Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2017, Vol. 4 Issue (3) : 279-288    https://doi.org/10.15302/J-FASE-2017151
REVIEW
Recent advances in understanding genetic variants associated with economically important traits in sheep (Ovis aries) revealed by high-throughput screening technologies
Song-Song XU1,2, Meng-Hua LI1()
1. CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
 Download: PDF(391 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Sheep are one of the most economically important domesticated animals for human society. However, genetic improvements for the key traits associated with meat, growth, milk, wool, reproduction, horns and tails progress slowly using conventional crossbreeding methods. With the development and utilization of high-throughput screening technologies over the last decade, a list of functional genes and genetic variants associated with these traits has been identified. This review covers recent genome-wide studies on sheep productive traits using high-throughput screening technologies, including those based on single-nucleotide polymorphisms and copy number variants at the whole-genome level (e.g., genome-wide association studies), transcriptome and DNA methylation sequences. Additionally, comprehensive information on functional genes and genetic variants associated with economically important traits in sheep is provided.

Keywords sheep      high-throughput screening      productive traits      genome-wide studies     
Corresponding Author(s): Meng-Hua LI   
Just Accepted Date: 16 March 2017   Online First Date: 13 April 2017    Issue Date: 12 September 2017
 Cite this article:   
Song-Song XU,Meng-Hua LI. Recent advances in understanding genetic variants associated with economically important traits in sheep (Ovis aries) revealed by high-throughput screening technologies[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 279-288.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2017151
https://academic.hep.com.cn/fase/EN/Y2017/V4/I3/279
Trait Approach Genes, miRNAs and signaling pathways References
Meat and carcass GWAS Lean meat yield: GDF8
Marbling: ALDOA, STK32B and FAM190A
Meat myoglobin content and fatty acid composition: FASN, MLXIPL, EVOLV6, ACACA, SYNRG, APOL6, MB, ACSL1, ISYNA1, SGK2 and AGPAT9
Meat production and quality: GHR
Muscling and shear force: MEG3, MEG8 and DLK1
[ 1116]
RNA-seq Fat metabolism: NELL1, FMO3, AACS, ACACA, ACACB, ACOT6, ELOVL6, FASN, HSD17B12 and SCD
Muscle growth and development: HSPA6, ZIM3, SLC5A12, FGF1, IGF2BP2, IGF-2, TCF4, MRFs, GXP1 and STAC3; and miRNAs miR-10, miR-let-7 family, oar-miR-3955-5p, oar-miR-410-3p, bta-miR-183 and bta-miR-182
[ 1722]
DNA methylation Muscle development: 399 different methylated regions and LTBP1 [ 23,24]
Growth GWAS and selective sweeps Body size: NPR2, HMGA2, BMP2, GPX3, FSTL1, PVR, EXT2, ALT4, SOX6, HAND2, PDGFD, BMPR2, GHR, ANKS1B; and Signal pathways HIF-1, VSMC and GH/IGF-1
Post-weaning gain: GRM1, POL, MBD5, UBR2, RPL7, SMC2, DAAM1 and APIP
Bodyweight: GSTRBP, TRAMIL1, PHF15, PRSS12, MAN1A1, SYNE1, WAPAL, DAAM1, OST/SPP1, MEPE, IBSP, NCAPG and LCORL
Bone-related traits: SPP1, MEPE, IBSP, LCORL and NCAPG
[ 11,16,2529]
Wool GWAS and selective sweeps Coat pigmentation: KIT, ASIP, KITLG, EDN3, MITF, MC1R, HERC2-like, TYRP1, ASIP and MITF
Growing wing hairs: FRY
Wool fiber diameter: TSPEAR, PIK3R4, KRTCAP3, YWHAZ and CCNY
Fiber diameter coefficient of variation and fineness dispersion: gKIF16B
Crimp: PTPN3, TCF9, GPRC5A, DDX47, EPHA5, TPTE2 and NBEA
[ 11,27,3036]
RNA-seq Hair/fleece development and function: KRTs, KRTAPs families, CST3, CSTB, S100A11, PPARD, CSTA, SIVA1, CCDC85B, FOXE1, VAX2, BAK1, ADRA1B, PKIA and HNF4A
Coat color regulation: DCT, MATP, TYR and TYRP1
Fiber diameter: GNPAT, LPIN2, CHKA, PLD2, PLA2G3, SMPD2, UGCG, PIP4K2A, ACOT8, SLC25A17, NCOR1, FABP6, HSD11B1, STAR, FABP4 and SLC25A20
Follicle bulb regression and regeneration: Wnt, Jak-STAT, MAPK, Notch, TGF-β, Toll-like receptor and VEGF pathways
Telogen hair follicles development and growth: 1910 known miRNAs and 2261 novel mature miRNAs
[ 3741]
Milk GWAS and selective sweeps Milk protein and fat contents: LALBA
Milk production performances: PALMD and RFP145
Milk production traits: ABCG2, SPP1, SCD and SOCS2, PKD2, MEPE and IBSP
[ 34,4244]
RNA-seq Higher cheese yield: CSN2, CSN3 and LALBA
Lipid metabolism: BTN1A1, XDH, FASN, ADFP, SCD, H-FABP and ACSS2
High protein production: FABP4, SUCNR1, HSP70 and HSPB8
Milk secretion: 2764 genes
[ 4548]
Reproduction GWAS and selective sweeps Mammalian reproduction: PRLP
Metabolic regulation and reproduction: TSHR
Increased ovulation rate/litter size: GDF9 and BMP15
Oocyte development: CCNB2 and SLC8A3
Pre-weaning gain: POL, RPL7, MSL1 and SHISA9
[ 11,13,4952]
RNA-seq Fecundity: BAX, BAD, NDUFA13, CAV1, LOC101117112, PAX8, IFI6, PRLR, PGR, ESR2, CYP19A1, CYP11A1, HSD17B12, INHBA, BMPR1B and BMPR2 receptors; and miRNAs oar-miR-665-5p, oar-miR-411a-5p, oar-miR-1197-3p and oar-miR-134-3p
Fecundity and prolificacy: signaling pathways Wnt, MAPK, G-protein, TGF-b and PPAR
[ 5357]
DNA methylation Reproductive traits: ADIPOQ, ABCG1, BRWD1, GRIN2B, METTL6, SIAH2, SLCO2A1, TNIK and UMODL1 [ 58]
Horn GWAS and selective sweeps Horn development: RXFP2, MTX2, HOX clusters, EVX2 and KIAA1715 [ 11,27,3234,5968]
Tail Selective sweeps Fat deposition or tail morphology: PPP2CA, SKP1, TCF7, RXFP2, PPP1CC, PDGFD, BMP2, VNRT, PPARA, RXRA, KLF11, HOXA11, BMP2, PPP1CC, SP3, SP9, WDR92, PROKR1 and ETAA1 [ 34,6972]
RNA-seq Lipid metabolism: NELL1, FMO3, ACACA, ELOVL6, HSD17B12, CYP11A1, GDE1, ACACB, ACOT6, FASN, SCD and ACOT2; and miRNAs bta-miR-18a, hsa-miR-29b-1-5p, ssc-miR-22-3p, and hsa-miR-4749-5p [ 17,18,20,73 ]
Tab.1  Summary of high-throughput screening studies on economically important traits in sheep
Fig.1  Workflow of identification, validation and application of candidate function genes or variants
1 LarsonG, Piperno D R, AllabyR G , PuruggananM D, Andersson L, Arroyo-KalinM , BartonL, Climer Vigueira C, DenhamT , DobneyK, DoustA N, GeptsP, Gilbert M T P, GremillionK J , LucasL, LukensL, MarshallF B , OlsenK M, PiresJ C, RichersonP J , Rubio de CasasR, Sanjur O I, ThomasM G , FullerD Q. Current perspectives and the future of domestication studies.Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(17): 6139–6146
https://doi.org/10.1073/pnas.1323964111
2 GorkhaliN A, DongK Z, YangM, Song S, KaderA , ShresthaB S, HeX H, ZhaoQ J, Pu Y B, LiX C , KijasJ, GuanW J, HanJ L, Jiang L, MaY H . Genomic analysis identified a potential novel molecular mechanism for high-altitude adaptation in sheep at the Himalayas.Scientific Reports, 2016, 6(1): 29963
https://doi.org/10.1038/srep29963
3 LvF H, PengW F, YangJ, Zhao Y X, LiW R , LiuM J, MaY H, ZhaoQ J, Yang G L, WangF , LiJ Q, LiuY G, ShenZ Q, Zhao S G, HehuaE E , GorkhaliN A, Farhad Vahidi S M, MuladnoM , NaqviA N, TabellJ, Iso-TouruT, Bruford M W, KantanenJ , HanJ L, LiM H.Mitogenomic meta-analysis identifies two phases of migration in the history of Eastern Eurasian Sheep.Molecular Biology and Evolution, 2015, 32(10): 2515–2533
https://doi.org/10.1093/molbev/msv139
4 SafariE, Fogarty N M, GilmourA R . A review of genetic parameter estimates for wool, growth, meat and reproduction traits in sheep.Livestock Production Science, 2005, 92(3): 271–289
https://doi.org/10.1016/j.livprodsci.2004.09.003
5 ThorntonP K. Livestock production: recent trends, future prospects. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365(1554): 2853–2867
6 NiemannH, KuesW A. Application of transgenesis in livestock for agriculture and biomedicine.Animal Reproduction Science, 2003, 79(3–4): 291–317
https://doi.org/10.1016/S0378-4320(03)00169-6
7 GoddardM E, HayesB J. Mapping genes for complex traits in domestic animals and their use in breeding programmes.Nature Reviews Genetics, 2009, 10(6): 381–391
https://doi.org/10.1038/nrg2575
8 WangS H, ZhangK, DaiY P. Advances in genetic engineering of domestic animals.Frontiers of Agricultural Science & Engineering, 2016, 3(1): 1–10
https://doi.org/10.15302/J-FASE-2016085
9 ZhangH, WangZ P, WangS Z, Li H. Progress of genome wide association study in domestic animals.Journal of Animal Science and Biotechnology, 2012, 3(1): 26
https://doi.org/10.1186/2049-1891-3-26
10 JiangY, XieM, ChenW B, Talbot R, MaddoxJ F , FarautT, WuC H, MuznyD M, Li Y X, ZhangW G , StantonJ A, Brauning R, BarrisW C , HourlierT, AkenB L, SearleS M J , AdelsonD L, BianC, CamG R, Chen Y L, ChengS F , DeSilvaU, DixenK, DongY, Fan G Y, FranklinI R , FuS Y, Fuentes-Utrilla P, GuanR , HighlandM A, HolderM E, HuangG D, Ingham A B, JhangianiS N , KalraD, KovarC L, LeeS L, Liu W Q, LiuX , LuC X, LvT, MathewT, McWilliam S, MenziesM , PanS K, Robelin D, ServinB , TownleyD, WangW L, WeiB, White S N, YangX H , YeC, YueY J, ZengP, Zhou Q, HansenJ B , KristiansenK, GibbsR A, FlicekP, Warkup C C, JonesH E , OddyV H, Nicholas F W, McEwanJ C , KijasJ W, WangJ, WorleyK C, Archibald A L, CockettN , XuX, WangW, DalrympleB P . The sheep genome illuminates biology of the rumen and lipid metabolism.Science, 2014, 344(6188): 1168–1173
https://doi.org/10.1126/science.1252806
11 KijasJ W, Lenstra J A, HayesB , BoitardS, Porto Neto L R, San CristobalM , ServinB, McCulloch R, WhanV , GietzenK, PaivaS, BarendseW, Ciani E, RaadsmaH , McEwanJ, Dalrymple B. Genome-wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection.PLoS Biology, 2012, 10(2): e1001258
https://doi.org/10.1371/journal.pbio.1001258
12 JohnsonP L, Van Stijn T C, HenryH , McLeanN J, LeeM. Genome wide association study using the ovine SNP50 BeadChip and lambs selected for extremes for carcass lean meat yield.Association for the Advancement of Animal Breeding and Genetics, 2013, 20: 495–498
13 WangH H, ZhangL, CaoJ X, Wu M M, MaX M , LiuZ, LiuR Z, ZhaoF P , WeiC H, DuL X. Genome-Wide Specific Selection in Three Domestic Sheep Breeds.PLoS ONE, 2015, 10(6): e0128688
https://doi.org/10.1371/journal.pone.0128688
14 BolormaaS, van der Werf J H J, HayesB J , GoddardM E, Daetwyler H D. Pleiotropic multi-trait genome-wide association reveals putative candidate genes for fatty acid composition in Australian sheep.Association for the Advancement of Animal Breeding and Genetics, 2015, 21: 49–52
15 BolormaaS, HayesB J, van der WerfJ H J , PethickD, Goddard M E, DaetwylerH D . Detailed phenotyping identifies genes with pleiotropic effects on body composition.BMC Genomics, 2016, 17(1): 224
https://doi.org/10.1186/s12864-016-2538-0
16 MatikaO, RiggioV, Anselme-MoizanM , LawA S, Pong-Wong R, ArchibaldA L , BishopS C. Genome-wide association reveals QTL for growth, bone and in vivo carcass traits as assessed by computed tomography in Scottish Blackface lambs.Genetics, Selection, Evolution, 2016, 48(1): 11
https://doi.org/10.1186/s12711-016-0191-3
17 WangX L, ZhouG X, XuX C, Geng R Q, ZhouJ P , YangY X, YangZ X, ChenY L. Transcriptome profile analysis of adipose tissues from fat and short-tailed sheep.Gene, 2014, 549(2): 252–257
https://doi.org/10.1016/j.gene.2014.07.072
18 MiaoX Y, LuoQ M, QinX Y, Guo Y T. Genome-wide analysis of microRNAs identifies the lipid metabolism pathway to be a defining factor in adipose tissue from different sheep.Scientific Reports, 2015, 5(1): 18470
https://doi.org/10.1038/srep18470
19 MiaoX, LuoQ, QinX. Genome-wide analysis reveals the differential regulations of mRNAs and miRNAs in Dorset and Small Tail Han sheep muscles.Gene, 2015, 562(2): 188–196
https://doi.org/10.1016/j.gene.2015.02.070
20 MiaoX Y, LuoQ M, QinX Y, Guo Y T, ZhaoH J . Genome-wide mRNA-seq profiling reveals predominant down-regulation of lipid metabolic processes in adipose tissues of Small Tail Han than Dorset sheep.Biochemical and Biophysical Research Communications, 2015, 467(2): 413–420
https://doi.org/10.1016/j.bbrc.2015.09.129
21 LvX Y, SunW, YinJ F, Ni R, SuR , WangQ Z, GaoW, BaoJ J, Yu J R, WangL H , ChenL. An integrated analysis of microRNA and mRNA expression profiles to identify RNA expression signatures in Lambskin Hair Follicles in Hu Sheep.PLoS ONE, 2016, 11(7): e0157463
https://doi.org/10.1371/journal.pone.0157463
22 SunL M, BaiM, XiangL J, Zhang G S, MaW , JiangH Z. Comparative transcriptome profiling of longissimus muscle tissues from Qianhua Mutton Merino and Small Tail Han sheep.Scientific Reports, 2016, 6(1): 33586
https://doi.org/10.1038/srep33586
23 CouldreyC, Brauning R, BracegirdleJ , MacleanP, Henderson H V, McEwanJ C . Genome-wide DNA methylation patterns and transcription analysis in sheep muscle.PLoS ONE, 2014, 9(7): e101853
https://doi.org/10.1371/journal.pone.0101853
24 CaoJ X, WeiC H, LiuD M, Wang H H, WuM M , XieZ Y, Capellini T D, ZhangL , ZhaoF P, LiL, ZhongT, Wang L J, LuJ , LiuR Z, ZhangS F, DuY F, Zhang H P, DuL X . DNA methylation landscape of body size variation in sheep.Scientific Reports, 2015, 5(1): 13950
https://doi.org/10.1038/srep13950
25 RiggioV, MatikaO, Pong-WongR, Stear M J, BishopS C . Genome-wide association and regional heritability mapping to identify loci underlying variation in nematode resistance and body weight in Scottish Blackface lambs.Heredity, 2013, 110(5): 420–429
https://doi.org/10.1038/hdy.2012.90
26 ZhangL, LiuJ S, ZhaoF P, Ren H X, XuL Y , LuJ, ZhangS F, ZhangX N, Wei C H, LuG B , ZhengY M, DuL X. Genome-wide association studies for growth and meat production traits in sheep.PLoS ONE, 2013, 8(6): e66569
https://doi.org/10.1371/journal.pone.0066569
27 ZhangL F, MouselM R, WuX L, Michal J J, ZhouX , DingB, DodsonM V, El-HalawanyN K , LewisG S, JiangZ. Genome-wide genetic diversity and differentially selected regions among Suffolk, Rambouillet, Columbia, Polypay, and Targhee sheep.PLoS ONE, 2013, 8(6): e65942
https://doi.org/10.1371/journal.pone.0065942
28 GholizadehM, Rahimi-Mianji G, Nejati-JavaremiA . Genomewide association study of body weight traits in Baluchi sheep.Journal of Genetics, 2015, 94(1): 143–146
https://doi.org/10.1007/s12041-015-0469-1
29 YangJ, LiW R, LvF H, He S G, TianS L , PengW F, SunY W, ZhaoY X, Tu X L, ZhangM , XieX L, WangY T, LiJ Q, Liu Y G, ShenZ Q , WangF, LiuG J, LuH F, Kantanen J, HanJ L , LiM H, LiuM J. Whole-genome sequencing of native sheep provides insights into rapid adaptations to extreme environments.Molecular Biology and Evolution, 2016, 33(10): 2576–2592
https://doi.org/10.1093/molbev/msw129
30 KijasJ W, Serrano M, McCullochR , LiY, Salces Ortiz J, CalvoJ H , Pérez-GuzmánM D . Genome-wide association for a dominant pigmentation gene in sheep.Journal of Animal Breeding and Genetics, 2013, 130(6): 468–475
https://doi.org/10.1111/jbg.12048
31 YangG L, FuD L, LangX, Wang Y T, ChengS R , FangS L, LuoY Z. Mutations in MC1R gene determine black coat color phenotype in Chinese sheep.Scientific World Journal, 2013, 2013(5): 675382
32 FarielloM I, ServinB, Tosser-KloppG , RuppR, MorenoC, CristobalM S , BoitardS. Selection signatures in worldwide sheep populations.PLoS ONE, 2014, 9(8): e103813
https://doi.org/10.1371/journal.pone.0103813
33 Al-MamunH A, ClarkS A, KwanP, Gondro C. Genome-wide linkage disequilibrium and genetic diversity in five populations of Australian domestic sheep.Genetics, Selection, Evolution, 2015, 47(1): 90
https://doi.org/10.1186/s12711-015-0169-6
34 WeiC H, WangH H, LiuG, Wu M M, CaoJ X V , LiuZ, LiuR Z, ZhaoF P, Zhang L, LuJ , LiuC S, DuL X. Genome-wide analysis reveals population structure and selection in Chinese indigenous sheep breeds.BMC Genomics, 2015, 16(1): 194
https://doi.org/10.1186/s12864-015-1384-9
35 LiM H, Tiirikka T, KantanenJ . A genome-wide scan study identifies a single nucleotide substitution in ASIP associated with white versus non-white coat-colour variation in sheep (Ovis aries).Heredity, 2014, 112(2): 122–131
https://doi.org/10.1038/hdy.2013.83
36 WangZ P, ZhangH, YangH, Wang S Z, RongE G , PeiW Y, LiH, WangN. Genome-wide association study for wool production traits in a Chinese Merino sheep population.PLoS ONE, 2014, 9(9): e107101
https://doi.org/10.1371/journal.pone.0107101
37 FuS Y, QiY X, HeX L, Da L, WangB , RigeleT E, WuJ H, YangD, Liu Y B, ZhangW G . Transcriptome analysis reveals skin lipid metabolism related to wool diameter in sheep. BioRxiv, 2016. doi: 10.1101/051359 (preprint)
38 LiuG B, LiuR Z, LiQ Q, Tang X H, YuM , LiX Y, CaoJ H, ZhaoS H. Identification of microRNAs in wool follicles during anagen, catagen, and telogen phases in Tibetan sheep.PLoS One, 2013, 8(10): e77801
https://doi.org/10.1371/journal.pone.0077801
39 FanR W, XieJ S, BaiJ M, Wang H D, TianX , BaiR, JiaX Y, YangL, Song Y F, HerridM , GaoW J, HeX Y, YaoJ B, Smith G W, DongC S . Skin transcriptome profiles associated with coat color in sheep.BMC Genomics, 2013, 14(1): 389
https://doi.org/10.1186/1471-2164-14-389
40 YueY J, LiuJ B, YangM, Han J L, GuoT T , GuoJ, FengR L, YangB H. De novo assembly and characterization of skin transcriptome using RNAseq in sheep (Ovis aries).Genetics and Molecular Research, 2015, 14(1): 1371–1384
https://doi.org/10.4238/2015.February.13.16
41 LiuG B, LiuR Z, TangX H, Cao J H, ZhaoS H , YuM. Expression profiling reveals genes involved in the regulation of wool follicle bulb regression and regeneration in sheep.International Journal of Molecular Sciences, 2015, 16(5): 9152–9166
https://doi.org/10.3390/ijms16059152
42 MoioliB, ScataM C, SteriR, Napolitano F, CatilloG . Signatures of selection identify loci associated with milk yield in sheep.BMC Genetics, 2013, 14(1): 76
https://doi.org/10.1186/1471-2156-14-76
43 Gutiérrez-GilB, Arranz J J, Pong-WongR , Garcia-GamezE, KijasJ, WienerP. Application of selection mapping to identify genomic regions associated with dairy production in sheep.PLoS ONE, 2014, 9(5): e94623
https://doi.org/10.1371/journal.pone.0094623
44 RuppR, SeninP, SarryJ, Allain C, TascaC , LigatL, PortesD, WoloszynF, Bouchez O, TabouretG , LebastardM, CaubetC, FoucrasG, Tosser-Klopp G. A point mutation in suppressor of cytokine signalling 2 (Socs2) increases the susceptibility to inflammation of the mammary gland while associated with higher body weight and size and higher milk production in a sheep model.PLoS Genetics, 2015, 11(12): e1005629
https://doi.org/10.1371/journal.pgen.1005629
45 Suárez-VegaA, Gutierrez-Gil B, KloppC , Robert-GranieC, Tosser-Klopp G, ArranzJ J . Characterization and comparative analysis of the milk transcriptome in two dairy sheep breeds using RNA sequencing.Scientific Reports, 2015, 5(1): 18399
https://doi.org/10.1038/srep18399
46 Suárez-VegaA, Gutierrez-Gil B, KloppC , Tosser-KloppG, ArranzJ J. Comprehensive RNA-Seq profiling to evaluate lactating sheep mammary gland transcriptome.Scientific Data, 2016, 3: 160051
https://doi.org/10.1038/sdata.2016.51
47 Suárez-VegaA, Gutierrez-Gil B, ArranzJ J . Transcriptome expression analysis of candidate milk genes affecting cheese-related traits in 2 sheep breeds.Journal of Dairy Science, 2016, 99(8): 6381–6390
https://doi.org/10.3168/jds.2016-11048
48 GiordaniT, Vangelisti A, ConteG , SerraA, NataliL, RanieriA, Mele M, CavalliniA . Transcript profiling in the milk of dairy ewes fed extruded linseed.Genomics Data, 2017, 11: 17–19
https://doi.org/10.1016/j.gdata.2016.11.016
49 VågeD I, HusdalM, KentM P, Klemetsdal G, BomanI A . A missense mutation in growth differentiation factor 9 (GDF9) is strongly associated with litter size in sheep.BMC Genetics, 2013, 14(1): 1
https://doi.org/10.1186/1471-2156-14-1
50 GholizadehM, Rahimi-Mianji G, Nejati-JavaremiA , De KoningD J, JonasE. Genome-wide association study to detect QTL for twinning rate in Baluchi sheep.Journal of Genetics, 2014, 93(2): 489–493
https://doi.org/10.1007/s12041-014-0372-1
51 LvF H, AghaS, KantanenJ, Colli L, StuckiS , KijasJ W, JoostS, LiM H, Ajmone Marsan P. Adaptations to climate-mediated selective pressures in sheep.Molecular Biology and Evolution, 2014, 31(12): 3324–3343
https://doi.org/10.1093/molbev/msu264
52 DemarsJ, FabreS, SarryJ, Rossetti R, GilbertH , PersaniL, Tosser-Klopp G, MulsantP , NowakZ, DrobikW, MartyniukE, Bodin L. Genome-wide association studies identify two novel BMP15 mutations responsible for an atypical hyperprolificacy phenotype in sheep.PLoS Genetics, 2013, 9(4): e1003482
https://doi.org/10.1371/journal.pgen.1003482
53 MiaoX, LuoQ. Genome-wide transcriptome analysis between small-tail Han sheep and the Surabaya fur sheep using high-throughput RNA sequencing.Reproduction, 2013, 145(6): 587–596
https://doi.org/10.1530/REP-12-0507
54 MiaoX, QinQ L X. Genome-wide transcriptome analysis of mRNAs and microRNAs in Dorset and Small Tail Han sheep to explore the regulation of fecundity.Molecular and Cellular Endocrinology, 2015, 402: 32–42
https://doi.org/10.1016/j.mce.2014.12.023
55 MiaoX Y, LuoQ M, ZhaoH J, Qin X Y. Ovarian transcriptomic study reveals the differential regulation of miRNAs and lncRNAs related to fecundity in different sheep.Scientific Reports, 2016, 6(1): 35299
https://doi.org/10.1038/srep35299
56 ChenH Y, ShenH, JiaB, Zhang Y S, WangX H , ZengX C. Differential gene expression in ovaries of Qira black sheep and Hetian sheep using RNA-Seq technique.PLoS ONE, 2015, 10(3): e0120170
https://doi.org/10.1371/journal.pone.0120170
57 HuX J, Pokharel K, PeippoJ , GhanemN, Zhaboyev I, KantanenJ , LiM H. Identification and characterization of miRNAs in the ovaries of a highly prolific sheep breed.Animal Genetics, 2016, 47(2): 234–239
https://doi.org/10.1111/age.12385
58 CaoJ X, WeiC H, ZhangS Z, Capellini T D, ZhangL , ZhaoF P, LiL, ZhongT, Wang L J, DuL X , ZhangH P. Screening of reproduction-related single-nucleotide variations from MeDIP-seq data in sheep.Molecular Reproduction and Development, 2016, 83(11): 958–967
https://doi.org/10.1002/mrd.22734
59 WiedemarN, Drögemüller C A. 1.8-kb insertion in the 3′-UTR of RXFP2 is associated with polledness in sheep.Animal Genetics, 2015, 46(4): 457–461
https://doi.org/10.1111/age.12309
60 JohnstonS E, McEwanJ C, PickeringN K , KijasJ W, Beraldi D, PilkingtonJ G , PembertonJ M, SlateJ. Genome-wide association mapping identifies the genetic basis of discrete and quantitative variation in sexual weaponry in a wild sheep population.Molecular Ecology, 2011, 20(12): 2555–2566
https://doi.org/10.1111/j.1365-294X.2011.05076.x
61 DominikS, Henshall J M, HayesB J . A single nucleotide polymorphism on chromosome 10 is highly predictive for the polled phenotype in Australian Merino sheep.Animal Genetics, 2012, 43(4): 468–470
https://doi.org/10.1111/j.1365-2052.2011.02271.x
62 PoissantJ, DavisC S, MalenfantR M , HoggJ T, Coltman D W. QTL mapping for sexually dimorphic fitness-related traits in wild bighorn sheep.Heredity, 2012, 108(3): 256–263
https://doi.org/10.1038/hdy.2011.69
63 KijasJ W, MillerJ E, HadfieldT, McCulloch R, Garcia-GamezE , Porto NetoL R, Cockett N. Tracking the emergence of a new breed using 49,034 SNP in sheep.PLoS ONE, 2012, 7(7): e41508
https://doi.org/10.1371/journal.pone.0041508
64 RandhawaI A S, Khatkar M S, ThomsonP C , RaadsmaH W. Composite selection signals can localize the trait specific genomic regions in multi-breed populations of cattle and sheep.BMC Genetics, 2014, 15(1): 34
https://doi.org/10.1186/1471-2156-15-34
65 KijasJ W, Naumova A K. Haplotype-based analysis of selective sweeps in sheep.Genome, 2014, 57(8): 433–437
https://doi.org/10.1139/gen-2014-0049
66 RenX, YangG L, PengW F, Zhao Y X, ZhangM , ChenZ H, WuF A, KantanenJ, Shen M, LiM H . A genome-wide association study identifies a genomic region for the polycerate phenotype in sheep (Ovis aries).Scientific Reports, 2016, 6(1): 21111
https://doi.org/10.1038/srep21111
67 KijasJ W, Hadfield T, SanchezM N , CockettN. Genome-wide association reveals the locus responsible for four-horned ruminant.Animal Genetics, 2016, 47(2): 258–262
https://doi.org/10.1111/age.12409
68 GreyvensteinO F C, Reich C M, van Marle-KosterE , RileyD G, HayesB J. Polyceraty (multi-horns) in Damara sheep maps to ovine chromosome 2.Animal Genetics, 2016, 47(2): 263–266
https://doi.org/10.1111/age.12411
69 MoradiM H, Nejati-Javaremi A, Moradi-ShahrbabakM, DoddsK G, McEwan J C. Genomic scan of selective sweeps in thin and fat tail sheep breeds for identifying of candidate regions associated with fat deposition.BMC Genetics, 2012, 13(1): 10
https://doi.org/10.1186/1471-2156-13-10
70 MoioliB, PillaF, CianiE. Signatures of selection identify loci associated with fat tail in sheep.Journal of Animal Science, 2015, 93(10): 4660–4669
https://doi.org/10.2527/jas.2015-9389
71 ZhuC Y, FanH Y, YuanZ H, Hu S J, MaX M , XuanJ L, WangH W, ZhangL, Wei C H, ZhangQ , ZhaoF P, DuL X. Genome-wide detection of CNVs in Chinese indigenous sheep with different types of tails using ovine high-density 600K SNP arrays.Scientific Reports, 2016, 6(1): 27822
https://doi.org/10.1038/srep27822
72 YuanZ, LiuE, LiuZ, Kijas J W, ZhuC , HuS, MaX, ZhangL, Du L, WangH , WeiC. Selection signature analysis reveals genes associated with tail type in Chinese indigenous sheep.Animal Genetics, 2017, 48(1): 55–66
https://doi.org/10.1111/age.12477
73 ChengX, ZhaoS G, YueY, Liu Z, LiH W , WuJ P. Comparative analysis of the liver tissue transcriptomes of Mongolian and Lanzhou fat-tailed sheep.Genetics and Molecular Research, 2016, 15(2): 15028572
https://doi.org/10.4238/gmr.15028572
74 LiN, YeM Z, LiY R, Yan Z X, ButcherL M , SunJ H, HanX, ChenQ A, Zhang X Q, WangJ . Whole genome DNA methylation analysis based on high throughput sequencing technology.Methods, 2010, 52(3): 203–212
https://doi.org/10.1016/j.ymeth.2010.04.009
75 SafariE, Fogarty N M, GilmourA R . A review of genetic parameter estimates for wool, growth, meat and reproduction traits in sheep.Livestock Production Science, 2005, 92(3): 271–289
https://doi.org/10.1016/j.livprodsci.2004.09.003
76 TianY, HuangX, TianK, Di J, BaiY , XuX, FuX, WuW, ShiX, ZhaoB. Identification of copy number variations in fine wool sheep using Ovine SNP600 BeadChip array.Journal of Animal Science, 2016, 94(7): 29–30
77 LiJ P, QuH E, JiangH Z, Zhao Z H, ZhangQ L . Transcriptome-wide comparative analysis of microRNA profiles in the telogen skins of Liaoning Cashmere goats (Capra hircus) and Fine-Wool sheep (Ovis aries) by Solexa Deep Sequencing.DNA and Cell Biology, 2016, 35(11): 696–705
https://doi.org/10.1089/dna.2015.3161
78 IdaA, Vicovan P G, RaduR , VicovanA, CutovaN, EnciuA. Improving the milk production at the breeds and populations of sheep from various geo-climatic zones.Lucrări Științifice-Universitatea De Științe Agricole Si Medicină Veterinară, 2012, 57: 34–38
79 Garcia-GamezE, Gutierrez-Gil B, SahanaG , SanchezJ P, BayonY, ArranzJ J. GWA analysis for milk production traits in dairy sheep and genetic support for a QTN influencing milk protein percentage in the LALBA gene.PLoS ONE, 2012, 7(10): e47782
https://doi.org/10.1371/journal.pone.0047782
80 AbdoliR, ZamaniP, MirhoseiniS Z , Ghavi Hossein-ZadehN, Nadri S. A review on prolificacy genes in sheep.Reproduction in Domestic Animals, 2016, 51(5): 631–637
https://doi.org/10.1111/rda.12733
81 NotterD R. Genetic aspects of reproduction in sheep.Reproduction in Domestic Animals, 2008, 43(2): 122–128
https://doi.org/10.1111/j.1439-0531.2008.01151.x
82 LiuQ Y, PanZ Y, WangX Y, Hu W P, DiR , YaoY X, ChuM X. Progress on major genes for high fecundity in ewes.Frontiers of Agricultural Science and Engineering, 2014, 1(4): 282–290
https://doi.org/10.15302/J-FASE-2014042
83 AbdoliR, ZamaniP, DeljouA, Rezvan H. Association of BMPR-1B and GDF9 genes polymorphisms and secondary protein structure changes with reproduction traits in Mehraban ewes.Gene, 2013, 524(2): 296–303
https://doi.org/10.1016/j.gene.2013.03.133
84 JohnstonS E, Gratten J, BerenosC , PilkingtonJ G, Clutton-Brock T H, PembertonJ M , SlateJ. Life history trade-offs at a single locus maintain sexually selected genetic variation.Nature, 2013, 502(7469): 93–95
https://doi.org/10.1038/nature12489
85 MartinA M, Festa-Bianchet M, ColtmanD W , PelletierF. Sexually antagonistic association between paternal phenotype and offspring viability reinforces total selection on a sexually selected trait.Biology Letters, 2014, 10(2): 104–111
https://doi.org/10.1098/rsbl.2014.0043
86 Nejati-JavaremiA, Izadi F, RahmatiG , MoradiM, IzadiF. Selection in fat-tailed sheep based on two traits of fat-tail and body weight versus single-trait total body weight.International Journal of Agriculture and Biology, 2007, (4): 645–648
87 PengW Z, XuJ, ZhangY, Feng J X, DongC J , JiangL K, FengJ Y, ChenB H, Gong Y W, ChenL , XuP. An ultra-high density linkage map and QTL mapping for sex and growth-related traits of common carp (Cyprinus carpio).Scientific Reports, 2016, 6(1): 26693
https://doi.org/10.1038/srep26693
88 GholizadehM, Rahimi-Mianji G, Nejati-JavaremiA , De KoningD J, JonasE. Genome wide association study to detect QTL for twinning rate in Baluchi sheep.Journal of Genetics, 2014, 93(2): 489–493
https://doi.org/10.1007/s12041-014-0372-1
89 YiS E, LaPoltP S, YoonB S, Chen J Y C, LuJ K H , LyonsK M. The type I BMP receptor BMPRIB is essential for female reproductive function.Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(14): 7994–7999
https://doi.org/10.1073/pnas.141002798
90 MulsantP, LecerfF, FabreS, Schibler L, MongetP , LannelucI, Pisselet C, RiquetJ , MonniauxD, Callebaut I, CribiuE , ThimonierJ, Teyssier J, BodinL , CognieY, Chitour N, ElsenJ M . Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation rate in Booroola Merino ewes.Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(9): 5104–5109
https://doi.org/10.1073/pnas.091577598
[1] Chris PROUDFOOT, Gus MCFARLANE, Bruce WHITELAW, Simon LILLICO. Livestock breeding for the 21st century: the promise of the editing revolution[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 129-135.
[2] Cécile DURANTON, Cory MATTHEW. Impact of introducing a herb pasture area into a New Zealand sheep and beef hill country farm system: a modeling analysis[J]. Front. Agr. Sci. Eng. , 2018, 5(1): 87-97.
[3] Qiuyue LIU,Zhangyuan PAN,Xiangyu WANG,Wenping HU,Ran DI,Yaxing YAO,Mingxing CHU. Progress on major genes for high fecundity in ewes[J]. Front. Agr. Sci. Eng. , 2014, 1(4): 282-290.
[4] Xinxin LI,Huijuan WANG,Guanghua SU,Zhuying WEI,Chunling BAI,Wuni-MENGHE,Yanhui HOU,Changqing YU,Shorgan BOU,Guangpeng LI. The ecological adaptability of cloned sheep to free-grazing in the Tengger Desert of Inner Mongolia, China[J]. Front. Agr. Sci. Eng. , 2014, 1(3): 191-200.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed