorption of copper by cyanobacterial bloom-derived biomass harvested from the eutrophic Lake Dianchi in China. Current Microbiology, 2010, 61(4): 340–345
https://doi.org/10.1007/s00284-010-9617-2 pmid: 20213101
26 Liu  Z H, Liu  X H, He  B, Nie  J F, Peng  J Y, Zhao  L. Spatio-temporal change of water chemical elements in Lake Dianchi, China. Water and Environmental Journal, 2009, 23(3): 235–244
https://doi.org/10.1111/j.1747-6593.2008.00144.x
27 Wu  L, Feng  W S. Temporal heterogeneity of plankton community in Lake Dianchi and its relation to environmental factors. Journal of Freshwater Ecology, 2012, 27(2): 229–241
https://doi.org/10.1080/02705060.2012.657828
28 Bao  Z X. The temporal and spatial variation of aquatic phytoplankton and microcystin in Dianchi Lake and the removal of microcvstin with bacteria. Dissertation for the Master Degree. Kunming: Yunnan University, 2012 (in Chinese)
29 Davis  T W, Berry  D L, Boyer  G L, Gobler  C J. The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae, 2009, 8(5): 715–725
https://doi.org/10.1016/j.hal.2009.02.004
30 Zhou  Y, Schideman  L, Yu  G, Zhang  Y H. A synergistic combination of algal wastewater treatment and hydrothermal biofuel production maximized by nutrient and carbon recycling. Energy & Environmental Science, 2013, 6(12): 3765–3779
https://doi.org/10.1039/c3ee24241b
31 Xue  C, Liu  X, Qi  C, Wei  H, Song  X, Liu  Y, Hao  B. Element geochemical characteristics of modern sediments in the Dianchi Lake, Kunming, and their environmental significance. Acta Petrologica Et Mneralogica, 2007, 26(6): 582–590 (in Chinese)
32 Yuan  Z, Taoran  S, Yan  Z, Tao  Y. Spatial distribution and risk assessment of heavy metals in sediments from a hypertrophic plateau lake Dianchi, China. Environmental Monitoring and Assessment, 2014, 186(2): 1219–1234
https://doi.org/10.1007/s10661-013-3451-5 pmid: 24078143
33 Paerl  H W, Fulton  R S 3rd, Moisander  P H, Dyble  J. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. The Scientific World Journal, 2001, 1: 76–113
https://doi.org/10.1100/tsw.2001.16 pmid: 12805693
34 Takaara  T, Sano  D, Konno  H, Omura  T. Cellular proteins of Microcystis aeruginosa inhibiting coagulation with polyaluminum chloride. Water Research, 2007, 41(8): 1653–1658
https://doi.org/10.1016/j.watres.2007.01.035 pmid: 17353025
35 Huang  W, Bi  Y, Hu  Z. Effects of fertilizer-urea on growth, photosynthetic activity and microcystins production of Microcystis aeruginosa isolated from Dianchi Lake. Bulletin of Environmental Contamination and Toxicology, 2014, 92(5): 514–519
https://doi.org/10.1007/s00128-014-1217-6 pmid: 24515350
36 De Philippis  R, Colica  G, Micheletti  E. Exopolysaccharide-producing cyanobacteria in heavy metal removal from water: molecular basis and practical applicability of the biosorption process. Applied Microbiology and Biotechnology, 2011, 92(4): 697–708
https://doi.org/10.1007/s00253-011-3601-z pmid: 21983706
[1] Deli WANG, Ling WANG, Jushan LIU, Hui ZHU, Zhiwei ZHONG. Grassland ecology in China: perspectives and challenges[J]. Front. Agr. Sci. Eng. , 2018, 5(1): 24-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed