Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2017, Vol. 4 Issue (2) : 185-194    https://doi.org/10.15302/J-FASE-2017149
RESEARCH ARTICLE
The effect of different agricultural management practices on irrigation efficiency, water use efficiency and green and blue water footprint
La ZHUO1(), Arjen Y. HOEKSTRA2,3
1. Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
2. Twente Water Centre, University of Twente, Enschede 7500AE, The Netherlands
3. Institute of Water Policy, Lee Kuan Yew School of Public Policy, National University of Singapore, Singapore 259770, Singapore
 Download: PDF(147 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper explores the effect of varying agricultural management practices on different water efficiency indicators: irrigation efficiency (IE), crop water use efficiency (WUE), and green and blue water footprint (WF). We take winter wheat in an experimental field in Northern China as a case study and consider a dry, average and wet year. We conducted 24 modeling experiments with the AquaCrop model, for all possible combinations of four irrigation techniques, two irrigation strategies and three mulching methods. Results show that deficit irrigation most effectively improved blue water use, by increasing IE (by 5%) and reducing blue WF (by 38%), however with an average 9% yield reduction. Organic or synthetic mulching practices improved WUE (by 4% and 10%, respectively) and reduced blue WF (by 8% and 17%, respectively), with the same yield level. Drip and subsurface drip irrigation improved IE and WUE, but drip irrigation had a relatively large blue WF. Improvements in one water efficiency indicator may cause a decline in another. In particular, WUE can be improved by more irrigation at the cost of the blue WF. Furthermore, increasing IE, for instance by installing drip irrigation, does not necessarily reduce the blue WF.

Keywords field management      irrigation efficiency      water footprint      water productivity      water use efficiency     
Corresponding Author(s): La ZHUO   
Just Accepted Date: 14 April 2017   Online First Date: 04 May 2017    Issue Date: 07 June 2017
 Cite this article:   
La ZHUO,Arjen Y. HOEKSTRA. The effect of different agricultural management practices on irrigation efficiency, water use efficiency and green and blue water footprint[J]. Front. Agr. Sci. Eng. , 2017, 4(2): 185-194.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2017149
https://academic.hep.com.cn/fase/EN/Y2017/V4/I2/185
DescriptionValue
Crop planting date7th October
Crop growing period270 d
Time from sowing to emergence7 d
Time from sowing to flowering232 d
Time from sowing to start senescence236 d
Maximum effective root depth1.2 m
Minimum effective root depth0.3 m
Reference harvest index (HI0)46%
Crop coefficient1.1
Tab.1  Crop parameters of winter wheat at Xiaotangshan experimental site[13]
Depth/mSoil water content/%Ksat/(mm·d1)
Field capacitySaturationWilting point
0.0–0.127.351.18.8240
0.1–0.227.351.38.7240
0.2–0.334.854.713.2224
Tab.2  Soil characteristics at Xiaotangshan experimental site[13]
Irrigation techniqueIrrigation strategyMulching practice
Furrow irrigationFull irrigationNo mulching
Sprinkler irrigationSustained deficit irrigation at 50% of full irrigation levelsOrganic mulching
Drip irrigationSynthetic mulching
Subsurface drip irrigation
Tab.3  Management practices considered in the modeling experiments
Irrigation strategyMulching practiceYearFurrow irrigationSprinkler irrigationDrip irrigationSubsurface drip irrigation
Full irrigationNo mulchingDry 20044.784.784.784.78
Avg. 20064.604.604.604.60
Wet 20075.095.095.105.10
Organic mulchingDry 20044.784.784.784.78
Avg. 20064.604.604.604.60
Wet 20075.105.105.105.10
Synthetic mulchingDry 20044.784.784.784.78
Avg. 20064.614.614.604.60
Wet 20075.105.105.105.10
Deficit irrigationNo mulchingDry 20044.144.154.314.36
Avg.20064.084.063.974.18
Wet 20074.724.684.794.83
Organic mulchingDry 20044.154.154.324.32
Avg. 20064.074.074.164.16
Wet 20074.854.844.774.87
Synthetic mulchingDry 20044.034.234.334.35
Avg. 20064.164.164.234.12
Wet 20074.854.854.814.86
Tab.4  Simulated yield of winter wheat (t ha1) under different management practices at Xiaotangshan experimental site
Irrigation strategyMulching practiceYearFurrow irrigationSprinkler irrigationDrip irrigationSubsurface drip irrigation
Full irrigationNo mulchingDry 2004500 (425)501 (425)485 (426)478 (426)
Avg. 2006505 (415)509 (415)483 (416)466 (416)
Wet 2007467 (391)473 (391)455 (392)438 (392)
Organic mulchingDry 2004481 (425)481 (425)474 (426)451 (426)
Avg. 2006478 (415)478 (415)474 (416)458 (416)
Wet 2007449 (391)450 (391)440 (392)422 (392)
Synthetic mulchingDry 2004451 (425)451 (425)453 (426)437 (426)
Avg. 2006443 (415)444 (415)444 (416)437 (416)
Wet 2007418 (391)418 (391)419 (392)402 (392)
Deficit irrigationNo mulchingDry 2004434 (357)437 (357)437 (384)425 (392)
Avg.2006444 (353)447 (352)434 (365)427 (380)
Wet 2007425 (345)429 (346)427 (369)414 (373)
Organic mulchingDry 2004415 (358)415 (357)427 (384)415 (392)
Avg.2006421 (358)421 (352)432 (365)412 (371)
Wet 2007425 (345)409 (346)413 (369)403 (373)
Synthetic mulchingDry 2004415 (383)392 (366)411 (385)399 (388)
Avg.2006400 (372)401 (372)412 (386)399 (378)
Wet 2007384 (358)384 (358)397 (371)385 (375)
Tab.5  Simulated ET (mm) and T (mm) of growing winter wheat under different management practices at Xiaotangshan experimental site. The T values are shown between brackets
Irrigation strategyMulching practiceYearFurrow irrigationSprinkler irrigationDrip irrigationSubsurface drip irrigation
Full irrigationNo mulchingDry 200436%37%40%39%
Avg. 200633%33%35%37%
Wet 200738%38%38%39%
Organic mulchingDry 200435%35%39%39%
Avg. 200641%41%35%36%
Wet 200737%37%37%39%
Synthetic mulchingDry 200444%43%41%41%
Avg. 200638%38%37%36%
Wet 200734%34%38%38%
Deficit irrigationNo mulchingDry 200439%38%46%47%
Avg. 200635%35%44%42%
Wet 200742%43%46%48%
Organic mulchingDry 200437%37%45%47%
Avg. 200643%41%41%41%
Wet 200742%41%44%47%
Synthetic mulchingDry 200447%46%47%47%
Avg. 200641%41%42%43%
Wet 200738%38%46%45%
Tab.6  Simulated irrigation efficiency (IE) of growing winter wheat under different management practices at Xiaotangshan experimental site
Irrigation strategyMulching practiceYearFurrow irrigationSprinkler irrigationDrip irrigationSubsurface drip irrigation
Full irrigationNo mulchingDry 20040.9550.9530.9861.000
Avg. 20060.9110.9040.9530.988
Wet 20071.0911.0771.1201.164
Organic mulchingDry 20040.9930.9931.0081.060
Avg. 20060.9630.9620.9711.005
Wet 20071.1351.1331.1581.208
Synthetic mulchingDry 20041.0591.0601.0551.094
Avg. 20061.0401.0371.0371.053
Wet 20071.2201.2201.2161.268
Deficit irrigationNo mulchingDry 20040.9540.9500.9871.026
Avg. 20060.9180.9090.9140.979
Wet 20071.1101.0901.1221.165
Organic mulchingDry 20041.0000.9991.0111.040
Avg. 20060.9660.9670.9621.009
Wet 20071.1401.1841.1541.208
Synthetic mulchingDry 20040.9711.0801.0531.089
Avg. 20061.0401.0371.0261.033
Wet 20071.2641.2641.2111.262
Tab.7  Simulated water use efficiency (WUE, kg m3) of growing winter wheat under different management practices at Xiaotangshan experimental site
Irrigation strategyMulching practiceYearFurrow irrigationSprinkler irrigationDrip irrigationSubsurface drip irrigation
Full irrigationNo mulchingDry 2004665668622614
Avg. 2006729731673662
Wet 2007623626577569
Organic mulchingDry 2004655655614594
Avg. 2006709710667656
Wet 2007604604564554
Synthetic mulchingDry 2004633633597582
Avg. 2006680680643634
Wet 2007578578545536
Deficit irrigationNo mulchingDry 2004807807761734
Avg. 2006859866851800
Wet 2007718728690675
Organic mulchingDry 2004784785750737
Avg. 2006834833809798
Wet 2007699678676653
Synthetic mulchingDry 2004824741726710
Avg. 2006789789773779
Wet 2007645645650633
Tab.8  Simulated green WF (m3·t1) of growing winter wheat under different management practices at Xiaotangshan experimental site
Irrigation strategyMulching practiceFurrow irrigationSprinkler irrigationDrip irrigationSubsurface
drip irrigation
Full irrigationNo mulchingDry 2004382381393386
Avg. 2006369376376350
Wet 2007294303315290
Organic mulchingDry 2004352352378349
Avg. 2006329330362339
Wet 2007277279300274
Synthetic mulchingDry 2004311311351332
Avg. 2006282284322315
Wet 2007242242277253
Deficit irrigationNo mulchingDry 2004241245252241
Avg. 2006230234243222
Wet 2007183190202183
Organic mulchingDry 2004216216239224
Avg. 2006201201231192
Wet 2007178166190175
Synthetic mulchingDry 2004206185224209
Avg. 2006173175201189
Wet 2007146146175159
Tab.9  Simulated blue WF (m3 t1) of growing winter wheat under different management practices at Xiaotangshan experimental site
1 Hoekstra A Y, Mekonnen M M. The water footprint of humanity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(9): 3232–3237
https://doi.org/10.1073/pnas.1109936109 pmid: 22331890
2 De Wrachien D, Goli M B. Global warming effects on irrigation development and crop production: a world-wide view. Agricultural Sciences, 2015, 6(7): 734–747
https://doi.org/10.4236/as.2015.67071
3 Zwart S J, Bastiaanssen W G M. Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize. Agricultural Water Management, 2004, 69(2): 115–133
https://doi.org/10.1016/j.agwat.2004.04.007
4 Zhao X, Liu J, Liu Q, Tillotson M R, Guan D, Hubacek K. Physical and virtual water transfers for regional water stress alleviation in China. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(4): 1031–1035
https://doi.org/10.1073/pnas.1404130112 pmid: 25583516
5 Perry C. Efficient irrigation; inefficient communication; flawed recommendations. Irrigation and Drainage, 2007, 56(4): 367–378
https://doi.org/10.1002/ird.323
6 Hoekstra A Y, Chapagain A K, Aldaya M M, Mekonnen M M. The water footprint assessment manual: setting the global standard. London:Earthscan, 2011
7 Contor B A, Taylor R G. Why improving irrigation efficiency increases total volume of consumptive water use. Irrigation and Drainage, 2013, 62(3): 273–280
https://doi.org/10.1002/ird.1717
8 Hoekstra A Y. The water footprint of modern consumer society. London:Routledge, 2013
9 Hsiao T C, Heng L, Steduto P, Rojas-Lara B, Raes D, Fereres E. AquaCrop—The FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agronomy Journal, 2009, 101(3): 448–459
https://doi.org/10.2134/agronj2008.0218s
10 Raes D, Steduto P, Hsiao T C, Fereres E. AquaCrop—The FAO crop model to simulate yield response to water: II. Main algorithms and software description. Agronomy Journal, 2009, 101(3): 438–447
https://doi.org/10.2134/agronj2008.0140s
11 Steduto P, Hsiao T C, Raes D, Fereres E. AquaCrop—The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agronomy Journal, 2009, 101(3): 426–437
https://doi.org/10.2134/agronj2008.0139s
12 Abedinpour M, Sarangi A, Rajput T B S, Singh M, Pathak H, Ahmad T. Performance evaluation of AquaCrop model for maize crop in a semi-arid environment. Agricultural Water Management, 2012, 110: 55–66
https://doi.org/10.1016/j.agwat.2012.04.001
13 Jin X L, Feng H K, Zhu X K, Li Z H, Song S N, Song X Y, Yang G J, Xu X G, Guo W S. Assessment of the AquaCrop model for use in simulation of irrigated winter wheat canopy cover, biomass, and grain yield in the North China Plain. PLoS One, 2014, 9(1): e86938
https://doi.org/10.1371/journal.pone.0086938 pmid: 24489808
14 Qin W, Chi B, Oenema O. Long-term monitoring of rainfed wheat yield and soil water at the loess plateau reveals low water use efficiency. PLoS One, 2013, 8(11): e78828
https://doi.org/10.1371/journal.pone.0078828 pmid: 24302987
15 García-Vila M, Fereres E, Mateos L, Orgaz F, Steduto P. Deficit irrigation optimization of cotton with AquaCrop. Agronomy Journal, 2009, 101(3): 477–487
https://doi.org/10.2134/agronj2008.0179s
16 Stricevic R, Cosic M, Djurovic N, Pejic B, Maksimovic L. Assessment of the FAO AquaCrop model in the simulation of rainfed and supplementally irrigated maize, sugar beet and sunflower. Agricultural Water Management, 2011, 98(10): 1615–1621
https://doi.org/10.1016/j.agwat.2011.05.011
17 Ahmadi S H, Mosallaeepour E, Kamgar-Haghighi A A, Sepaskhah A R. Modeling maize yield and soil water content with AquaCrop under full and deficit irrigation managements. Water Resources Management, 2015, 29(8): 2837–2853
https://doi.org/10.1007/s11269-015-0973-3
18 Iqbal M A, Shen Y J, Stricevic R, Pei H, Sun H, Amiri E, Penas A, Del Rio S. Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation. Agricultural Water Management, 2014, 135: 61–72
https://doi.org/10.1016/j.agwat.2013.12.012
19 Nair S, Johnson J, Wang C. Efficiency of irrigation water use: a review from the perspectives of multiple disciplines. Agronomy Journal, 2013, 105(2): 351–363
https://doi.org/10.2134/agronj2012.0421
20 Bos M G, Nugteren J. On Irrigation Efficiencies, 3rd ed.Wageningen:  International Institute for Land Reclamation and Improvement, 1982
21 Israelsen O W. Irrigation principles and practices. New York: John Wiley and Sons, 1950
22 Zhuo L, Mekonnen M M, Hoekstra A Y, Wada Y. Inter- and intra-annual variation of water footprint of crops and blue water scarcity in the Yellow River basin (1961–2009). Advances in Water Resources, 2016, 87: 29–41
https://doi.org/10.1016/j.advwatres.2015.11.002
23 Chukalla A D, Krol M S, Hoekstra A Y. Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching. Hydrology and Earth System Sciences, 2015, 19(12): 4877–4891
https://doi.org/10.5194/hess-19-4877-2015
24 Ali M H. Water application methods. In: Heidelberg A M H eds. Practices of irrigation and on-farm water management. New York: Springer, 2011
25 FAO. AquaCrop reference manual. Rome:Food and Agriculture Organization of the United Nations, 2012
26 Raes D, Steduto P, Hsiao T C, Fereres E. Reference manual AquaCrop version 4.0. Rome: Food and Agriculture Organization of the United Nations, 2011
27 Harris I, Jones P D, Osborn T J, Lister D H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. International Journal of Climatology, 2014, 34(3): 623–642
https://doi.org/10.1002/joc.3711
28 Gommes R A. Pocket computers in agrometeorology. In: FAO plant production and protection. Rome: Food and Agriculture Organization of the United Nations, 1983
[1] William J. DAVIES, Susan E. WARD, Alan WILSON. Can crop science really help us to produce more better-quality food while reducing the world-wide environmental footprint of agriculture?[J]. Front. Agr. Sci. Eng. , 2020, 7(1): 28-44.
[2] Shaoqing DU, Ling TONG, Shaozhong KANG, Fusheng LI, Taisheng DU, Sien LI, Risheng DING. Alternate partial root-zone irrigation with high irrigation frequency improves root growth and reduces unproductive water loss by apple trees in arid north-west China[J]. Front. Agr. Sci. Eng. , 2018, 5(2): 188-196.
[3] Jiakun YAN, Suiqi ZHANG. Effects of dwarfing genes on water use efficiency of bread wheat[J]. Front. Agr. Sci. Eng. , 2017, 4(2): 126-134.
[4] Jingjing WANG,Feng HUANG,Baoguo LI. Quantitative analysis of yield and soil water balance for summer maize on the piedmont of the North China Plain using AquaCrop[J]. Front. Agr. Sci. Eng. , 2015, 2(4): 295-310.
[5] Pute WU,Yubao WANG,Xining ZHAO,Shikun SUN,Jiming JIN. Spatiotemporal variation in water footprint of grain production in China[J]. Front. Agr. Sci. Eng. , 2015, 2(2): 186-193.
[6] Jianchang YANG. Approaches to achieve high grain yield and high resource use efficiency in rice[J]. Front. Agr. Sci. Eng. , 2015, 2(2): 115-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed