Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    0, Vol. Issue () : 97-101    https://doi.org/10.15302/J-FASE-2016102
LETTER
Genetic diversity and population structure of indigenous chicken breeds in South China
Xunhe HUANG1,*(),Jinfeng ZHANG1,Danlin HE2,Xiquan ZHANG2,Fusheng ZHONG1,Weina LI1,Qingmei ZHENG1,Jiebo CHEN1,Bingwang DU3
1. School of Life Sciences, Jiaying University, Meizhou 514015, China
2. College of Animal Sciences, South China Agricultural University, Guangzhou 510642, China
3. College of Agricultural, Guangdong Ocean University, Zhanjiang 524088, China
 Download: PDF(626 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A total of 587 individuals from 12 indigenous chicken breeds from South China and two commercial breeds were genotyped for 26 microsatellites to investigate the genetic diversity and population structure. All microsatellites were found to be polymorphic. The number of alleles per locus ranged from 5 to 36, with an average of 12.10 ± 7.00 (SE). All breeds, except White Recessive Rock, had high allelic polymorphism (>0.5). Higher genetic diversity was revealed in the indigenous chicken breeds rather than in the commercial breeds. Potential introgression from the commercial breeds into the indigenous chickens was also detected. The population structure of these indigenous chicken breeds could be explained by their geographical distribution, which suggested the presence of independent history of breed formation. Data generated in this study will provide valuable information to the conservation for indigenous chicken breeds in future.

Keywords microsatellites      genetic diversity      population structure      indigenous chicken      South China      conservation     
Corresponding Author(s): Xunhe HUANG   
Just Accepted Date: 08 June 2016   Online First Date: 24 June 2016    Issue Date: 05 July 2016
 Cite this article:   
Xunhe HUANG,Jinfeng ZHANG,Danlin HE, et al. Genetic diversity and population structure of indigenous chicken breeds in South China[J]. Front. Agr. Sci. Eng. , 0, (): 97-101.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2016102
https://academic.hep.com.cn/fase/EN/Y0/V/I/97
Breed (code) N Allelic diversity Genetic diversity Proportion of clusters
TNA MNA±SE Ar(g)±SE Ap(g)±SE HE±SE HO±SE I/II/III FIS
Wenchang (WC)* 34 183 7.04±3.45 5.21±0.37 0.13±0.03 0.70±0.13 0.65±0.15 0.90/0.04/0.06 0.08
Guangxi Yellow (GX)* 32 172 6.62±3.29 4.85±0.40 0.13±0.04 0.65±0.16 0.65±0.21 0.94/0.02/0.04 0.01
Huaixiang (HX)* 78 209 8.04±4.47 5.17±0.41 0.14±0.04 0.67±0.14 0.66±0.16 0.92/0.03/0.05 0.03
Xinghua (XH)* 36 156 6.00±2.79 4.65±0.35 0.06±0.03 0.64±0.16 0.67±0.17 0.85/0.03/0.12 - 0.03
Zhongshan Shalan (SL)* 36 171 6.58±3.26 4.83±0.40 0.11±0.05 0.65±0.14 0.68±0.17 0.96/0.02/0.02 - 0.04
Qingyuan Partridge (QY)* 47 190 7.31±3.25 4.99±0.38 0.11±0.03 0.65±0.15 0.67±0.18 0.94/0.02/0.04 - 0.02
Yangshan (YS)* 36 166 6.38±3.07 4.77±0.35 0.06±0.03 0.65±0.16 0.66±0.20 0.87/0.04/0.09 0.00
Huanglang (HL)* 50 215 8.27±4.53 5.35±0.41 0.24±0.05 0.68±0.14 0.68±0.18 0.89/0.02/0.09 0.02
Huiyang Bearded (HY)* 35 171 6.58±2.73 4.97±0.29 0.15±0.04 0.69±0.09 0.64±0.13 0.05/0.90/0.05 0.08
Wuhua Yellow (WH) 58 191 7.35±3.27 4.95±0.30 0.13±0.03 0.69±0.11 0.65±0.15 0.04/0.92/0.04 0.06
Ningdu Yellow (ND)* 50 181 6.96±3.74 4.94±0.40 0.17±0.06 0.67±0.14 0.61±0.16 0.25/0.02/0.73 0.10
Hetian (HT)* 45 181 6.96±3.90 5.05±0.42 0.16±0.05 0.68±0.14 0.62±0.18 0.04/0.04/0.92 0.10
Lingnan Yellow III (LN) 30 177 6.81±3.74 5.32±0.41 0.14±0.04 0.70±0.13 0.63±0.20 0.59/0.12/0.29 0.11
White Recessive Rock (WR) 20 96 3.69±1.50 3.31±0.24 0.04±0.02 0.48±0.18 0.48±0.20 0.01/0.88/0.11 0.05
Cluster I 349 281 10.81±6.34 8.02±0.84 0.93±0.19 0.68±0.14 0.66±0.15 0.90/0.04/0.06 0.03
Cluster II 93 220 8.46±4.12 7.53±0.66 0.80±0.14 0.71±0.10 0.65±0.13 0.06/0.61/0.33 0.08
Cluster III 95 214 8.23±4.73 7.43±0.80 0.78±0.18 0.69±0.14 0.61±0.15 0.02/0.04/0.94 0.11
Commercial breeds 50 188 7.23±3.81 6.38±0.57 0.97±0.27 0.69±0.11 0.57±0.13 0.32/0.50/0.18 0.17
Indigenous breeds 537 310 11.92±6.77 7.20±0.67 1.80±0.36 0.70±0.13 0.65±0.13 0.60/0.19/0.21 0.07
Overall 587 314 12.10±7.00 0.71±0.12 0.65±0.13 0.63/0.32/0.05 0.09
Tab.1  Genetic diversity of 12 indigenous chicken breeds from South China and two commercial breeds using 26 microsatellite markers
Fig.1  (a) Substructure of 12 indigenous chicken breeds from South China and commercial breeds as indicated by STRUCTURE analysis. Each individual represented by a single vertical line was assigned to one of three distinct clusters based on clustering result at K = 3. Black bars are separators for breeds;Color codes: green, Cluster I; purple, Cluster II; red, Cluster III ;(b) geographical distribution of 12 indigenous chicken breeds from South China. The shaded area in each pie chart is proportional to the number of individuals in each population observed for each genetic cluster. Color codes: green, Cluster I; purple, Cluster II; red, Cluster III. Breed codes: WC, Wenchang; GX, Guangxi Yellow;HX, Huaixiang;SL, Zhongshan Shalan; XH, Xinghua; QY, Qingyuan Partridge; YS, Yangshan; HL, Huanglang; HY, Huiyang Bearded; WH, Wuhua Yellow; ND, Ningdu Yellow; HT, Hetian; LN, Lingnan Yellow III; WR, White Recessive Rock.
1 FAO. The State of the World’s Animal Genetic Resources for Food and Agriculture. Rome:FAO, 2007
2 Blackburn H D. The national animal germplasm program: challenges and opportunities for poultry genetic resources. Poultry Science, 2006, 85(2): 210–215
https://doi.org/10.1093/ps/85.2.210
3 Toro M A, Fernández J, Caballero A. Molecular characterization of breeds and its use in conservation. Livestock Science, 2009, 120(3): 174–195
https://doi.org/10.1016/j.livsci.2008.07.003
4 Lyimo C M, Weigend A, Msoffe P L, Eding H, Simianer H, Weigend S. Global diversity and genetic contributions of chicken populations from African, Asian and European regions. Animal Genetics, 2014, 45(6): 836–848
https://doi.org/10.1111/age.12230
5 Ceccobelli S, Di Lorenzo P, Lancioni H, Monteagudo Ibáñez L V, Tejedor M T, Castellini C, Landi V, Martínez Martínez A, Delgado Bermejo J V, Vega Pla J L, Leon Jurado J M, García N, Attard G, Grimal A, Stojanovic S, Kume K, Panella F, Weigend S, Lasagna E. Genetic diversity and phylogeographic structure of sixteen Mediterranean chicken breeds assessed with microsatellites and mitochondrial DNA. Livestock Science, 2015, 175: 27–36
https://doi.org/10.1016/j.livsci.2015.03.003
6 Zhang X Q, Leung F C, Chan D K O, Yang G, Wu C. Genetic diversity of Chinese native chicken breeds based on protein polymorphism, randomly amplified polymorphic DNA, and microsatellite polymorphism. Poultry Science, 2002, 81(10): 1463–1472
https://doi.org/10.1093/ps/81.10.1463
7 Qu L J, Li X Y, Xu G F, Chen K W, Yang H J, Zhang L C, Wu G Q, Hou Z C, Xu G Y, Yang N. Evaluation of genetic diversity in Chinese indigenous chicken breeds using microsatellite markers. Science in China. Series C: Life Sciences, 2006, 49(4): 332–341
https://doi.org/10.1007/s11427-006-2001-6
8 Yu Y B, Wang J Y, Mekki D M, Tang Q P, Li H F, Gu R, Ge Q L, Zhu W Q, Chen K W. Evaluation of genetic diversity and genetic distance between twelve Chinese indigenous chicken breeds based on microsatellite markers. International Journal of Poultry Science, 2006, 5(6): 550–556
https://doi.org/10.3923/ijps.2006.550.556
9 Goudet J. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3.2). , 2016–01–05
10 Leberg P L. Estimating allelic richness: effects of sample size and bottlenecks. Molecular Ecology, 2002, 11(11): 2445–2449
https://doi.org/10.1046/j.1365-294X.2002.01612.x
11 Szpiech Z A, Jakobsson M, Rosenberg N A. ADZE: a rarefaction approach for counting alleles private to combinations of populations. Bioinformatics, 2008, 24(21): 2498–2504
https://doi.org/10.1093/bioinformatics/btn478
12 Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155(2): 945–959
13 Hubisz M J, Falush D, Stephens M, Pritchard J K. Inferring weak population structure with the assistance of sample group information. Molecular Ecology Resources, 2009, 9(5): 1322–1332
https://doi.org/10.1111/j.1755-0998.2009.02591.x
14 Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 2005, 14(8): 2611–2620
https://doi.org/10.1111/j.1365-294X.2005.02553.x
15 Earl D A, vonHoldt B M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 2012, 4(2): 359–361
https://doi.org/10.1007/s12686-011-9548-7
16 Jakobsson M, Rosenberg N A. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 2007, 23(14): 1801–1806
https://doi.org/10.1093/bioinformatics/btm233
17 Rosenberg N A. DISTRUCT: a program for the graphical display of population structure. Molecular Ecology Notes, 2004, 4(1): 137–138
https://doi.org/10.1046/j.1471-8286.2003.00566.x
18 Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F. GENETIX 4.05, Logiciel Sous Windows TM pour la Génétique des Populations.
19 Mwacharo J M, Nomura K, Hanada H, Han J L, Amano T, Hanotte O. Reconstructing the origin and dispersal patterns of village chickens across East Africa: insights from autosomal markers. Molecular Ecology, 2013, 22(10): 2683–2697
https://doi.org/10.1111/mec.12294
20 Groeneveld L F, Lenstra J A, Eding H, Toro M A, Scherf B, Pilling D, Negrini R, Finlay E K, Jianlin H, Groeneveld E, Weigend S. Genetic diversity in farm animals—a review.Animal Genetics, 2010, 41(S1): 6–31
https://doi.org/10.1111/j.1365-2052.2010.02038.x
21 Mahammi F Z, Gaouar S B S, Laloë D, Faugeras R, Tabet-Aoul N, Rognon X, Tixier-Boichard M, Saidi-Mehtar N. A molecular analysis of the patterns of genetic diversity in local chickens from western Algeria in comparison with commercial lines and wild jungle fowls. Journal of Animal Breeding and Genetics, 2016, 133(1): 59–70
https://doi.org/10.1111/jbg.12151
22 Mwacharo J M, Bjørnstad M, Mobegi V, Nomura K, Hanada H, Amano T, Han J L, Hanotte O. Mitochondrial DNA reveals multiple introductions of domestic chicken in East Africa. Molecular Phylogenetics and Evolution, 2011, 58(2): 374–382
https://doi.org/10.1016/j.ympev.2010.11.027
23 Leroy G, Kayang B B, Youssao I A K, Yapi-Gnaoré C V, Osei-Amponsah R, Loukou N G E, Fotsa J C, Benabdeljelil K, Bed’hom B, Tixier-Boichard M, Rognon X. Gene diversity, agroecological structure and introgression patterns among village chicken populations across North, West and Central Africa. BMC Genetics, 2012, 13(1): 34
https://doi.org/10.1186/1471-2156-13-34
24 Gering E, Johnsson M, Willis P, Getty T, Wright D. Mixed ancestry and admixture in Kauai’s feral chickens: invasion of domestic genes into ancient Red Junglefowl reservoirs. Molecular Ecology, 2015, 24(9): 2112–2124
https://doi.org/10.1111/mec.13096
[1] FASE-16102-of-HXH_suppl_1 Download
[2] FASE-16102-of-HXH_suppl_2 Download
[1] Lei DENG, Zhouping SHANGGUAN. HIGH QUALITY DEVELOPMENTAL APPROACH FOR SOIL AND WATER CONSERVATION AND ECOLOGICAL PROTECTION ON THE LOESS PLATEAU[J]. Front. Agr. Sci. Eng. , 2021, 8(4): 501-511.
[2] Hongwen LI,Jin HE,Huanwen GAO,Ying CHEN,Zhiqiang ZHANG. The effect of conservation tillage on crop yield in China[J]. Front. Agr. Sci. Eng. , 2015, 2(2): 179-185.
[3] Claudia Malena CORBI-BOTTO,Sebastian Andres SADABA,Elina Ines FRANCISCO,Paula Belen KALEMKERIAN,Juan Pedro LIRON,Egle Etel VILLEGAS-CASTAGNASSO,Guillermo GIOVAMBATTISTA,Pilar PERAL-GARCIA,Silvina DIAZ. Genetic variability of Appaloosa horses: a study of a closed breeding population from Argentina[J]. Front. Agr. Sci. Eng. , 2014, 1(3): 175-178.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed