Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2018, Vol. 5 Issue (1) : 57-63    https://doi.org/10.15302/J-FASE-2017192
RESEARCH ARTICLE
Grassland management practices in Chinese steppes impact productivity, diversity and the relationship
Yingjun ZHANG(), Wenjie LU, Hao ZHANG, Jiqiong ZHOU, Yue SHEN
Department of Grassland Science, China Agricultural University, Beijing 100193, China
 Download: PDF(434 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Grasslands are crucial parts of the terrestrial ecosystem, with an extremely high differentiation of productivity and diversity across spatial scales and land use patterns. The practices employed to manage grassland, such as grazing, haymaking, fertilization or reseeding, can improve the grassland condition. This study focuses on the changes in productivity and diversity and the relationship between them as affected by management practices. Productivity and diversity have unequivocally been altered in response to different management practices. When grazing intensity of a typical steppe increased from 1.5 to 9 sheep per hectare, both productivity and diversity declined. Higher grazing intensity (6 to 9 sheep per hectare) accelerated loss of diversity because of lower productivity. Productivity was significantly improved but diversity was lost by fertilizing. N fertilization also reduced the sensitivity of diversity to productivity. A similar response was found in mown grassland with increased productivity and diversity but their relationship was negatively affected. Mowing also slowed down the decline in diversity as productivity increased. Reseeding purple-flowered alfalfa led to an increased diversity, while yellow-flowered alfalfa increased productivity significantly. The negative productivity-diversity relationship was transformed to a positive one by reseeding alfalfa. These results enhance understanding of how productivity, diversity and their relationships change in response to altered grassland management practices, and support an integrated approach for improving both productivity and diversity.

Keywords diversity      fertilizing      grassland management practice      grazing      mowing      productivity      reseeding     
Corresponding Author(s): Yingjun ZHANG   
Just Accepted Date: 20 December 2017   Online First Date: 12 January 2018    Issue Date: 21 March 2018
 Cite this article:   
Yingjun ZHANG,Wenjie LU,Hao ZHANG, et al. Grassland management practices in Chinese steppes impact productivity, diversity and the relationship[J]. Front. Agr. Sci. Eng. , 2018, 5(1): 57-63.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2017192
https://academic.hep.com.cn/fase/EN/Y2018/V5/I1/57
Grazing intensity (sheep per hectare) Productivity/(g·m2) Diversity (H')
0 450.320±24.03 3.20±0.18
1.5 477.330±27.27 3.50±0.22
3.0 443.430±23.21 2.91±0.15
4.5 390.120±16.81 2.43±0.09
6.0 235.110±11.6 2.33±0.08
7.5 212.330±10.3 1.98±0.04
9.0 189.120±11.69 1.20±0.05
Tab.1  Intensity of traditional grazing affects community productivity and diversity
Fig.1  Relationship between productivity and diversity in a grazing system
Grazing intensity (sheep per hectare) Productivity/(g·m2) Diversity (H')
0 450.320±24.03 3.20±0.18
1.5 477.330±27.27 3.50±0.22
3.0 443.430±23.21 2.91±0.15
4.5 390.120±16.81 2.43±0.09
6.0 235.110±11.6 2.33±0.08
7.5 212.330±10.3 1.98±0.04
9.0 189.120±11.69 1.20±0.05
Tab.2  Intensity of traditional grazing affects community productivity and diversity
Year Productivity/(g·m2)   Diversity (H')
Control N fertilization Control N fertilization
2013 92.343±7.46 a 103.380±10.40 a   1.15±0.06 A 1.18±0.03 A
2014 98.577±4.08 b 123.53±1.86 a 0.98±0.13 A 1.16±0.12 A
2015 161.970±14.3 b 230.795±29.50 a 1.38±0.10 A 1.03±0.09 B
2016 121.214±4.16 a 168.300±28.90 a   1.39±0.03 A 1.12±0.02 B
Tab.3   N fertilization affects community productivity and diversity
Fig.2  Nitrogen fertilization in grassland affects the relationship of productivity and diversity
Year Productivity/(g·m2)   Diversity (H') 
Control Mowing Control Mowing
2014 228.820±17.15 a 267.817±16.66 a   1.49±0.23 B 2.22±0.06 A
2015 170.187±14.43 b 354.593±24.18 a 1.85±0.09 A 1.82±0.10 A
2016 189.496±20.11 a 241.113±11.92 a   1.65±0.16 A 1.97±0.03 A
Tab.4  Mowing for hay influences community productivity and diversity
Fig.3  Relationship between productivity and diversity in a mowing system
Year Productivity (g m 2) Diversity (H')
Control WL168 YFA   Control WL168 YFA
2014 228.82±17.1 b 250.223±9.63 b 313.9±21.2 a   1.49±0.23 B 2.10±0.06 A 1.81±0.11 AB
2015 170.187±14.4 b 197.809±8.63 b 300.582±14.38 a 1.85±0.09 B 2.10±0.06 A 1.92±0.03 AB
2016 189.496±20.1 b 184.764±4.15 b 197.786±9.11 a   1.65±0.16 A 1.55±0.07 A 1.68±0.05 A
Tab.5  Reseeding affects community productivity and diversity
Fig.4  Reseeding in grassland affects the relationship of productivity and diversity (WL, purple-flowered alfalfa WL168; YFA, yellow-flowered alfalfa)
1 Kang L, Han X, Zhang Z, Sun O J. Grassland ecosystems in China: review of current knowledge and research advancement. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362(1482): 997–1008 doi:10.1098/rstb.2007.2029
pmid: 17317645
2 Bai Y, Wu J, Clark C M, Pan Q, Zhang L, Chen S, Wang Q, Han X,Wisley B. Grazing alters ecosystem functioning and C:N:P stoichiometry of grasslands along a regional precipitation gradient. Journal of Applied Ecology, 2012, 49(6): 1204–1215
3 Kiehl K, Kirmer A, Donath T W, Rasran L, Hölzel N. Species introduction in restoration projects—Evaluation of different techniques for the establishment of semi-natural grasslands in Central and Northwestern Europe. Basic and Applied Ecology, 2010, 11(4): 285–299
https://doi.org/10.1016/j.baae.2009.12.004
4 Schönbach P, Wan H, Gierus M, Bai Y, Müller K, Lin L, Susenbeth A, Taube F. Grassland responses to grazing: effects of grazing intensity and management system in an Inner Mongolian steppe ecosystem. Plant and Soil, 2011, 340(1–2): 103–115
https://doi.org/10.1007/s11104-010-0366-6
5 Végvári Z, Valkó O, Deák B, Török P, Konyhás S, Tóthmérész B. Effects of land use and wildfires on the habitat selection of great bustard (Otis tarda I.)—Implications for species conservation. Land Degradation & Development, 2016, 27(4): 910–918 doi:10.1002/ldr.2495
6 Liu Y, Wu G L, Ding L M, Tian F P, Shi Z H. Diversity–productivity trade-off during converting cropland to perennial grassland in the semi-arid areas of China. Land Degradation & Development, 2017, 28(2): 699–707
https://doi.org/10.1002/ldr.2561
7 Polley H W, Wilsey B J, Derner J D. Dominant species constrain effects of species diversity on temporal variability in biomass production of tallgrass prairie. Oikos, 2007, 116(12): 2044–2052
https://doi.org/10.1111/j.2007.0030-1299.16080.x
8 Rose L, Leuschner C. The diversity-productivity relationship in a permanent temperate grassland: negative diversity effect, dominant influence of management regime. Plant Ecology & Diversity, 2012, 5(3): 265–274
https://doi.org/10.1080/17550874.2012.723763
9 Campbell V, Murphy G, Romanuk T N. Experimental design and the outcome and interpretation of diversity-stability relations. Oikos, 2011, 120(3): 399–408
https://doi.org/10.1111/j.1600-0706.2010.18768.x
10 Tilman D. Diversity and production in European grasslands. Science, 1999, 286(5442): 1099–1100
https://doi.org/10.1126/science.286.5442.1099
11 Bai Y, Wu J, Pan Q, Huang J, Wang Q, Li F, Buyantuyev A, Han X. Positive linear relationship between productivity and diversity: evidence from the Eurasian Steppe. Journal of Applied Ecology, 2007, 44(5): 1023–1034
https://doi.org/10.1111/j.1365-2664.2007.01351.x
12 Chase J M, Leibold M A. Spatial scale dictates the productivity-biodiversity relationship. Nature, 2002, 416(6879): 427–430
https://doi.org/10.1038/416427a pmid: 11919631
13 Pywell R F, Bullock J M, Hopkins A, Walker K J, Sparks T H, Burke M J W, Peel S. Restoration of species-rich grassland on arable land: assessing the limiting processes using a multi-site experiment. Journal of Applied Ecology, 2002, 39(2): 294–309
https://doi.org/10.1046/j.1365-2664.2002.00718.x
14 Korell L, Schmidt R, Bruelheide H, Hensen I, Auge H. Mechanisms driving diversity-productivity relationships differ between exotic and native communities and are affected by gastropod herbivory. Oecologia, 2016, 180(4): 1025–1036
https://doi.org/10.1007/s00442-015-3395-2 pmid: 26235964
15 Stein C, Auge H, Fischer M, Weisser W W, Prati D. Dispersal and seed limitation affect diversity and productivity of montane grasslands. Oikos, 2008, 117(10): 1469–1478
https://doi.org/10.1111/j.0030-1299.2008.16766.x
16 Cardinale B J, Matulich K L, Hooper D U, Byrnes J E, Duffy E, Gamfeldt L, Balvanera P, O’Connor M I, Gonzalez A. The functional role of producer diversity in ecosystems. American Journal of Botany, 2011, 98(3): 572–592
https://doi.org/10.3732/ajb.1000364 pmid: 21613148
17 Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime J P, Hector A, Hooper D U, Huston M A, Raffaelli D, Schmid B, Tilman D, Wardle D A. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science, 2001, 294(5543): 804–808
https://doi.org/10.1126/science.1064088 pmid: 11679658
18 Wang X, Zhang Y, Huang D, Li Z, Zhang X. Methane uptake and emissions in a typical steppe grazing system during the grazing season. Atmospheric Environment, 2015, 105: 14–21
https://doi.org/10.1016/j.atmosenv.2015.01.036
19 Zhang Y, Huang D, Badgery W B, Kemp D R, Chen W, Wang X, Liu N. Reduced grazing pressure delivers production and environmental benefits for the typical steppe of north China. Scientific Reports, 2015, 5(1): 16434
https://doi.org/10.1038/srep16434 pmid: 26553566
20 Yang H, Jiang L, Li L, Li A, Wu M, Wan S. Diversity-dependent stability under mowing and nutrient addition: evidence from a 7-year grassland experiment. Ecology Letters, 2012, 15(6): 619–626
https://doi.org/10.1111/j.1461-0248.2012.01778.x pmid: 22487498
21 Beyhaut E, Larson D L, Allan D L, Graham P H. Legumes in prairie restoration: evidence for wide cross-nodulation and improved inoculant delivery. Plant and Soil, 2014, 377(1–2): 245–258
https://doi.org/10.1007/s11104-013-1999-z
22 Shen Y, Chen W Q, Yang G W, Yang X, Liu N, Sun X, Chen J S, Zhang Y J. Can litter addition mediate plant productivity responses to increased precipitation and nitrogen deposition in a typical steppe? Ecological Research, 2016, 31(4): 579–587
https://doi.org/10.1007/s11284-016-1368-5
23 Lu W J, Zhang Y J, Liu N. Changes in stable fraction of soil organic carbon and microbial structure in response of grazing intensity. Proceedings of XXIII International Grassland Congress, 2015
24 Salvati L, Carlucci M. Towards sustainability in agro-forest systems? Grazing intensity, soil degradation and the socioeconomic profile of rural communities in Italy. Ecological Economics, 2015, 112: 1–13
https://doi.org/10.1016/j.ecolecon.2015.02.001
25 Liu N, Kan H M, Yang G W, Zhang Y J. Changes in plant, soil, and microbes in a typical steppe from simulated grazing: explaining potential change in soil C. Ecological Monographs, 2015, 85(2): 269–286
https://doi.org/10.1890/14-1368.1
26 Gross K, Cardinale B J, Fox J W, Gonzalez A, Loreau M, Wayne Polley H, Reich P B, van Ruijven J. Species richness and the temporal stability of biomass production: a new analysis of recent biodiversity experiments. American Naturalist, 2014, 183(1): 1–12 doi:10.1086/673915
pmid: 24334731
27 Xu Z, Ren H, Li M H, van Ruijven J, Han X, Wan S, Li H, Yu Q, Jiang Y, Jiang L. Environmental changes drive the temporal stability of semi-arid natural grasslands through altering species asynchrony. Journal of Ecology, 2015, 103(5): 1308–1316
https://doi.org/10.1111/1365-2745.12441
28 Grace J B, Michael Anderson T, Smith M D, Seabloom E, Andelman S J, Meche G, Weiher E, Allain L K, Jutila H, Sankaran M, Knops J, Ritchie M, Willig M R. Does species diversity limit productivity in natural grassland communities? Ecology Letters, 2007, 10(8): 680–689
https://doi.org/10.1111/j.1461-0248.2007.01058.x pmid: 17594423
29 Li W, Xu F, Zheng S, Taube F, Bai Y. Patterns and thresholds of grazing-induced changes in community structure and ecosystem functioning: species-level responses and the critical role of species traits. Journal of Applied Ecology, 2017, 54(3): 963–975
https://doi.org/10.1111/1365-2664.12806
30 Lu W, Liu N, Zhang Y, Zhou J, Guo Y, Yang X. Impact of vegetation community on litter decomposition: evidence from a reciprocal transplant study with 13C labeled plant litter. Soil Biology & Biochemistry, 2017, 112: 248–257
https://doi.org/10.1016/j.soilbio.2017.05.014
31 Wallenstein M D, Burns R G. Ecology of Extracellular Enzyme Activities and Organic Matt er Degradation in Soil: A Complex Community-Driven Process, in Methods of Soil Enzymology, Dick R P, Editor, 2011, 35–55
32 Chen W Q, Zhang Y J, Mai X H, Shen Y. Multiple mechanisms contributed to the reduced stability of Inner Mongolia grassland ecosystem following nitrogen enrichment. Plant and Soil, 2016, 409(1–2): 283–296
https://doi.org/10.1007/s11104-016-2967-1
33 Zhang Y, Loreau M, He N, Zhang G,Han X. Mowing exacerbates the loss of ecosystem stability under nitrogen enrichment in a temperate grassland. Functional Ecology, 2017, 31(8): 1637–1646
34 Bai Y, Wu J, Clark C M, Naeem S, Pan Q, Huang J, Zhang L, Han X. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from Inner Mongolia Grasslands. Global Change Biology, 2010, 16(1): 358–372 doi:10.1111/j.1365-2486.2009.01950.x
35 Mladkova P, Mladek J, Hejduk S, Hejcman M, Cruz P, Jouany C, Pakeman R J. High-nature-value grasslands have the capacity to cope with nutrient impoverishment induced by mowing and livestock grazing. Journal of Applied Ecology, 2015, 52(4): 1073–1081
https://doi.org/10.1111/1365-2664.12464
36 Storkey J, Döring T, Baddeley J, Collins R, Roderick S, Jones H, Watson C. Engineering a plant community to deliver multiple ecosystem services. Ecological Applications, 2015, 25(4): 1034–1043
https://doi.org/10.1890/14-1605.1 pmid: 26465040
37 Socher S A, Prati D, Boch S, Müller J, Klaus V H, Hölzel N, Fischer M. Direct and productivity-mediated indirect effects of fertilization, mowing and grazing on grassland species richness. Journal of Ecology, 2012, 100(6): 1391–1399
https://doi.org/10.1111/j.1365-2745.2012.02020.x
38 Lü X T, Lü F M, Zhou L S, Han X, Han X G. Stoichiometric response of dominant grasses to fire and mowing in a semi-arid grassland. Journal of Arid Environments, 2012, 78: 154–160
https://doi.org/10.1016/j.jaridenv.2011.11.008
39 Jones G B, Alpuerto J B, Tracy B F, Fukao T. Physiological effect of cutting height and high temperature on regrowth vigor in orchardgrass. Frontiers in Plant Science, 2017, 8: 805
https://doi.org/10.3389/fpls.2017.00805 pmid: 28579997
40 Elsaesser M, Engel S, Breunig J, Thumm U. Increasing protein yields from grassland by reseeding of legumes. EGF at 50: The future of European grasslands. Proceedings of the 25th General Meeting of the European Grassland Federation, Aberystwyth, Wales, 7–11 September 2014, ed. Hopkins A, Collins R P, Fraser M D, King V R, Lloyd D C, Moorby J M,Robson P R H. 2014, 880–883
41 Mulder C, Jumpponen A, Högberg P, Huss-Danell K. How plant diversity and legumes affect nitrogen dynamics in experimental grassland communities. Oecologia, 2002, 133(3): 412–421
https://doi.org/10.1007/s00442-002-1043-0 pmid: 28466208
42 Mortenson M C, Schuman G E, Ingram L J, Nayigihugu V, Hess B W. Forage production and quality of a mixed-grass rangeland interseeded with Medicago sativa ssp falcata. Rangeland Ecology and Management, 2005, 58(5): 505–513
https://doi.org/10.2111/1551-5028(2005)58[505:FPAQOA]2.0.CO;2
44 Fukami T, Morin P J. Productivity-biodiversity relationships depend on the history of community assembly. Nature, 2003, 424(6947): 423–426
https://doi.org/10.1038/nature01785 pmid: 12879069
43 Adler P B, Seabloom E W, Borer E T, Hillebrand H, Hautier Y, Hector A, Harpole W S, O’Halloran L R, Grace J B, Anderson T M, Bakker J D, Biederman L A, Brown C S, Buckley Y M, Calabrese L B, Chu C J, Cleland E E, Collins S L, Cottingham K L, Crawley M J, Damschen E I, Davies K F, DeCrappeo N M, Fay P A, Firn J, Frater P, Gasarch E I, Gruner D S, Hagenah N, Hille Ris Lambers J, Humphries H, Jin V L, Kay A D, Kirkman K P, Klein J A, Knops J M H, La Pierre K J, Lambrinos J G, Li W, MacDougall A S, McCulley R L, Melbourne B A, Mitchell C E, Moore J L, Morgan J W, Mortensen B, Orrock J L, Prober S M, Pyke D A, Risch A C, Schuetz M, Smith M D, Stevens C J, Sullivan L L, Wang G, Wragg P D, Wright J P, Yang L H. Productivity is a poor predictor of plant species richness. Science, 2011, 333(6050): 1750–1753
https://doi.org/10.1126/science.1204498 pmid: 21940895
45 Chase J M. Stochastic community assembly causes higher biodiversity in more productive environments. Science, 2010, 328(5984): 1388–1391
https://doi.org/10.1126/science.1187820 pmid: 20508088
[1] Bidjokazo FOFANA, Leonides HALOS-KIM, Mercy AKEREDOLU, Ande OKIROR, Kebba SIMA, Deola NAIBAKELAO, Mel OLUOCH, Fumiko ISEKI. Innovative agricultural extension value chain-based models for smallholder African farmers[J]. Front. Agr. Sci. Eng. , 2020, 7(4): 418-426.
[2] Deli WANG, Ling WANG, Jushan LIU, Hui ZHU, Zhiwei ZHONG. Grassland ecology in China: perspectives and challenges[J]. Front. Agr. Sci. Eng. , 2018, 5(1): 24-43.
[3] La ZHUO, Arjen Y. HOEKSTRA. The effect of different agricultural management practices on irrigation efficiency, water use efficiency and green and blue water footprint[J]. Front. Agr. Sci. Eng. , 2017, 4(2): 185-194.
[4] Yang SONG,Chen ZHU,Waseem RAZA,Dongsheng WANG,Qiwei HUANG,Shiwei GUO,Ning LING,Qirong SHEN. Coupling of the chemical niche and microbiome in the rhizosphere: implications from watermelon grafting[J]. Front. Agr. Sci. Eng. , 2016, 3(3): 249-262.
[5] Xunhe HUANG,Jinfeng ZHANG,Danlin HE,Xiquan ZHANG,Fusheng ZHONG,Weina LI,Qingmei ZHENG,Jiebo CHEN,Bingwang DU. Genetic diversity and population structure of indigenous chicken breeds in South China[J]. Front. Agr. Sci. Eng. , 2016, 3(2): 97-101.
[6] Jingjing WANG,Feng HUANG,Baoguo LI. Quantitative analysis of yield and soil water balance for summer maize on the piedmont of the North China Plain using AquaCrop[J]. Front. Agr. Sci. Eng. , 2015, 2(4): 295-310.
[7] Ruixia SHEN,Chunyan TIAN,Zhidan LIU,Yuanhui ZHANG,Baoming LI,Haifeng LU,Na DUAN. Temporal changes in the characteristics of algae in Dianchi Lake, Yunnan Province, China[J]. Front. Agr. Sci. Eng. , 2015, 2(3): 266-275.
[8] Xinxin LI,Huijuan WANG,Guanghua SU,Zhuying WEI,Chunling BAI,Wuni-MENGHE,Yanhui HOU,Changqing YU,Shorgan BOU,Guangpeng LI. The ecological adaptability of cloned sheep to free-grazing in the Tengger Desert of Inner Mongolia, China[J]. Front. Agr. Sci. Eng. , 2014, 1(3): 191-200.
[9] Claudia Malena CORBI-BOTTO,Sebastian Andres SADABA,Elina Ines FRANCISCO,Paula Belen KALEMKERIAN,Juan Pedro LIRON,Egle Etel VILLEGAS-CASTAGNASSO,Guillermo GIOVAMBATTISTA,Pilar PERAL-GARCIA,Silvina DIAZ. Genetic variability of Appaloosa horses: a study of a closed breeding population from Argentina[J]. Front. Agr. Sci. Eng. , 2014, 1(3): 175-178.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed