Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2018, Vol. 5 Issue (1) : 24-43    https://doi.org/10.15302/J-FASE-2018205
REVIEW
Grassland ecology in China: perspectives and challenges
Deli WANG(), Ling WANG, Jushan LIU, Hui ZHU, Zhiwei ZHONG
Key Laboratory of Vegetation Ecology/Key Laboratory of Wetland Conservation and Restoration, School of Environment/Institute of Grassland Science, Northeast Normal University, Changchun 130024, China
 Download: PDF(835 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

During the last few decades, there have been an increasing number of studies on grassland ecology in China, involving the classic ecology concepts or theories and the applicable ecological principles of grassland conservation or management. This paper reviews the main progress in the following aspects. (1) Research on grassland species adaptation and resistance, population dynamics and foraging behavior, and biodiversity and community stability. (2) Research on managed grassland ecosystems (grassland grazing ecology) including grazing effects on grassland ecosystem function and foraging behavior by large herbivores. (3) Global climate change and grassland processes and functioning. (4) Applied research on grassland restoration and ecosystem health assessments such as vegetation restoration, restoration of ecosystem functioning, and assessment methods. There have been significant advances in grassland ecology, including the functions of ecosystem biodiversity, the ecological stoichiometry mechanisms affecting grassland community stability, grazing regulation of plant diversity and nutrient cycling. Grassland ecologists have succeeded in making these advances through observational, experimental and theoretical studies. Nevertheless, there are still significant challenges for the grassland ecology research, including understanding of grassland spatial processes, grassland grazing and multi-functionality, integrated effects of global climate change across grassland areas, as well as the ecological methodology and experimental techniques in grassland ecology.

Keywords biodiversity      climate change      China      grazing      meadow      restoration      steppe     
Corresponding Author(s): Deli WANG   
Just Accepted Date: 12 February 2018   Issue Date: 21 March 2018
 Cite this article:   
Deli WANG,Ling WANG,Jushan LIU, et al. Grassland ecology in China: perspectives and challenges[J]. Front. Agr. Sci. Eng. , 2018, 5(1): 24-43.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2018205
https://academic.hep.com.cn/fase/EN/Y2018/V5/I1/24
Fig.1  Outline of the stages in research on grassland ecology in China
Fig.2  Number of published papers on livestock grazing effects on grassland structure and function with different keywords every 5 years since 1985
Fig.3  Number of published papers on livestock grazing with different keywords effects on grassland every 5 years since 1985
1 Wang D L, Hou F J, Liang C Z, Zhu T C. Research on the grassland ecosystem. In: China Association for Science and Technology, eds. Development reports on ecology discipline. Beijing: China Science & Technology Press, 2012 (in Chinese)
2 Zhu T. A primary analysis to the vegetation near Sartu, Heilongjiang Province. Acta Botanica Sinica, 1955, 4(2): 117–135 (in Chinese)
3 Ma Y Q. A primary report on vegetation in the Inner Mongolian deserts. Journal of Inner Mongolia University, 1960, 1: 61–69 (in Chinese)
4 Zhu T C. The grasslands of the western of Northeast and the eastern of Inner Mongolia. In: Proceedings of the 1st Grassland Scientific Symposium of the Western of Northeast and the Eastern of Inner Mongolia. Changchun: Northeast Normal University Press, 1960 (in Chinese)
5 Zhang Z T. Effects of grazing on vegetation near water source in Hulunbeier grasslands. In: Proceedings of 1st Symposium on Grassland Science of Western Northeast China and Eastern Inner-Mongolia. Changchun: Jilin Normal University Press, 1960, 37–48 (in Chinese)
6 Li J T, Li B, Liu L Q, Fu J R. The vegetation of Shertara, Hulunbeir grassland, Inner Mongolia. Beijing: Science Press, 1986 (in Chinese)
7 Inner Mongolia Grassland Ecosystem Research Station. Research on grassland ecosystem. Beijing: Science Press, 1985 (in Chinese)
8 Inner Mongolia Grassland Ecosystem Research Station. Research on grassland ecosystem. Beijing: Science Press, 1988 (in Chinese)
9 Inner Mongolia Grassland Ecosystem Research Station. Research on grassland ecosystem. Beijing: Science Press, 1990 (in Chinese)
10 Liu J K, Wang Z W. Alpine meadow ecosystem. Beijing: Science Press, 1991 (in Chinese)
11 Bai Y, Han X, Wu J, Chen Z, Li L. Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 2004, 431(7005): 181–184
https://doi.org/10.1038/nature02850 pmid: 15356630
12 Wang L, Wang D L, He Z B, Liu G F, Hodgkinson K C. Mechanisms linking plant species richness to foraging of a large herbivore. Journal of Applied Ecology, 2010, 47(4): 868–875
https://doi.org/10.1111/j.1365-2664.2010.01837.x
13 Yu Q, Chen Q, Elser J J, He N, Wu H, Zhang G, Wu J, Bai Y, Han X. Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability. Ecology Letters, 2010, 13(11): 1390–1399
https://doi.org/10.1111/j.1461-0248.2010.01532.x pmid: 20849443
14 Zhong Z, Li X, Pearson D, Wang D, Sanders D, Zhu Y, Wang L. Ecosystem engineering strengthens bottom-up and weakens top-down effects via trait-mediated indirect interactions. Proceedings of Royal Society: Biological Science, 2017, 284(1863): 20170894
https://doi.org/10.1098/rspb.2017.0894 pmid: 28931733
15 Yang C W, Guo W Q, Shi D C. Physiological roles of organic acids in alkali-tolerance of the alkali-tolerant halophyte. Agronomy Journal, 2010, 102(4): 1081–1089
https://doi.org/10.2134/agronj2009.0471
16 Liu J, Zhou Y, Luo C, Xiang Y, An L. De novo transcriptome sequencing of desert herbaceous Achnatherum splendens (Achnatherum) seedlings and identification of salt tolerance genes. Genes, 2016, 7(4): 12
https://doi.org/10.3390/genes7040012 pmid: 27023614
17 Wang S M, Zhang J L, Flowers T J. Low-affinity Na+ uptake in the halophyte Suaeda maritima. Plant Physiology, 2007, 145(2): 559–571
https://doi.org/10.1104/pp.107.104315 pmid: 17766398
18 Wang C M, Zhang J L, Liu X S, Li Z, Wu G Q, Cai J Y, Flowers T J, Wang S M. Puccinellia tenuiflora maintains a low Na+ level under salinity by limiting unidirectional Na+ influx resulting in a high selectivity for K+ over Na+. Plant, Cell & Environment, 2009, 32(5): 486–496
https://doi.org/10.1111/j.1365-3040.2009.01942.x pmid: 19183292
19 Yu C W, Murphy T M, Lin C H. Hydrogen peroxide-induced chilling tolerance in mung beans mediated through ABA-independent glutathione accumulation. Functional Plant Biology, 2003, 30(9): 955–963
https://doi.org/10.1071/FP03091
20 Liu Y J, Zhao Z G, Si J, Di C X, Han J, An L Z. Brassinosteroids alleviate chilling-induced oxidative damage by enhancing antioxidant defense system in suspension cultured cells of Chorispora bungeana. Plant Growth Regulation, 2009, 59(3): 207–214
https://doi.org/10.1007/s10725-009-9405-9
21 Zhao Z, Tan L, Dang C, Zhang H, Wu Q, An L. Deep-sequencing transcriptome analysis of chilling tolerance mechanisms of a subnival alpine plant, Chorispora bungeana. BMC Plant Biology, 2012, 12(1): 222
https://doi.org/10.1186/1471-2229-12-222 pmid: 23171377
22 Xu Z, Zhou G. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. Journal of Experimental Botany, 2008, 59(12): 3317–3325
https://doi.org/10.1093/jxb/ern185 pmid: 18648104
23 Xu Z, Zhou G, Shimizu H. Are plant growth and photosynthesis limited by pre-drought following rewatering in grass? Journal of Experimental Botany, 2009, 60(13): 3737–3749
https://doi.org/10.1093/jxb/erp216 pmid: 19596698
24 Ma Q, Li Y X, Yuan H J, Hu J, Wei L, Bao A K, Zhang J L, Wang S M. ZxSOS1 is essential for long-distance transport and spatial distribution of Na+ and K+ in the xerophyte Zygophyllum xanthoxylum. Plant and Soil, 2014, 374(1–2): 661–676
https://doi.org/10.1007/s11104-013-1891-x
25 Jiang J L, Su M, Chen Y R, Gao N, Jiao C J, Sun Z X, Li F M, Wang C Y. Correlation of drought resistance in grass pea (Lathyrus sativus) with reactive oxygen species scavenging and osmotic adjustment. Biologia, 2013, 68(2): 231–240
https://doi.org/10.2478/s11756-013-0003-y
26 Zhong Z C, Zeng B. Research trends and advances on plant population ecology. Journal of Southwest Normal University, 2001, 26: 230–236 (in Chinese)
27 Yang Y F, Zhang B T. An analysis of seasonal variation of vegetative propagation and the relationships between biomass and population density of Aneurolepidium chinensis in Songnen plain of China. Acta Botanica Sinica, 1992, 34(2): 443–449 (in Chinese)
28 Yang Y F, Liu G C, Zhang B T. An analysis of age structure and the strategy for asexual propagation of Leymus chinensis population. Acta Botanica Sinica, 1995, 37(7): 147–153 (in Chinese)
29 Yang Y F, Li J D. Ecological plasticity of the quantitative characters per ear heads of Leymucs chinensis population in natural meadow in Northeast China. Acta Ecologica Sinica, 2001, 21(5): 752–758 (in Chinese)
30 Liu Z, Li X, Li R, Jiang D, Cao C. A comparative study on seed germination of 15 grass species in Keeqin Sandyland. Chinese Journal of Applied Ecology, 2003, 14(9): 1416–1420 (in Chinese)
pmid: 14732991
31 Zhu Y J, Yang X J, Baskin C C, Baskin J M, Dong M, Huang Z Y. Effects of amount and frequency of precipitation and sand burial on seed germination, seedling emergence and survival of the dune grass Leymus secalinus in semiarid China. Plant and Soil, 2014, 374(1–2): 399–409
https://doi.org/10.1007/s11104-013-1892-9
32 Gao R, Yang X, Yang F, Wei L, Huang Z, Walck J L. Aerial and soil seed banks enable populations of an annual species to cope with an unpredictable dune ecosystem. Annals of Botany, 2014, 114(2): 279–287
https://doi.org/10.1093/aob/mcu104 pmid: 24918206
33 Liu H D, Yu F H, He W M, Chu Y, Dong M. Are clonal plants more tolerant to grazing than co-occurring non-clonal plants in inland dunes? Ecological Research, 2007, 22(3): 502–506
https://doi.org/10.1007/s11284-007-0332-9
34 Liu H D, Yu F H, He W M, Chu Y, Dong M. Clonal integration improves compensatory growth in heavily grazed ramet populations of two inland-dune grasses. Flora, 2009, 204(4): 298–305
https://doi.org/10.1016/j.flora.2008.03.003
35 Li S L, Yu F H, Werger M J, Dong M, Zuidema P A. Habitat-specific demography across dune fixation stages in a semi-arid sandland: understanding the expansion, stabilization and decline of a dominant shrub. Journal of Ecology, 2011, 99(2): 610–620
36 He W M, Alpert P, Yu F H, Zhang L L, Dong M. Reciprocal and coincident patchiness of multiple resources differentially affect benefits of clonal integration in two perennial plants. Journal of Ecology, 2011, 99(5): 1202–1210
https://doi.org/10.1111/j.1365-2745.2011.01848.x
37 Bai Y, Wu J, Xing Q, Pan Q, Huang J, Yang D, Han X. Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau. Ecology, 2008, 89(8): 2140–2153
https://doi.org/10.1890/07-0992.1 pmid: 18724724
38 Yang D L, Han G D, Hu Y G, Wu Y G L. Effects of grazing intensity on plant diversity and aboveground biomass of Stipa baicolensis grassland. Chinese Journal of Ecology, 2006, 25: 1470–1475 (in Chinese)
39 Yan R R, Xin X P, Yan Y C, Wang X, Zhang B H, Yang G C, Liu S M, Deng Y, Li L H. Impacts of differing grazing rates on canopy structure and species composition in Hulunber Meadow Steppe. Rangeland Ecology and Management, 2015, 68(1): 54–64
https://doi.org/10.1016/j.rama.2014.12.001
40 Li W, Wu G L, Zhang G F, Du G Z. The maintenance of offspring diversity in response to land use: sexual and asexual recruitment in an alpine meadow on the Tibetan Plateau. Nordic Journal of Botany, 2011, 29(1): 81–86
https://doi.org/10.1111/j.1756-1051.2010.00954.x
41 Peng J T, Liang C Z, Niu Y M, Jiang W, Wang W, Wang L X. Moderate grazing promotes genetic diversity of Stipa species in the Inner Mongolian steppe. Landscape Ecology, 2015, 30(9): 1783–1794
https://doi.org/10.1007/s10980-015-0227-z
42 Wan H W, Bai Y F, Hooper D U, Schönbach P, Gierus M, Schiborra A, Taube F. Selective grazing and seasonal precipitation play key roles in shaping plant community structure of semi-arid grasslands. Landscape Ecology, 2015, 30(9): 1767–1782
https://doi.org/10.1007/s10980-015-0252-y
43 Lu X Y, Kelsey K C, Yan Y, Sun J, Wang X D, Cheng G W, Neff J C. Effects of grazing on ecosystem structure and function of alpine grasslands in Qinghai–Tibetan Plateau: a synthesis. Ecosphere, 2017, 8(1): e01656
https://doi.org/10.1002/ecs2.1656
44 Wilson P J, Thompson K, Hodgson J G. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist, 1999, 143(1): 155–162
https://doi.org/10.1046/j.1469-8137.1999.00427.x
45 Zheng S X, Ren H Y, Lan Z C, Li W H, Wang K B, Bai Y F. Effects of grazing on leaf traits and ecosystem functioning in Inner Mongolia grasslands: scaling from species to community. Biogeosciences, 2010, 7(3): 1117–1132
https://doi.org/10.5194/bg-7-1117-2010
46 Niu K C, He J S, Lechowicz M J. Grazing-induced shifts in community functional composition and soil nutrient availability in Tibetan alpine meadows. Journal of Applied Ecology, 2016, 53(5): 1554–1564
https://doi.org/10.1111/1365-2664.12727
47 Wang D L, Du J, Zhang B T, Ba L, Hodgkinson K C. Grazing intensity and phenotypic plasticity in the clonal grass Leymus chinensis. Rangeland Ecology and Management, 2017, 70(6): 740–747
https://doi.org/10.1016/j.rama.2017.06.011
48 Bai W, Fang Y, Zhou M, Xie T, Li L, Zhang W H. Heavily intensified grazing reduces root production in an Inner Mongolia temperate steppe. Agriculture, Ecosystems & Environment, 2015, 200: 143–150
https://doi.org/10.1016/j.agee.2014.11.015
49 Ma L, Guo C, Lü X, Yuan S, Wang R. Soil moisture and land use are major determinants of soil microbial community composition and biomass at a regional scale in northeastern China. Biogeosciences, 2015, 12(8): 2585–2596
https://doi.org/10.5194/bg-12-2585-2015
50 Li Y, Lin Q, Wang S, Li X, Liu W, Luo C, Zhang Z, Zhu X, Jiang L, Li X. Soil bacterial community responses to warming and grazing in a Tibetan alpine meadow. FEMS Microbiology Ecology, 2016, 92(1): fiv152
https://doi.org/10.1093/femsec/fiv152 pmid: 26635411
51 Qi Q, Zhao M, Wang S, Ma X, Wang Y, Gao Y, Lin Q, Li X, Gu B, Li G, Zhou J, Yang Y. The biogeographic pattern of microbial functional genes along an altitudinal gradient of the Tibetan Pasture. Frontiers in Microbiology, 2017, 8: 976
https://doi.org/10.3389/fmicb.2017.00976 pmid: 28659870
52 Yang Y, Wu L, Lin Q, Yuan M, Xu D, Yu H, Hu Y, Duan J, Li X, He Z, Xue K, van Nostrand J, Wang S, Zhou J. Responses of the functional structure of soil microbial community to livestock grazing in the Tibetan alpine grassland. Global Change Biology, 2013, 19(2): 637–648
https://doi.org/10.1111/gcb.12065 pmid: 23504798
53 Liu S L, Zhao H D, Su X K, Deng L, Dong S K, Zhang X. Spatio-temporal variability in rangeland conditions associated with climate change in the Altun Mountain National Nature Reserve on the Qinghai–Tibet Plateau over the past 15 years. Rangeland Journal, 2015, 37(1): 67–75
https://doi.org/10.1071/RJ14068
54 Hu J, Wu J H, Ma M J, Nielsen U N, Wang J, Du G Z. Nematode communities response to long-term grazing disturbance on Tibetan plateau. European Journal of Soil Biology, 2015, 69: 24–32
https://doi.org/10.1016/j.ejsobi.2015.04.003
55 Kang L. Influence of livestock grazing on grasshopper (Orthoptera: Acrididae) diversity in the Inner Mongolian steppes. Chinese Biodiversity, 1994, 2: 9–17 (in Chinese)
56 Kang L. Grasshopper-plant interactions under different grazing intensities in Inner Mongolia. Acta Ecologica Sinica, 1995, 15: 1–11 (in Chinese)
57 Kang L, Chen Y L. Dynamics of grasshopper communites under different grazing intensities in Inner Mongolian steppes. Entomologia Sinica, 1995, 2: 265–281 (in Chinese)
58 Kang L, Zhang M Z. Grasshopper species-area relationship on ungrazed and overgrazed grasslands. Chinese Biodiversity, 1996, 4: 15–22 (in Chinese)
59 Cease A J, Elser J J, Ford C F, Hao S, Kang L, Harrison J F. Heavy livestock grazing promotes locust outbreaks by lowering plant nitrogen content. Science, 2012, 335(6067): 467–469
https://doi.org/10.1126/science.1214433 pmid: 22282812
60 Zhong Z, Wang D, Zhu H, Wang L, Feng C, Wang Z. Positive interactions between large herbivores and grasshoppers, and their consequences for grassland plant diversity. Ecology, 2014, 95(4): 1055–1064
https://doi.org/10.1890/13-1079.1 pmid: 24933823
61 Zhu H, Wang D L, Wang L, Bai Y G, Fang J, Liu J. The effects of large herbivore grazing on meadow steppe plant and insect diversity. Journal of Applied Ecology, 2012, 49(5): 1075–1083
https://doi.org/10.1111/j.1365-2664.2012.02195.x
62 Hao S G, Wang S P, Cease A, Kang L. Landscape level patterns of grasshopper communities in Inner Mongolia: interactive effects of livestock grazing and a precipitation gradient. Landscape Ecology, 2015, 30(9): 1657–1668
https://doi.org/10.1007/s10980-015-0247-8
63 Zhu H, Qu Y K, Zhang D, Li J, Wen M, Wang D, Ren B, Li J J, Wen M, Wang D L, Ren B Z. Impacts of grazing intensity and increased precipitation on a grasshopper assemblage (Orthoptera: Acrididae) in a meadow steppe. Ecological Entomology, 2017, 42(4): 458–468
https://doi.org/10.1111/een.12403
64 Zhu H, Wang D L, Guo Q F, Liu J, Wang L. Interactive effects of large herbivores and plant diversity on insect abundance in a meadow steppe in China. Agriculture, Ecosystems & Environment, 2015, 212: 245–252
https://doi.org/10.1016/j.agee.2015.07.008
65 Li W H, Zhan S X, Lan Z C, Wu X B, Bai Y F. Scale-dependent patterns and mechanisms of grazing-induced biodiversity loss: evidence from a field manipulation experiment in semiarid steppe. Landscape Ecology, 2015, 30(9): 1751–1765
https://doi.org/10.1007/s10980-014-0146-4
66 Yao G Z, Gao Y, Yang T T, Ding Y, Ma S L. The influence of grazing intensities on litter storage and vegetation productivity of Stipa klemenzii desert steppe. Journal of Arid Land Resources and Environmen, 2016, 10: 93–97
67 Yan L, Zhou G, Zhang F. Effects of different grazing intensities on grassland production in China: a meta-analysis. PLoS One, 2013, 8(12): e81466
https://doi.org/10.1371/journal.pone.0081466 pmid: 24324694
68 Xiong D, Shi P, Sun Y, Wu J, Zhang X. Effect of grazing exclusion on plant productivity and soil carbon, nitrogen storage in alpine meadows in Northern Tibet, China. Chinese Geographical Science, 2014, 24(4): 488–498 (in Chinese)
https://doi.org/10.1007/s11769-014-0697-y
69 Yao A X, Wang P, Fan F C, Hu T M. Studies on primary productivity for swards of perennial ryegrass/white cover under different grazing treatments. Grassland of China, 1998, 2: 12–16 (in Chinese)
70 Wang L, Liu Z, Liu H, Wang W, Liang C, Qiao J. Ecosystem health assessment of typical steppe in Inner Mongolia. Acta Ecologica Sinica, 2008, 28: 544–550 (in Chinese)
71 Li Q F, Han G D, Wei Z J, Ao T G, Peng S L. Effect of rotational and continuous grazing system on vegetation in Stipa breviflora desert steppe. Research of Agricultural Modernization, 2002, 23(3): 192–196 (in Chinese)
72 Xing Q, Shuang Q, Jin Y, Song M. Studies on matter dynamics and plant compensatory growth under different grazing system on meadow steppe. Grassland of China, 2004, 5: 26–31 (in Chinese)
73 Han G D, Jiao S Y, Bi L G T, Biligetu A. Effects of plant species diversity and productivity under different stocking rates in the Stipa breviflora Griseb. desert steppe. Acta Ecologica Sinica, 2007, 27(1): 182–188 (in Chinese)
74 Li C L, Hao X Y, Zhao M L, Han G D, Willms W D. Influence of historic sheep grazing on vegetation and soil properties of a Desert Steppe in Inner Mongolia. Agriculture, Ecosystems & Environment, 2008, 128(1–2): 109–116
https://doi.org/10.1016/j.agee.2008.05.008
75 Liang Y, Han G D, Zhou H, Zhao M L, Snyman H A, Shan D, Havsta K M. Grazing intensity on vegetation dynamics of a typical steppe in Northeast Inner Mongolia. Rangeland Ecology and Management, 2009, 62(4): 328–336
https://doi.org/10.2111/08-167.1
76 Gross K L, Pregitzer K S, Burton A J. Spatial variation in nitrogen availability in three successional plant communities. Journal of Ecology, 1995, 83(3): 357–367
https://doi.org/10.2307/2261590
77 Schimel J P, Bennett J. Nitrogen mineralization: challenges of a changing paradigm. Ecology, 2004, 85(3): 591–602
https://doi.org/10.1890/03-8002
78 Risch A C, Schütz M, Vandegehuchte M L, van der Putten W H, Duyts H, Raschein U, Gwiazdowicz D J, Busse M D, Page-Dumroese D S, Zimmermann S. Aboveground vertebrate and invertebrate herbivore impact on net N mineralization in subalpine grasslands. Ecology, 2015, 96(12): 3312–3322
https://doi.org/10.1890/15-0300.1 pmid: 26909436
79 Frank D A, Evans R D. Effects of native grazers on grassland N cycling in Yellowstone National Park. Ecology, 1997, 78(7): 2238–2248
https://doi.org/10.1890/0012-9658(1997)078[2238:EONGOG]2.0.CO;2
80 Shan Y, Chen D, Guan X, Zheng S X, Chen H J, Wang M J, Bai Y F. Seasonally dependent impacts of grazing on soil nitrogen mineralization and linkages to ecosystem functioning in Inner Mongolia grassland. Soil Biology & Biochemistry, 2011, 43(9): 1943–1954
https://doi.org/10.1016/j.soilbio.2011.06.002
81 Bai Y F, Wu J G, Clark C M, Pan Q M, Zhang L X, Chen S P, Wang Q B, Han X G. Grazing alters ecosystem functioning and C: N: P stoichiometry of grasslands along a regional precipitation gradient. Journal of Applied Ecology, 2012, 49(6): 1204–1215
https://doi.org/10.1111/j.1365-2664.2012.02205.x
82 Liu C, Wang L, Song X X, Chang Q, Frank D A, Wang D L, Li J, Lin H J, Du F Y. Towards a mechanistic understanding of the effect that different species of large grazers have on grassland soil N availability. Journal of Ecology, 2018, 106(1): 357–366
https://doi.org/10.1111/1365-2745.12809
83 Dong X Y, Fu H, Li X D, Niu D C, Guo D, Li X D. Effects on plant biomass and CNP contents of plants in grazed and fenced steppe grasslands of the Loess Plateau. Acta Prataculturae Sinica, 2010, 19(2): 175–182 (in Chinese)
84 Wang S P, Wilkes A, Zhang Z C, Chang X F, Lang R, Wang Y F, Niu H S. Management and land use change effects on soil carbon in northern China’s grasslands: a synthesis. Agriculture, Ecosystems & Environment, 2011, 142(3–4): 329–340
https://doi.org/10.1016/j.agee.2011.06.002
85 Wang Y F, Chen Z Z, Tieszen L T. Distribution of soil organic carbon in the major grasslands of Xilinguole, Inner Mongolia, China. Acta Phytoecologica Sinica, 1998, 22(6): 545–551 (in Chinese)
86 Wei Z, Wu R, Dabu X, Su J A, Yang S. The influence of different grazing systems on soil physical and chemical properties in desert steppe. Grassland China, 2005, 6–10 (in Chinese)
87 Li C L, Hao X Y, Zhao M L, Han G D, Willms W D. Influence of historic sheep grazing on vegetation and soil properties of a desert steppe in Inner Mongolia. Agriculture, Ecosystems & Environment, 2008, 128(1–2): 109–116
https://doi.org/10.1016/j.agee.2008.05.008
88 Gao Y H, Luo P, Wu N, Chen H, Wang G X. Grazing intensity impacts on carbon sequestration in an alpine meadow on the eastern Tibetan Plateau. Research Journal of Agriculture and Biological Sciences, 2007, 3(6): 642–647
89 Wang S, Wang Y, Chen Z. Management of Grazing Ecosystem.Beijing: Science Press, 2003.
90 Fan Y, Hou X, Shi H, Shi S. Effects of grazing and fencing on carbon and nitrogen reserves in plants and soils of alpine meadow in the three headwater resource regions. Russian Journal of Ecology, 2013, 44(1): 80–88
https://doi.org/10.1134/S1067413612050165
91 Sun D S, Wesche K, Chen D D, Zhang S H, Wu G L, Du G Z, Comerford N B. Grazing depresses soil carbon storage through changing plant biomass and composition in a Tibetan alpine meadow. Plant, Soil and Environment, 2011, 57(6): 271–278
92 Wang J, Sha L Q, Li J Z, Feng Z L. CO2 efflux under different grazing managements on subalpine meadows of Shangri-La, Northwest Yunnan Province, China. Acta Ecologica Sinica, 2008, 28(8): 3574–3583 (in Chinese)
https://doi.org/10.1016/S1872-2032(08)60074-8
93 Zou J, Zhao L, Xu S, Xu X, Chen D, Li Q, Zhao N, Luo C, Zhao X. Field 13CO2 pulse labeling reveals differential partitioning patterns of photo assimilated carbon in response to livestock exclosure in a Kobresia meadow. Biogeosciences, 2014, 11(16): 4381–4391
https://doi.org/10.5194/bg-11-4381-2014
94 Wang X D, Yan Y, Cao Y Z. Impact of historic grazing on steppe soils on the northern Tibetan Plateau. Plant and Soil, 2012, 354(1–2): 173–183
95 Liu N, Kan H M, Yang G W, Zhang Y J. Changes in plant, soil, and microbes in a typical steppe from simulated grazing: explaining potential change in soil C. Ecological Monographs, 2015, 85(2): 269–286
https://doi.org/10.1890/14-1368.1
96 Hodgson J G, Illius A W. The ecology and management of grazing systems. Wallingford: CAB International, 1996
97 Liu J X, Hu Z Z, Ren J Z, Liang X, Su W J. The serial studies of ecological grazing and digestion and metabolism of sheep on alpine pasture:I. The study of forage preference index of grazing sheep. Acta Prataculturae Sinca, 1997, 8: 31–34 (in Chinese)
98 Wang S P, Li Y H. Behavior ecology of grazing sheep: V. interrelation between ingestion behavior and sward characteristics. Acta Prataculturae Sinca, 1997, 6: 31–38 (in Chinese)
99 Wang M J, Wan X R, Zhong W Q. The interaction between the vegetarian and the plant. Chinese Journal of Ecology, 2001, 20(5): 39–43 (in Chinese)
100 Wang L, Wang D L, Bai Y G, Jiang G T, Liu J S, Huang Y, Li Y X. Spatial distributions of multiple plant species affect herbivore foraging selectivity. Oikos, 2010, 119(2): 401–408
https://doi.org/10.1111/j.1600-0706.2009.17774.x
101 Wang L, Wang D, Bai Y, Huang Y, Fan M, Liu J, Li Y. Spatially complex neighboring relationships among grassland plant species as an effective mechanism of defense against herbivory. Oecologia, 2010, 164(1): 193–200
https://doi.org/10.1007/s00442-010-1676-3 pmid: 20552227
102 Wang L, Wang D L, Liu J S, Huang Y, Hodgkinson K C. Diet selection variation of a large herbivore in a feeding experiment with increasing species numbers and different plant functional group combinations. Acta Oecologica, 2011, 37(3): 263–268
https://doi.org/10.1016/j.actao.2011.02.010
103 Han G D, Hao X Y, Zhao M L, Wang M J, Ellert B H, Willms W, Wang M J. Effect of grazing intensity on carbon and nitrogen in soil and vegetation in a meadow steppe in Inner Mongolia. Agriculture, Ecosystems & Environment, 2008, 125(1–4): 21–32
https://doi.org/10.1016/j.agee.2007.11.009
104 Gao Y Z, Giese M, Lin S, Sattelmacher B, Zhao Y, Brueck H. Belowground net primary productivity and biomass allocation of a grassland in Inner Mongolia is affected by grazing intensity. Plant and Soil, 2008, 307(1–2): 41–50
https://doi.org/10.1007/s11104-008-9579-3
105 Xiao X P, Song N P, Wang X, Yang M X, Xie T T. Effects of grazing disturbance to soil and vegetation of desert grassland. Soil and Water Conservation, 2013, 12: 19–33 (in Chinese)
106 Shi X M, Li X G, Li C T, Zhao Y, Shang Z H, Ma Q. Grazing exclusion decreases soil organic C storage at an alpine grassland of the Qinghai–Tibetan Plateau. Ecological Engineering, 2013, 57: 183–187
https://doi.org/10.1016/j.ecoleng.2013.04.032
107 Zhou G, Zhou X, He Y, Shao J, Hu Z, Liu R, Zhou H, Hosseinibai S. Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: a meta-analysis. Global Change Biology, 2017, 23(3): 1167–1179
https://doi.org/10.1111/gcb.13431 pmid: 27416555
108 Laca E A, Sokolow S, Galli J R, Cangiano C A. Allometry and spatial scales of foraging in mammalian herbivores. Ecology Letters, 2010, 13(3): 311–320
https://doi.org/10.1111/j.1461-0248.2009.01423.x pmid: 20100240
109 Socher S A, Prati D, Boch S, Müller J, Baumbach H, Gockel S, Hemp A, Schöning I, Wells K, Buscot F, Kalko E K V, Linsenmair K E, Schulze E D, Weisser W W, Fischer M. Interacting effects of fertilization, mowing and grazing on plant species diversity of 1500 grasslands in Germany differ between regions. Basic and Applied Ecology, 2013, 14(2): 126–136
https://doi.org/10.1016/j.baae.2012.12.003
110 van der Plas F, Howison R A, Mpanza N, Cromsigt J P G M, Olff H. Different-sized grazers have distinctive effects on plant functional composition of an African savannah. Journal of Ecology, 2016, 104(3): 864–875
https://doi.org/10.1111/1365-2745.12549
111 Charles G K, Porensky L M, Riginos C, Veblen K E, Young T P. Herbivore effects on productivity vary by guild: cattle increase mean productivity while wildlife reduce variability. Ecological Applications, 2017, 27(1): 143–155
https://doi.org/10.1002/eap.1422 pmid: 28052507
112 Arsenault R, Owen-Smith N. Facilitation versus competition in grazing herbivore assemblages. Oikos, 2002, 97(3): 313–318
https://doi.org/10.1034/j.1600-0706.2002.970301.x
113 van Klink R, Noltea S, Mandemaa F S, Lagendijk D D G, WallisDeVriese M F, Bakker J P, Esselink P, Smita C. Effects of grazing management on biodiversity across trophic levels—The importance of livestock species and stocking density in salt marshes. Agriculture, Ecosystems & Environment, 2016, 235: 329–339
https://doi.org/10.1016/j.agee.2016.11.001
114 Eldridge D J, Poore A G B, Ruiz-Colmenero M, Letnic M, Soliveres S. Ecosystem structure, function, and composition in rangelands are negatively affected by livestock grazing. Ecological Applications, 2016, 26(4): 1273–1283
https://doi.org/10.1890/15-1234 pmid: 27509764
115 Liu J, Feng C, Wang D L, Wang L, Wilsey B J, Zhong Z W. Impacts of grazing by different large herbivores in grassland depend on plant species diversity. Journal of Applied Ecology, 2015, 52(4): 1053–1062
https://doi.org/10.1111/1365-2664.12456
116 Liu C, Song X X, Wang L, Wang D L, Zhou X M, Liu J, Zhao X, Li J, Lin H J. Effects of grazing on soil nitrogen spatial heterogeneity depend on herbivore assemblage and pre-grazing plant diversity. Journal of Applied Ecology, 2016, 53(1): 242–250
https://doi.org/10.1111/1365-2664.12537
117 Parmesan C. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology Evolution and Systematics, 2006, 37(1): 637–669
https://doi.org/10.1146/annurev.ecolsys.37.091305.110100
118 Niu S L, Li Z X, Xia J Y, Han Y, Wu M Y, Wan S Q. Climatic warming changes plant photosynthesis and its temperature dependence in a temperate steppe of northern China. Environmental and Experimental Botany, 2008, 63(1–3): 91–101
https://doi.org/10.1016/j.envexpbot.2007.10.016
119 Wan S, Xia J, Liu W, Niu S. Photosynthetic overcompensation under nocturnal warming enhances grassland carbon sequestration. Ecology, 2009, 90(10): 2700–2710
https://doi.org/10.1890/08-2026.1 pmid: 19886480
120 Chi Y, Xu M, Shen R, Yang Q, Huang B, Wan S. Acclimation of foliar respiration and photosynthesis in response to experimental warming in a temperate steppe in northern China. PLoS One, 2013, 8(2): e56482
https://doi.org/10.1371/journal.pone.0056482 pmid: 23457574
121 Liu Y, Mu J, Niklas K J, Li G, Sun S. Global warming reduces plant reproductive output for temperate multi-inflorescence species on the Tibetan plateau. New Phytologist, 2012, 195(2): 427–436
https://doi.org/10.1111/j.1469-8137.2012.04178.x pmid: 22591333
122 Xia J, Wan S. Independent effects of warming and nitrogen addition on plant phenology in the Inner Mongolian steppe. Annals of Botany, 2013, 111(6): 1207–1217
https://doi.org/10.1093/aob/mct079 pmid: 23585496
123 Yang H J, Li Y, Wu M Y, Zhang Z, Li L H, Wan S Q. Plant community responses to nitrogen addition and increased precipitation: the importance of water availability and species traits. Global Change Biology, 2011, 17(9): 2936–2944
https://doi.org/10.1111/j.1365-2486.2011.02423.x
124 Niu S L, Wan S Q. Warming changes plant competitive hierarchy in a temperate steppe in northern China. Journal of Plant Ecology, 2008, 1(2): 103–110
https://doi.org/10.1093/jpe/rtn003
125 Jiang L, Wan S Q, Li L H. Species diversity and productivity: why do results of diversity-manipulation experiments differ from natural patterns? Journal of Ecology, 2009, 97(4): 603–608
https://doi.org/10.1111/j.1365-2745.2009.01503.x
126 Yang H J, Wu M Y, Liu W X, Zhang Z, Zhang N L, Wan S Q. Community structure and composition in response to climate change in a temperate steppe. Global Change Biology, 2011, 17(1): 452–465
https://doi.org/10.1111/j.1365-2486.2010.02253.x
127 Niu K C, Choler P, de Bello F, Mirotchnick N, Du G Z, Sun S C. Fertilization decreases species diversity but increases functional diversity: a three-year experimental in a Tibetan alpine meadow. Agriculture, Ecosystems & Environment, 2014, 182: 106–112
https://doi.org/10.1016/j.agee.2013.07.015
128 Xu Y F, Yi X C M, Fu J J, Chen H, Miao Y J, Chen J, Hu T M, Shan J G. Response of plant diversity and soil nutrient to grazing intensity in Kobresia pygmaea meadow of Qinghai–Tibet Plateau. Acta Agrestia Sinica, 2012, 6: 1026–1032 (in Chinese)
129 Tian Q, Liu N, Bai W, Li L, Chen J, Reich P B, Yu Q, Guo D, Smith M D, Knapp A K, Cheng W, Lu P, Gao Y, Yang A, Wang T, Li X, Wang Z, Ma Y, Han X, Zhang W H. A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe. Ecology, 2016, 97(1): 65–74
https://doi.org/10.1890/15-0917.1 pmid: 27008776
130 Zhang Y, Lü X, Isbell F, Stevens C, Han X, He N, Zhang G, Yu Q, Huang J, Han X. Rapid plant species loss at high rates and at low frequency of N addition in temperate steppe. Global Change Biology, 2014, 20(11): 3520–3529
https://doi.org/10.1111/gcb.12611 pmid: 24753127
131 Bai W M, Wang Z W, Chen Q S, Zhang W H, Li L H. Spatial and temporal effects of nitrogen addition on root life span of Leymus chinensis in a typical steppe of Inner Mongolia. Functional Ecology, 2008, 22(4): 583–591
https://doi.org/10.1111/j.1365-2435.2008.01403.x
132 Wan S Q, Hui D F, Wallace L, Luo Y Q. Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie. Global Biogeochemical Cycles, 2005, 19(2): GB2014
https://doi.org/10.1029/2004GB002315
133 Ma W, Liu Z, Wang Z, Wang W, Liang C, Tang Y, He J S, Fang J. Climate change alters interannual variation of grassland aboveground productivity: evidence from a 22-year measurement series in the Inner Mongolian grassland. Journal of Plant Research, 2010, 123(4): 509–517
https://doi.org/10.1007/s10265-009-0302-0 pmid: 20130954
134 Lin D, Xia J, Wan S. Climate warming and biomass accumulation of terrestrial plants: a meta-analysis. New Phytologist, 2010, 188(1): 187–198
https://doi.org/10.1111/j.1469-8137.2010.03347.x pmid: 20609113
135 Bai W M, Wan S Q, Niu S L, Liu W X, Chen Q S, Wang Q B, Zhang W H, Han X G, Li L H. Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: implications for ecosystem C cycling. Global Change Biology, 2010, 16(4): 1306–1316
https://doi.org/10.1111/j.1365-2486.2009.02019.x
136 Zhou L, Dickinson R E, Tian Y, Vose R S, Dai Y. Impact of vegetation removal and soil aridation on diurnal temperature range in a semiarid region: application to the Sahel. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(46): 17937–17942
https://doi.org/10.1073/pnas.0700290104 pmid: 17986620
137 Bai W M, Xia J Y, Wan S Q, Zhang W H, Li L H. Day and night warming have different effect on root lifespan. Biogeosciences, 2012, 9(1): 375–384
https://doi.org/10.5194/bg-9-375-2012
138 Xu Z, Ren H, Cai J, Wang R, Li M H, Wan S, Han X, Lewis B J, Jiang Y. Effects of experimentally-enhanced precipitation and nitrogen on resistance, recovery and resilience of a semi-arid grassland after drought. Oecologia, 2014, 176(4): 1187–1197
https://doi.org/10.1007/s00442-014-3081-9 pmid: 25234376
139 Xu Z W, Ren H Y, Li M H, van Ruijven J, Han X G, Wan S Q, Li H, Yu Q, Jiang Y, Jiang L. Environmental changes drive the temporal stability of semi-arid natural grasslands through altering species asynchrony. Journal of Ecology, 2015, 103(5): 1308–1316
https://doi.org/10.1111/1365-2745.12441
140 Zhang Y, Loreau M, Lü X, He N, Zhang G, Han X. Nitrogen enrichment weakens ecosystem stability through decreased species asynchrony and population stability in a temperate grassland. Global Change Biology, 2016, 22(4): 1445–1455
https://doi.org/10.1111/gcb.13140 pmid: 26511538
141 Yang Z, Zhang Q, Su F, Zhang C, Pu Z, Xia J, Wan S, Jiang L. Daytime warming lowers community temporal stability by reducing the abundance of dominant, stable species. Global Change Biology, 2017, 23(1): 154–163
https://doi.org/10.1111/gcb.13391 pmid: 27275848
142 Yang H, Jiang L, Li L, Li A, Wu M, Wan S. Diversity-dependent stability under mowing and nutrient addition: evidence from a 7-year grassland experiment. Ecology Letters, 2012, 15(6): 619–626
https://doi.org/10.1111/j.1461-0248.2012.01778.x pmid: 22487498
143 Xu W H, Wan S Q. Water- and plant-mediated responses of soil respiration to topography, fire, and nitrogen fertilization in a semiarid grassland in northern China. Soil Biology & Biochemistry, 2008, 40(3): 679–687
https://doi.org/10.1016/j.soilbio.2007.10.003
144 Xia J Y, Chen J Q, Piao S L, Ciais P, Luo Y Q, Wan S Q. Terrestrial carbon cycle affected by non-uniform climate warming. Nature Geoscience, 2014, 7(3): 173–180
https://doi.org/10.1038/ngeo2093
145 Xia J Q, Han Y, Zhang Z, Zhang Z, Wan S Q. Effects of diurnal warming on soil respiration are not equal to the summed effects of day and night warming in a temperate steppe. Biogeosciences, 2009, 6(8): 1361–1370
https://doi.org/10.5194/bg-6-1361-2009
146 Liu L, Wang X, Lajeunesse M J, Miao G, Piao S, Wan S, Wu Y, Wang Z, Yang S, Li P, Deng M. A cross-biome synthesis of soil respiration and its determinants under simulated precipitation changes. Global Change Biology, 2016, 22(4): 1394–1405
https://doi.org/10.1111/gcb.13156 pmid: 26554753
147 Zhu C, Ma Y, Wu H, Sun T, La Pierre K J, Sun Z, Yu Q. Divergent effects of nitrogen addition on soil respiration in a semiarid grassland. Scientific Reports, 2016, 6(1): 33541
https://doi.org/10.1038/srep33541 pmid: 27629241
148 Lü X T, Han X G. Nutrient resorption responses to water and nitrogen amendment in semi-arid grassland of Inner Mongolia, China. Plant and Soil, 2010, 327(1–2): 481–491
https://doi.org/10.1007/s11104-009-0078-y
149 Lü X T, Reed S, Yu Q, He N P, Wang Z W, Han X G. Convergent responses of nitrogen and phosphorus resorption to nitrogen inputs in a semiarid grassland. Global Change Biology, 2013, 19(9): 2775–2784
https://doi.org/10.1111/gcb.12235 pmid: 23625746
150 Wang C, Wang X, Liu D, Wu H, Lü X, Fang Y, Cheng W, Luo W, Jiang P, Shi J, Yin H, Zhou J, Han X, Bai E. Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands. Nature Communications, 2014, 5: 4799
https://doi.org/10.1038/ncomms5799 pmid: 25185641
151 Shi Y H, Zhou G S, Jiang Y L, Wang H, Xu Z Z. Does precipitation mediate the effects of elevated CO2 on plant growth in the grass species Stipa grandis? Environmental and Experimental Botany, 2016, 131: 146–154
https://doi.org/10.1016/j.envexpbot.2016.07.011
152 Jiang Y, Xu Z, Zhou G, Liu T. Elevated CO2 can modify the response to a water status gradient in a steppe grass: from cell organelles to photosynthetic capacity to plant growth. BMC Plant Biology, 2016, 16(1): 157
https://doi.org/10.1186/s12870-016-0846-9 pmid: 27405416
153 van der Heijden M G A, Bardgett R D, van Straalen N M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 2008, 11(3): 296–310
https://doi.org/10.1111/j.1461-0248.2007.01139.x pmid: 18047587
154 Zhang N L, Xia J Y, Yu X J, Ma K P, Wan S Q. Soil microbial community changes and their linkages with ecosystem carbon exchange under asymmetrically diurnal warming. Soil Biology & Biochemistry, 2011, 43(10): 2053–2059
155 Zhang N, Liu W, Yang H, Yu X, Gutknecht J L M, Zhang Z, Wan S, Ma K. Soil microbial responses to warming and increased precipitation and their implications for ecosystem C cycling. Oecologia, 2013, 173(3): 1125–1142
https://doi.org/10.1007/s00442-013-2685-9 pmid: 23736549
156 Zhang N L, Wan S Q, Guo J X, Han G D, Gutknecht J, Schmid B, Yu L, Liu W X, Bi J, Wang Z, Ma K P. Precipitation modifies the effects of warming and nitrogen on soil microbial communities in northern Chinese grasslands. Soil Biology & Biochemistry, 2015, 89: 12–23
https://doi.org/10.1016/j.soilbio.2015.06.022
157 Kim Y C, Gao C, Zheng Y, He X H, Yang W, Chen L, Wan S Q, Guo L D. Arbuscular mycorrhizal fungal community response to warming and nitrogen addition in a semiarid steppe ecosystem. Mycorrhiza, 2015, 25(4): 267–276
https://doi.org/10.1007/s00572-014-0608-1 pmid: 25307533
158 Chen Y L, Zhang X, Ye J S, Han H Y, Wan S Q, Chen B D. Six-year fertilization modifies the biodiversity of arbuscular mycorrhizal fungi in a temperate steppe in Inner Mongolia. Soil Biology & Biochemistry, 2014, 69: 371–381
https://doi.org/10.1016/j.soilbio.2013.11.020
159 Bardgett R D, van der Putten W H. Belowground biodiversity and ecosystem functioning. Nature, 2014, 515(7528): 505–511
https://doi.org/10.1038/nature13855 pmid: 25428498
160 Wu T J, Su F L, Han H Y, Du Y, Yu C D, Wan S Q. Responses of soil microarthropods to warming and increased precipitation in a semiarid temperate steppe. Applied Soil Ecology, 2014, 84: 200–207
https://doi.org/10.1016/j.apsoil.2014.07.003
161 Song M, Jing S S, Zhou Y Q, Hui Y, Zhu L L, Wang F, Hui D F, Jiang L, Wan S Q. Dynamics of soil nematode communities in wheat fields under different nitrogen management in northern China plain. European Journal of Soil Biology, 2015, 71: 13–20
https://doi.org/10.1016/j.ejsobi.2015.09.002
162 Song M, Li X M, Jing S S, Lei L J, Wang J L, Wan S Q. Responses of soil nematodes to water and nitrogen additions in an old-field grassland. Applied Soil Ecology, 2016, 102: 53–60
https://doi.org/10.1016/j.apsoil.2016.02.011
163 Guo K, Hao S G, Sun O J, Kang L. Differential responses to warming and increased precipitation among three contrasting grasshopper species. Global Change Biology, 2009, 15(10): 2539–2548
https://doi.org/10.1111/j.1365-2486.2009.01861.x
164 Liu Y, Reich P B, Li G, Sun S. Shifting phenology and abundance under experimental warming alters trophic relationships and plant reproductive capacity. Ecology, 2011, 92(6): 1201–1207
https://doi.org/10.1890/10-2060.1 pmid: 21797148
165 Xi X, Li D, Peng Y, Eisenhauer N, Sun S. Experimental warming and precipitation interactively modulate the mortality rate and timing of spring emergence of a gallmaking Tephritid fly. Scientific Reports, 2016, 6(1): 32284
https://doi.org/10.1038/srep32284 pmid: 27578601
166 Xi X Q, Wu X W, Nylin S, Sun S C. Body size response to warming: time of the season matters in tephritid fly. Oikos, 2016, 125(3): 386–394
https://doi.org/10.1111/oik.02521
167 Zhu H, Zou X, Wang D, Wan S, Wang L, Guo J. Responses of community-level plant-insect interactions to climate warming in a meadow steppe. Scientific Reports, 2015, 5(1): 18654
https://doi.org/10.1038/srep18654 pmid: 26686758
168 Zhu H, Wang D L, Wang L, Fang J, Sun W, Ren B Z. Effects of altered precipitation on insect community composition and structure in a meadow steppe. Ecological Entomology, 2014, 39(4): 453–461
https://doi.org/10.1111/een.12120
169 Wang W, Liu Z, Hao D, Liang C. Research on degenerated analysis the restoring succession of the grassland in Innermongolia II. Analysis of the restoring processes. Acta Phytoecologica Sinica, 1996a, 20: 460–471 (in Chinese)
170 Wang W, Liu Z L, Hao D Y, Liang C Z. The dynamic respond of degenerative steppe vegetation into grazing prohibited in the Inner Mongolia. Climatic and Environmental Ressarch, 1997, 2: 236–240
171 Liu Z L, Wang W, Liang C Z, Hao D Y. The regressive succession pattern and its diagnostic of Inner Mongolia steppe in sustained and superstrong grazing. Acta Agrestia Sinica, 1998, 6: 244–251 (in Chinese)
172 Wang W, Liu Z L, Hao D Y, Liang C Z. Research on the restoring succession of the degenerated grassland in Innermongolia I. Basic characteristics and driving force for restoration of the degenerated grassland. Acta Phytoecologica Sinica, 1996, 20: 449–459 (in Chinese)
173 Hao D Y, Liu Z L, Wang W, Liang C Z. Research on the restoring succession of the degenerated grassland in inner Mongolia III. A mathematical model for plant community succession. Acta Phytoecologica Sinica, 1997, 21: 503–511 (in Chinese)
174 Zhao H L, Okuro T, Li Y L, Zuo X A, Zhou R L. Changes of plant community in grazing and restoration processes in Horqin sand land, Inner Mongolia. Journal of Desert Research, 2009, 29: 229–235
175 Zhang J Y, Zhao H L. Spatial patterns of main species of the grassland community in the recovering succession in Horqin sandy land. Chinese Journal of Ecology, 2004, 23(2): 1–6 (in Chinese)
176 Zhou Z, Fu H, Chen Y, Wu C, Li X, Zhu X, Gan H, Ai D. Changes of the species diversity and productivity of Alashan steppe area in restoration succession. Acta Prataculturae Sinca, 2003, 12(1): 34–40 (in Chinese)
177 Xin X P, Xu B, Wang X S, Yang Z Y, Guo Q. Dynamic analysis on spatial pattern of an alkaline grassland inrestoration succession. Acta Ecologica Sinica, 2001, 21(6): 877–882 (in Chinese)
178 Zhao Y Y, Hu X M. Review on mechanism of succession of degenerating meadow community during resuming process in Loess Plateau. Research of Soil and Water Conservation, 2008, 15: 270–272 (in Chinese)
179 Li H, Yang Y. [Effect of restorative measures on quantitative characters of reproduction for Leynrus chinensis population in the degenerated grassland]. Journal of Applied Ecology Sinica, 2004, 15(5): 819–823 (in Chinese)
pmid: 15320401
180 Zhang J, Zhao H. An case study on vegetation stability in sandy desertification land: Determination and comparison of the resilience among communities after a short period of extremely aridity disturbance. Acta Ecologica Sinica, 2011, 31(20): 6060–6071 (in Chinese)
181 Cheng J M, Jing Z B, Jin J W, Gao Y. Restoration and utilization mechanism of degraded grassland in the semi-arid region of Loess Plateau. Scientia Sinica Vitae, 2014, 44(3): 267–279 (in Chinese)
https://doi.org/10.1360/052013-280
182 Sala O E, Paruelo J M. Ecosystem services in grasslands. Washington: Island Press, 1997
183 Wu J G. Landscape sustainability science: ecosystem services and human well-being in changing landscapes. Landscape Ecology, 2013, 28(6): 999–1023
https://doi.org/10.1007/s10980-013-9894-9
184 Butchart S H M, Walpole M, Collen B, van Strien A, Scharlemann J P W, Almond R E A, Baillie J E M, Bomhard B, Brown C, Bruno J, Carpenter K E, Carr G M, Chanson J, Chenery A M, Csirke J, Davidson N C, Dentener F, Foster M, Galli A, Galloway J N, Genovesi P, Gregory R D, Hockings M, Kapos V, Lamarque J F, Leverington F, Loh J, McGeoch M A, McRae L, Minasyan A, Morcillo M H, Oldfield T E E, Pauly D, Quader S, Revenga C, Sauer J R, Skolnik B, Spear D, Stanwell-Smith D, Stuart S N, Symes A, Tierney M, Tyrrell T D, Vie J C, Watson R. Global biodiversity: indicators of recent declines. Science, 2010, 328(5982): 1164–1168
https://doi.org/10.1126/science.1187512 pmid: 20430971
185 Wade M R, Gurr G M, Wratten S D. Ecological restoration of farmland: progress and prospects. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363(1492): 831–847
https://doi.org/10.1098/rstb.2007.2186 pmid: 17761469
186 Li J D, Zheng Y. Studies on improving saline-alkaline grassland in Songnen plain. Journal of Northeast Normal University, 1995: 110–115 (in Chinese)
187 Chuan G, Nan Y, Zhang S, Ya T, Kou Z, Jiang D, Gu T, Gao T. The change of vegetation and soil in desertification grassland. Scientific and Technological Information of Soil and Water Conservation, 2000, 35: 16–20 (in Chinese)
188 Li Y, Zhao H, Zhao X. Soil respiration, carbon balance and carbon storage of sandy grassland under post-grazing natural restoration. Acta Prataculturae Sinica, 2006, 15(5): 25 (in Chinese)
189 Huang Y, An S, Xue H. Responses of soil microbial biomass C and N and respiratory quotient (qCO2) to revegetation on the Loess Hilly-Gully region. Acta Ecologica Sinica, 2009, 29: 2811–2818 (in Chinese)
190 Zhang J, Li Y, Zhao X, Zhang T, She Q, Liu M, Wei S. Effects of exclosure on soil physicochemical properties and carbon sequestration potential recovery of desertified grassland. Journal of Desert Research, 2017, 37: 491–499
191 Li X Y, Dong S K, Zhu L, Wen L. Net carbon dioxide exchange of plant communities on degraded and restored alpine grasslands in headwater area of Three Rivers in China. Chinese Journal of Ecology Sinica, 2010, 29: 1940–1949 (in Chinese)
192 Yan Z, Zhao X, Yang F, Zeng Z, Liu Y, Liu F. Effect of restoration interference techniques on vegetation and soil carbon discharge of saline-alkali grassland. Territory and Natural Resources Study, 2014: 55–58 (in Chinese)
193 Shui W, Bai J, Jian X, Qi X H, Su Z, Chen Y, Cai Y. Changes in water conservation and soil physicochemical properties during the recovery of desertified grassland in Zoigê, China. Acta Ecologica Sinica, 2017, 37: 277–285 (in Chinese)
194 Shao Y Q, Zhao J, Yang J. Distribution characteristics of soil microbial numbers in recovered grassland and degenerated grassland. Journal of Desert Research, 2004, 24(2): 223–226 (in Chinese)
195 Wu D H, Yin W Y, Yang Z. Difference in soil mite community characteristics among different vegetation restoration practices in the moderatly degraded pasture of Songnen grassland. Acta Zoologica Sinica, 2007, 4: 607–615 (in Chinese)
196 Wu D H, Yin W Y, Bu Z. Changes among soil nematode community characteristics in relation to different vegetation restoration practices in themoderate degraded grasslands of Songnen. Acta Ecologica Sinica, 2008, 28: 1–12 (in Chinese)
197 Wu D H, Yin W Y, Yin X Q. Comparisons among soil collembola community characteristics in relation to different vegetation restoration treatments in the moderate degraded grasslands in the Songnen Plain of Northeast China. Acta Entomologica Sinica, 2008, 51: 11–15 (in Chinese)
198 Liu R, Zhao H. Changes in functional groups of soil macro-faunal community in degraded sandy grassland under post-grazing natural restoration in Hoqin Sand Land. Ecology and Environmental Sciences, 2011, 20: 1794–1798
199 SER. The SER Primer on Ecological Restoration, Version 2. Society for Ecological Restoration Science and Policy Working Group, 2004
200 Zhu T C. Preliminary analysis of vegetation near Saertu, Heilongjiang. Journal of Integrative Plant Biology, 1955, 4: 117–135 (in Chinese)
201 Zhang W Z. Secondary salinization of grassland soil-The formation of secondary saline-alkaline soil patches in grasslands of Songnen plain. Acta Pedologica Sinaca, 1993, 30: 182–190 (in Chinese)
202 Guo J X, Li J D, Zhang B T. Natural restoration of saline alkali grassland in Western Jilin Province. Agriculture and Technology, 1994b, 15: 27–30 (in Chinese)
203 Guo J X, Li J D, Zhang B T. Biological treatment of saline alkali grassland. Agriculture and Technology, 1994, 24: 35–38 (in Chinese)
204 Guo J X, Zhang B T, Wen M. Improvement of physical and chemical methods of saline alkali grassland. Agriculture and Technology, 1994, 25: 9–11 (in Chinese)
205 Guo J X, Zhang W, Xiao H. Vegetation degradation and soil salinization in Leymus chinensis grassland. Agriculture and Technology, 1994, 25: 39–42 (in Chinese)
206 Li J D, Zheng Y. Ecological restoration and optimal models for development on alkaline meadow in the Songnen plain of China. Journal of Northeast Normal University, 1995, 11: 67–71 (in Chinese)
207 Wang R Z, Li J D. Cluster analysis method for dividing successional stage of Aneuolepidium chinense grassland for grazing. Acta Ecologica Sinica, 1991, 11: 367–371 (in Chinese)
208 Wang R Z, Li J D. Dynamic population models of the ecological dominance during the deterioration of Leymus chinensis grassland. Acta Phytoecologica Sinica, 1995, 19: 170–174 (in Chinese)
209 Yang Y F, Zheng H Y. Comparison analysis on the experimental communities during progressive succession on alkaline patches in the songnen plain of China. Acta Phytoecologica Sinica, 1998, 22(3): 214–221 (in Chinese)
210 Fan G, Li H, Yang Y. Analyse of the modular structures of populations on Leymus chinensis and Hierochloe glabra in different succession series in cutting grassland. Pratacultural Science, 2006, 23: 34–37 (in Chinese)
211 Han D Y, Yang Y X, Yang Y F, Li J D, Yang Y. Spatial patterns of plant species diversity in a degraded successional series of fragmented Leymus chinensis meadow in Songnen Plain of Northeast China. Journal of Applied Ecology Sinica, 2012, 23(3): 666–672 (in Chinese)
pmid: 22720609
212 Wang C T, Long R J, Wang Q J, Ding L M, Wang M P. Effects of altitude on plant-species diversity and productivity in an alpine meadow, Qinghai–Tibetan plateau. Australian Journal of Botany, 2007, 55(2): 110–117
https://doi.org/10.1071/BT04070
213 Feng R, Long R, Shang Z, Ma Y, Dong S, Wang Y. Establishment of Elymus natans improves soil quality of a heavily degraded alpine meadow in Qinghai–Tibetan Plateau, China. Plant and Soil, 2010, 327(1-2): 403–411
https://doi.org/10.1007/s11104-009-0065-3
214 Ma Y S, Lang B N. Establishing pratacultural system-A strategy for rehabilitation of “Black Soil” on the Tibetan Plateau. Pratacultural Science, 1998, 15(1): 5–9 (in Chinese)
215 Ma Y S, Li Q Y. Study on the control of weeds and poisonous plant on black soil type deteriorated alpine meadow. Pratacultural Science, 1999, 16(3): 46–50 (in Chinese)
216 Ma Y S, Lang B N, Li Q Y, Shi J J, Dong Q M. Study on rehabilitating and rebuilding technologies for degenerated alpine meadow in the Changjiang and Yellow river source region. Pratacultural Science, 2001, 19(9): 1–5 (in Chinese)
217 Dong Q M, Zhao X Q, Wu G L, Shi J J, Ren G H. A review of formation mechanism and restoration measures of “black-soil-type” degraded grassland in the Qinghai–Tibetan Plateau. Environmental Earth Sciences, 2013, 70(5): 2359–2370
https://doi.org/10.1007/s12665-013-2338-7
218 Anon.On the culture of potatoes. Framer’s Magazine, 1839, 2: 337–338
219 Anon.Rural economy, agriculture, and husbandry. Encyclopaedia Perthensis, 1816, 19: 391–497
220 Rapport D. Defining ecosystem health. In Rapport D, eds, Ecosystem Health. Blackwell Scientific, 1998, 18–33
221 Lutz H J. Applications of ecology in forest management. Ecology, 1957, 38: 46–64
https://doi.org/10.2307/1932125
222 Jax K. Ecosystem Functioning. Oxford: Cambridge University Press, 2010
223 Davies P E, Harris J H, Hillman T J, Walker K F. The sustainable rivers audit: assessing river ecosystem health in the Murray–Darling Basin, Australia. Marine & Freshwater Research, 2010, 61(7): 764–777
https://doi.org/10.1071/MF09043
224 Xu Z, Wan S, Ren H, Han X, Li M H, Cheng W, Jiang Y. Effects of water and nitrogen addition on species turnover in temperate grasslands in northern China. PLoS One, 2012, 7(6): e39762
https://doi.org/10.1371/journal.pone.0039762 pmid: 22768119
225 Covington W W, Fule P Z, Moore M M, Hart S C, Kolb T E, Mast J N, Sackett S S, Wagner M R. Restoring ecosystem health in ponderosa pine forests of the Southwest. Journal of Forestry, 1997, 95(4): 23–29
226 Hou F J, Xu L. History and current situation of ecosystem health research. Acta Prataculturae Sinica, 2009, 18(6): 210–225 (in Chinese)
227 Ren J Z. Study on the development strategy of animal husbandry in China.Beijing: China Prospect Press, 1988, 242–261 (in Chinese)
228 Ren J Z, Zhou X Y. Agri-eco-produetivity and its production potential. Acta Prapataculturae Sinca, 1995, 4: 1–5 (in Chinese)
229 Hou F, Li G, Chang S. Physiological indices of grazed grassland under health management. Journal of Applied Ecology Sinica, 2002, 13(8): 1049–1053 (in Chinese)
pmid: 12418273
230 Han G, Zhao M, Hong M. Grassland ecosystem health and service and adaptive management. In: Wu J, Li F, eds. Lectures on modern ecology V: Macro ecology and sustainable science. Beijing: Higher Education Press, 2011, 217–243
231 Shan G, Xu Z, Ning F. Research progress and development trend of grassland ecosystem health assessment. Chinese Journal of Grassland, 2008, 30: 98–103 (in Chinese)
232 Whitford W G, De Soyza A G, Van Zee J W, Herrick J E, Havstad K M. Vegetation, soil, and animal indicators of rangeland health. Environmental Monitoring and Assessment, 1998, 51(1–2): 179–200
https://doi.org/10.1023/A:1005987219356
233 Ren J Z, Nan Z B, Hao D. Interface theory in grass farming system. Acta Prapataculturae Sinica, 2000, 9: 1–8 (in Chinese)
234 Wang C T, Long R J, Wang Q L, Cao G M, Shi J J, Du Y G. Response of plant diversity and productivity to soil resources changing under grazing disturbance on an alpine meadow. Acta Ecologica Sinica, 2008, 28: 4144–4152 (in Chinese)
235 Li B. Grassland degradation in northern China and control measures. Chinese Agricultural Science, 1997, 30: 1–10 (in Chinese)
236 Ren J Z. The property, structure and health evaluation of grassland resources. In: Wang P, eds. Advances in Grassland Science in China. Beijing: China Agricultural University press, 1997
237 Hamilton Iii E W, Giovannini M S, Moses S A, Coleman J S, McNaughton S J. Biomass and mineral element responses of a Serengeti short-grass species to nitrogen supply and defoliation: compensation requires a critical [N]. Oecologia, 1998, 116(3): 407–418
https://doi.org/10.1007/s004420050604 pmid: 28308073
238 Schaeffer D J. A toxicological perspective on ecosystem characteristics to track sustainable development. VII. Ecosystem health. Ecotoxicology and Environmental Safety, 1991, 22(2): 225–239
https://doi.org/10.1016/0147-6513(91)90060-3 pmid: 1769353
239 Jing X, Sanders N J, Shi Y, Chu H, Classen A T, Zhao K, Chen L, Shi Y, Jiang Y, He J S. The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nature Communications, 2015, 6(1): 8159
https://doi.org/10.1038/ncomms9159 pmid: 26328906
240 Kang L, Han X, Zhang Z, Sun O J. Grassland ecosystems in China: review of current knowledge and research advancement. Philosophical Transactions of the Royal Society, 2007, 362(1482): 997–1008
https://doi.org/10.1098/rstb.2007.2029 pmid: 17317645
[1] Qiuxia MENG, Jianjie ZHANG, Wenyan XIE, Huaiping ZHOU, Qiang ZHANG. Chinese agricultural technology transfer to African typical dry areas: practice and experience[J]. Front. Agr. Sci. Eng. , 2020, 7(4): 440-454.
[2] Xiaoqiang JIAO, Jianbo SHEN, Fusuo ZHANG. A potential solution for food security in Kenya: implications of the Quzhou model in China[J]. Front. Agr. Sci. Eng. , 2020, 7(4): 406-417.
[3] Shenggen FAN. Sustainable intensification of agriculture is key to feeding Africa in the 21st century[J]. Front. Agr. Sci. Eng. , 2020, 7(4): 366-370.
[4] C. Wayne HONEYCUTT, Cristine L.S. MORGAN, Pipa ELIAS, Michael DOANE, John MESKO, Rob MYERS, LaKisha ODOM, Bianca MOEBIUS-CLUNE, Ron NICHOLS. Soil health: model programs in the USA[J]. Front. Agr. Sci. Eng. , 2020, 7(3): 356-361.
[5] Xia LIANG, Jizheng HE, Fusuo ZHANG, Qirong SHEN, Jinshui WU, Iain M. YOUNG, Anthony G. O'DONNELL, Ligang WANG, Enli WANG, Julian HILL, Deli CHEN. Healthy soils for sustainable food production and environmental quality[J]. Front. Agr. Sci. Eng. , 2020, 7(3): 347-355.
[6] Rebecca SCHNEIDER, Stephen MORREALE, Zhigang LI, Erin MENZIES PLUER, Kirsten KURTZ, Xilu NI, Cuiping WANG, Changxiao LI, Harold VAN ES. Restoring soil health to reduce irrigation demand and buffer the impacts of drought[J]. Front. Agr. Sci. Eng. , 2020, 7(3): 339-346.
[7] Rattan LAL. Managing soil quality for humanity and the planet[J]. Front. Agr. Sci. Eng. , 2020, 7(3): 251-253.
[8] Yuelai LU, David NORSE, David POWLSON. Agriculture Green Development in China and the UK: common objectives and converging policy pathways[J]. Front. Agr. Sci. Eng. , 2020, 7(1): 98-105.
[9] Zhenling CUI, Zhengxia DOU, Hao YING, Fusuo ZHANG. Producing more with less: reducing environmental impacts through an integrated soil-crop system management approach[J]. Front. Agr. Sci. Eng. , 2020, 7(1): 14-20.
[10] Marco ROELCKE, Lisa HEIMANN, Yong HOU, Jianbin GUO, Qiaoyun XUE, Wei JIA, Anne OSTERMANN, Roxana Mendoza HUAITALLA, Moritz ENGBERS, Clemens OLBRICH, Roland W. SCHOLZ, Joachim CLEMENS, Frank SCHUCHARDT, Rolf NIEDER, Xuejun LIU, Fusuo ZHANG. Phosphorus status, use and recycling in a Chinese peri-urban region with intensive animal husbandry and cropping systems Results from case study in a Sino-German applied research collaboration project[J]. Front. Agr. Sci. Eng. , 2019, 6(4): 388-402.
[11] David KEMP, Guodong HAN, Fujiang HOU, Xiangyang HOU, Zhiguo LI, Yi SUN, Zhongwu WANG, Jianping WU, Xiaoqing ZHANG, Yingjun ZHANG, Xuyin GONG. Sustainable management of Chinese grasslands—issues and knowledge[J]. Front. Agr. Sci. Eng. , 2018, 5(1): 9-23.
[12] Yingjun ZHANG, Wenjie LU, Hao ZHANG, Jiqiong ZHOU, Yue SHEN. Grassland management practices in Chinese steppes impact productivity, diversity and the relationship[J]. Front. Agr. Sci. Eng. , 2018, 5(1): 57-63.
[13] Yaojian XIE, Roger J. ARNOLD, Zhihua WU, Shuaifei CHEN, Apeng DU, Jianzhong LUO. Advances in eucalypt research in China[J]. Front. Agr. Sci. Eng. , 2017, 4(4): 380-390.
[14] Wenming LU, Maharaj MUTHOO. Progress of forest certification in China[J]. Front. Agr. Sci. Eng. , 2017, 4(4): 414-420.
[15] Yubao WANG, Lijie SHI, Haojie ZHANG, Shikun SUN. A data envelopment analysis of agricultural technical efficiency of Northwest Arid Areas in China[J]. Front. Agr. Sci. Eng. , 2017, 4(2): 195-207.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed