|
|
Genetic diversity and population structure of indigenous chicken breeds in South China |
Xunhe HUANG1,*( ),Jinfeng ZHANG1,Danlin HE2,Xiquan ZHANG2,Fusheng ZHONG1,Weina LI1,Qingmei ZHENG1,Jiebo CHEN1,Bingwang DU3 |
1. School of Life Sciences, Jiaying University, Meizhou 514015, China 2. College of Animal Sciences, South China Agricultural University, Guangzhou 510642, China 3. College of Agricultural, Guangdong Ocean University, Zhanjiang 524088, China |
|
|
Abstract A total of 587 individuals from 12 indigenous chicken breeds from South China and two commercial breeds were genotyped for 26 microsatellites to investigate the genetic diversity and population structure. All microsatellites were found to be polymorphic. The number of alleles per locus ranged from 5 to 36, with an average of 12.10 ± 7.00 (SE). All breeds, except White Recessive Rock, had high allelic polymorphism (>0.5). Higher genetic diversity was revealed in the indigenous chicken breeds rather than in the commercial breeds. Potential introgression from the commercial breeds into the indigenous chickens was also detected. The population structure of these indigenous chicken breeds could be explained by their geographical distribution, which suggested the presence of independent history of breed formation. Data generated in this study will provide valuable information to the conservation for indigenous chicken breeds in future.
|
Keywords
microsatellites
genetic diversity
population structure
indigenous chicken
South China
conservation
|
Corresponding Author(s):
Xunhe HUANG
|
Just Accepted Date: 08 June 2016
Online First Date: 24 June 2016
Issue Date: 05 July 2016
|
|
1 |
FAO. The State of the World’s Animal Genetic Resources for Food and Agriculture. Rome:FAO, 2007
|
2 |
Blackburn H D. The national animal germplasm program: challenges and opportunities for poultry genetic resources. Poultry Science, 2006, 85(2): 210–215
https://doi.org/10.1093/ps/85.2.210
|
3 |
Toro M A, Fernández J, Caballero A. Molecular characterization of breeds and its use in conservation. Livestock Science, 2009, 120(3): 174–195
https://doi.org/10.1016/j.livsci.2008.07.003
|
4 |
Lyimo C M, Weigend A, Msoffe P L, Eding H, Simianer H, Weigend S. Global diversity and genetic contributions of chicken populations from African, Asian and European regions. Animal Genetics, 2014, 45(6): 836–848
https://doi.org/10.1111/age.12230
|
5 |
Ceccobelli S, Di Lorenzo P, Lancioni H, Monteagudo Ibáñez L V, Tejedor M T, Castellini C, Landi V, Martínez Martínez A, Delgado Bermejo J V, Vega Pla J L, Leon Jurado J M, García N, Attard G, Grimal A, Stojanovic S, Kume K, Panella F, Weigend S, Lasagna E. Genetic diversity and phylogeographic structure of sixteen Mediterranean chicken breeds assessed with microsatellites and mitochondrial DNA. Livestock Science, 2015, 175: 27–36
https://doi.org/10.1016/j.livsci.2015.03.003
|
6 |
Zhang X Q, Leung F C, Chan D K O, Yang G, Wu C. Genetic diversity of Chinese native chicken breeds based on protein polymorphism, randomly amplified polymorphic DNA, and microsatellite polymorphism. Poultry Science, 2002, 81(10): 1463–1472
https://doi.org/10.1093/ps/81.10.1463
|
7 |
Qu L J, Li X Y, Xu G F, Chen K W, Yang H J, Zhang L C, Wu G Q, Hou Z C, Xu G Y, Yang N. Evaluation of genetic diversity in Chinese indigenous chicken breeds using microsatellite markers. Science in China. Series C: Life Sciences, 2006, 49(4): 332–341
https://doi.org/10.1007/s11427-006-2001-6
|
8 |
Yu Y B, Wang J Y, Mekki D M, Tang Q P, Li H F, Gu R, Ge Q L, Zhu W Q, Chen K W. Evaluation of genetic diversity and genetic distance between twelve Chinese indigenous chicken breeds based on microsatellite markers. International Journal of Poultry Science, 2006, 5(6): 550–556
https://doi.org/10.3923/ijps.2006.550.556
|
9 |
Goudet J. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3.2). , 2016–01–05
|
10 |
Leberg P L. Estimating allelic richness: effects of sample size and bottlenecks. Molecular Ecology, 2002, 11(11): 2445–2449
https://doi.org/10.1046/j.1365-294X.2002.01612.x
|
11 |
Szpiech Z A, Jakobsson M, Rosenberg N A. ADZE: a rarefaction approach for counting alleles private to combinations of populations. Bioinformatics, 2008, 24(21): 2498–2504
https://doi.org/10.1093/bioinformatics/btn478
|
12 |
Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155(2): 945–959
|
13 |
Hubisz M J, Falush D, Stephens M, Pritchard J K. Inferring weak population structure with the assistance of sample group information. Molecular Ecology Resources, 2009, 9(5): 1322–1332
https://doi.org/10.1111/j.1755-0998.2009.02591.x
|
14 |
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 2005, 14(8): 2611–2620
https://doi.org/10.1111/j.1365-294X.2005.02553.x
|
15 |
Earl D A, vonHoldt B M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 2012, 4(2): 359–361
https://doi.org/10.1007/s12686-011-9548-7
|
16 |
Jakobsson M, Rosenberg N A. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 2007, 23(14): 1801–1806
https://doi.org/10.1093/bioinformatics/btm233
|
17 |
Rosenberg N A. DISTRUCT: a program for the graphical display of population structure. Molecular Ecology Notes, 2004, 4(1): 137–138
https://doi.org/10.1046/j.1471-8286.2003.00566.x
|
18 |
Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F. GENETIX 4.05, Logiciel Sous Windows TM pour la Génétique des Populations.
|
19 |
Mwacharo J M, Nomura K, Hanada H, Han J L, Amano T, Hanotte O. Reconstructing the origin and dispersal patterns of village chickens across East Africa: insights from autosomal markers. Molecular Ecology, 2013, 22(10): 2683–2697
https://doi.org/10.1111/mec.12294
|
20 |
Groeneveld L F, Lenstra J A, Eding H, Toro M A, Scherf B, Pilling D, Negrini R, Finlay E K, Jianlin H, Groeneveld E, Weigend S. Genetic diversity in farm animals—a review.Animal Genetics, 2010, 41(S1): 6–31
https://doi.org/10.1111/j.1365-2052.2010.02038.x
|
21 |
Mahammi F Z, Gaouar S B S, Laloë D, Faugeras R, Tabet-Aoul N, Rognon X, Tixier-Boichard M, Saidi-Mehtar N. A molecular analysis of the patterns of genetic diversity in local chickens from western Algeria in comparison with commercial lines and wild jungle fowls. Journal of Animal Breeding and Genetics, 2016, 133(1): 59–70
https://doi.org/10.1111/jbg.12151
|
22 |
Mwacharo J M, Bjørnstad M, Mobegi V, Nomura K, Hanada H, Amano T, Han J L, Hanotte O. Mitochondrial DNA reveals multiple introductions of domestic chicken in East Africa. Molecular Phylogenetics and Evolution, 2011, 58(2): 374–382
https://doi.org/10.1016/j.ympev.2010.11.027
|
23 |
Leroy G, Kayang B B, Youssao I A K, Yapi-Gnaoré C V, Osei-Amponsah R, Loukou N G E, Fotsa J C, Benabdeljelil K, Bed’hom B, Tixier-Boichard M, Rognon X. Gene diversity, agroecological structure and introgression patterns among village chicken populations across North, West and Central Africa. BMC Genetics, 2012, 13(1): 34
https://doi.org/10.1186/1471-2156-13-34
|
24 |
Gering E, Johnsson M, Willis P, Getty T, Wright D. Mixed ancestry and admixture in Kauai’s feral chickens: invasion of domestic genes into ancient Red Junglefowl reservoirs. Molecular Ecology, 2015, 24(9): 2112–2124
https://doi.org/10.1111/mec.13096
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|