Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2018, Vol. 5 Issue (2) : 262-270    https://doi.org/10.15302/J-FASE-2017166
RESEARCH ARTICLE
Fusaricidins in Paenibacillus polymyxa A21 and their antagonistic activity against Botrytis cinerea on tomato
Weicheng LIU1, Xiaoli WU2, Xuelian BAI1, Hong ZHANG1, Dan DONG1, Taotao ZHANG1, Huiling WU1()
1. Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
2. Editorial Department of Chinese Science Abstracts, Science and Technology Review Publishing House, Beijing 100081, China
 Download: PDF(505 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Four kinds of antifungal compounds from an extract of Paenibacillus polymyxa A21 with molecular masses of 883.56, 897.59, 947.55, and 961.58 Da were characterized as the members of fusaricidin-type of antibiotics according to LC-MS analysis. Fusaricidins isolated from culture filtrate displayed high antagonistic activity against several plant fungal pathogens, especially Botrytis cinerea, the causal agent of gray mold. The fusaricidins biosynthetic gene cluster (BGC) from A21 was cloned by PCR and comparative cluster analysis revealed that gene fusTE, the 3′ boundary of the fusaricidin BGC in strain PKB1, was not present in fusaricidin BGC of A21, indicating that fusTE is not necessary for fusaricidin synthesis. Fusaricidin extract from A21 significantly reduced gray mold disease incidence and severity on tomato. The mRNA levels for three patho-genesis-related proteins (PRs) revealed that treatment of tomato leaves with fusaricidin extract induced the expression of PR genes to different levels, suggesting that one reason for the reduction of gray mold infection by fusaricidin is induction of PR proteins, which lead to increased resistance to pathogens. This is the first report of the application of fusaricidins to control tomato gray mold and the comparative cluster analysis provides important molecular basis for research on fusaricidin biosynthesis.

Keywords antifungal activity      biosynthetic gene cluster      Botrytis cinerea      fusaricidin      Paenibacillus polymyxa     
Corresponding Author(s): Huiling WU   
Just Accepted Date: 27 September 2017   Online First Date: 31 October 2017    Issue Date: 28 May 2018
 Cite this article:   
Weicheng LIU,Xiaoli WU,Xuelian BAI, et al. Fusaricidins in Paenibacillus polymyxa A21 and their antagonistic activity against Botrytis cinerea on tomato[J]. Front. Agr. Sci. Eng. , 2018, 5(2): 262-270.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2017166
https://academic.hep.com.cn/fase/EN/Y2018/V5/I2/262
Fungal pathogens Average diameter of inhibition zone/cm
Botrytis cinerea 3.43±0.08
Glomerella cingulata 3.16±0.14
Botrytis cinerea 2.66±0.15
Fusarium oxysporum f. sp. niveum 2.62±0.10
F. graminearum 2.34±0.07
Monilia cinerea 1.93±0.09
Vermicularia capsici 1.93±0.13
F. oxysporum f. sp. vasinfectum 1.65±0.06
Rhizoctonia cerealis 1.62±0.03
F.oxysporum f. sp. cucumerinum 1.62±0.12
F. solani 1.16±0.11
F. oxysporum f. sp. conglutinan 1.12±0.04
Tab.1  Antifungal activities of the crude extract of Paenibacillus polymyxa strain A21
Fig.1  RP-HPLC peak profile of antifungal compounds from Paenibacillus polymyxa A21. (a) Antifungal activity was found in the peak eluted at 24.5 min, as indicated by the arrow; (b) mass spectroscopic analysis of antifungal compounds produced by P. polymyxa A21. Compounds from peaks with molecular weights 947.56, 961.58, 883.56 and 897.59 Da (M+ H)+ showed antifungal activity. Mass spectroscopy was done in both positive and negative ion modes.
Fig.2  Analysis of fusaricidin biosynthetic gene clusters (BCGs). (a) BGCs of Paenibacillus polymyxa A21; (b) comparison of the fusaricidin BGCs of afur, sfur and pfur clusters using the MAUVE program. The horizontal panels depict the afur (upper), sfur (middle) and pfur (lower) clusters. Mean sequence similarities are proportional to the heights of the red bars, and the respective scales show the sequence coordinates in base pairs. Regions with low similarities and strain-specific regions are marked with black triangles. Arrows indicate deduced transcriptional units.
Treatment Disease incidence/% Average diameter of lesion/mm2
Fusaricidin extract from A21 35±2.4 b 7.7±0.4 b
Botrytis cinerea inoculated control 100±0.0 a 30.2±2.3 a
Boscalid 32±1.9 b 6.9±0.2 b
Blank control 0±0.0 c 0±0.0 c
Tab.2  Antagonistic activity of the fusaricidin extract from Paenibacillus polymyxa strain A21 against Botrytis cinerea infection of tomato leaves
Fig.3  Relative gene expression of defense-related genes PR-1, PR-2 and PR-3 in tomato leaves treated with fusaricidin analyzed by qRT-PCR (Fus, fusaricidin treatment before inoculation with B. cinerea; CK, inoculated control). Y-axes scale is relative expression level. Error bars indicate±SD.
1 Ash C, Priest F G, Collins M D. Molecular identification of rRNA group 3 Bacilli (Ash, Farrow, Wallbanks and Collins) using PCR probe test. Proposal for the creation of a new genus Paenibacillus.Antonie van Leeuwenhoek , 1993, 64(3–4): 253–260
pmid: 8085788
2 Khan Z, Kim S G, Jeon Y H, Khan H U, Son S H, Kim Y H. A plant growth promoting rhizobacterium, Paenibacillus polymyxa strain GBR-1, suppresses root-knot nematode. Bioresource Technology, 2008, 99(8): 3016–3023
https://doi.org/10.1016/j.biortech.2007.06.031 pmid: 17706411
3 Kharbanda P D, Yang J, Beatty P, Jensen S, Tewari J P. Biocontrol of Leptospheria maculansand other pathogens of canola with Paenibacillus polymyxa PKB1. In: Proceeding of 10th International Rapeseed Congress, Canberra, 1999
4 Ryu C M, Kim J, Choi O, Kim S H, Park C S. Improvement of biological control capacity of Paenibacillus polymyxa E681 by seed pelleting on sesame. Biological Control, 2006, 39(3): 282–289
https://doi.org/10.1016/j.biocontrol.2006.04.014
5 Ito M, Koyama Y. Jokipeptin, a new peptide antibiotic. I. Isolation, physico-chemical and biological characteristics. Journal of Antibiotics, 1972, 25(5): 304–308
https://doi.org/10.7164/antibiotics.25.304 pmid: 5042449
6 Shoji J, Kato T, Hinoo H. The structure of polymyxin T1. (Studies on antibiotics from the genus Bacillus. XXII). Journal of Antibiotics, 1977, 30(12): 1042–1048
https://doi.org/10.7164/antibiotics.30.1042 pmid: 202584
7 Pichard B, Larue J P, Thouvenot D. Gavaserin and saltavalin, new peptide antibiotics produced by Bacillus polymyxa. FEMS Microbiology Letters, 1995, 133(3): 215–218
https://doi.org/10.1111/j.1574-6968.1995.tb07887.x pmid: 8522137
8 Kaye D. Current use for old antibacterial agents: polymyxins, rifampin, and aminoglycosides. Infectious Disease Clinics of North America, 2004, 18(3): 669–689
https://doi.org/10.1016/j.idc.2004.04.007 pmid: 15308281
9 Nakajima N, Chihara S, Koyama Y. A new antibiotic, gatavalin. I. Isolation and characterization. Journal of Antibiotics, 1972, 25(4): 243–247
https://doi.org/10.7164/antibiotics.25.243 pmid: 4559273
10 Kajimura Y, Kaneda M. Fusaricidin B,C and D, new depsipeptide antibiotics produced by Bacillus polymyxa KT-8, isolation, structure elucidation and biological activity. Journal of Antibiotics, 1997, 50(3): 220–228
https://doi.org/10.7164/antibiotics.50.220
11 Kajimura Y, Kaneda M. Fusaricidin A, a new depsipeptide antibiotic produced by Bacillus polymyxa KT-8. Taxonomy, fermentation, isolation, structure elucidation and biological activity. Journal of Antibiotics, 1996, 49(2): 129–135
https://doi.org/10.7164/antibiotics.49.129 pmid: 8621351
12 Beatty P H, Jensen S E. Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Canadian Journal of Microbiology, 2002, 48(2): 159–169
https://doi.org/10.1139/w02-002 pmid: 11958569
13 Han J W, Kim E Y, Lee J M, Kim Y S, Bang E, Kim B S. Site-directed modification of the adenylation domain of the fusaricidin nonribosomal peptide synthetase for enhanced production of fusaricidin analogs. Biotechnology Letters, 2012, 34(7): 1327–1334
https://doi.org/10.1007/s10529-012-0913-8 pmid: 22450515
14 Li J, Jensen S E. Nonribosomal biosynthesis of fusaricidins by Paenibacillus polymyxa PKB1 involves direct activation of a D-amino acid. Chemistry & Biology, 2008, 15(2): 118–127
https://doi.org/10.1016/j.chembiol.2007.12.014 pmid: 18291316
15 Raza W, Yang X M, Wu H S, Wang Y, Xu Y C, Shen Q R. Isolation and characterisation of fusaricidin-type compound-producing strain of Paenibacillus polymyxa SQR-21 active against Fusarium oxysporum f. sp. nevium. European Journal of Plant Pathology, 2009, 125(3): 471–483
https://doi.org/10.1007/s10658-009-9496-1
16 Nomura T, Kuroda J, Fukai T, Konishi M, Uno J, Kurusu K. LI-F antibiotics, a family of antifungal cyclic depsipeptides produced by Bacillus polymyxa L-1129. Heterocycles, 2000, 53(7): 1533–1549
https://doi.org/10.3987/COM-00-8922
17 Kurusu K, Ohba K, Arai T, Fukushima K. New peptide antibiotics LI-F03, F04, F05, F07, and F08, produced by Bacillus polymyxa. I. Isolation and characterization. Journal of Antibiotics, 1987, 40(11): 1506–1514
https://doi.org/10.7164/antibiotics.40.1506 pmid: 3693120
18 Alfonso C, Raposo R, Melgarejo P. Genetic diversity in Botrytis cinerea populations on vegetable crops in greenhouses in south-eastern Spain. Plant Pathology, 2000, 49(2): 243–251
https://doi.org/10.1046/j.1365-3059.2000.00452.x
19 Rosslenbroich H J, Stuebler D. Botrytis cinerea-history of chemical control and novel fungicides for its management. Crop Protection, 2000, 19(8): 557–561
https://doi.org/10.1016/S0261-2194(00)00072-7
20 Park J K, Kim J D, Park Y I, Kim S K. Purification and characterization of a 1,3-β-d-glucanase from Streptomyces torulosus PCPOK-0324. Carbohydrate Polymers, 2012, 87(2): 1641–1648
https://doi.org/10.1016/j.carbpol.2011.09.058 pmid: 23399201
21 Fukuda Y, Shinshi H. Characterization of a novel cis-acting element that is responsive to a fungal elicitor in the promoter of a tobacco class I chitinase gene. Plant Molecular Biology, 1994, 24(3): 485–493
https://doi.org/10.1007/BF00024116 pmid: 8123790
22 Shahbazi H, Aminian H, Sahebani N, Halterman D A. Activity of β-1, 3-glucanase and β-1,4-glucanase in two potato cultivars following challenge by the fungal pathogen Alternaria solani. Phytoparasitica, 2011, 39(5): 455–460
https://doi.org/10.1007/s12600-011-0184-2
23 Kombrink E, Somssich I E. Pathogenesis-related proteins and plant defense. In: Carroll G, Tudzynski P, eds. The Mycota V, Part A. Plant Relationships. Berlin: Springer Verlag, 1997: 107–128
24 Ryals J A, Neuenschwander U H, Willits M G, Molina A, Steiner H Y, Hunt M D. Systemic acquired resistance. Plant Cell, 1996, 8(10): 1809–1819
https://doi.org/10.1105/tpc.8.10.1809 pmid: 12239363
25 Bol J F, Linthorst H J M, Cornelissen B J C. Plant pathogenesis-related proteins induced by virus infection. Annual Review of Phytopathology, 1990, 28(1): 113–138
https://doi.org/10.1146/annurev.py.28.090190.000553
26 van Loon L C, Pierpoint W S, Boller T, Conejero V. Recommendations for naming plant pathogenesis-related proteins. Plant Molecular Biology Reporter, 1994, 12(3): 245–264
https://doi.org/10.1007/BF02668748
27 van Loon L C, van Strien E A. The families of pathogenesis-related and comparative analysis of PR-1 type proteins. Physiological and Molecular Plant Pathology, 1999, 55(2): 85–97
https://doi.org/10.1006/pmpp.1999.0213
28 Park C J, Kim K J, Shin R, Park J M, Shin Y C, Paek K H. Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway. Plant Journal, 2004, 37(2): 186–198
https://doi.org/10.1046/j.1365-313X.2003.01951.x pmid: 14690503
29 Park C J, An J M, Shin Y C, Kim K J, Lee B J, Paek K H. Molecular characterization of pepper germin-like protein as the novel PR-16 family of pathogenesis-related proteins isolated during the resistance response to viral and bacterial infection. Planta, 2004, 219(5): 797–806
https://doi.org/10.1007/s00425-004-1290-x pmid: 15185078
30 Edreva A. Pathogenesis-related proteins: research progress in the last 15 years. General and Applied Plant Physiology, 2005, 31(1–2): 105–124
31 Klessig D F, Malamy J. The salicylic acid signal in plants. Plant Molecular Biology, 1994, 26(5): 1439–1458
https://doi.org/10.1007/BF00016484 pmid: 7858199
32 Ryals J, Uknes S, Ward E. Systemic acquired resistance. Plant Physiology, 1994, 104(4): 1109–1112
https://doi.org/10.1104/pp.104.4.1109 pmid: 12232151
33 Li J J, Liu W C, Luo L J, Dong D, Liu T, Zhang T T, Lu C G, Liu D W, Zhang D P, Wu H L. Expression of Paenibacillus polymyxa β-1,3–1,4-glucanase in Streptomyces lydicus A01 improves its biocontrol effect against Botrytis cinerea. Biological Control, 2015, 90(12): 141–147
https://doi.org/10.1016/j.biocontrol.2015.06.008
34 Atlas R M. Handbook of media for environmental microbiology. Physiological and Molecular Plant Pathology, 1995, 34: 3–12
35 Lu C G, Liu W C, Qiu J Y, Wang H M, Liu T, De Liu W. Identification of an antifungal metabolite produced by a potential biocontrol Actinomyces strain A01. Brazilian Journal of Microbiology, 2008, 39(4): 701–707
https://doi.org/10.1590/S1517-83822008000400020 pmid: 24031293
36 Zhou D Q. Microbiology lab manual. Shanghai: Shanghai Scientific and Technical Publishers, 1996
37 Deng Y, Lu Z, Lu F, Zhang C, Wang Y, Zhao H, Bie X. Identification of LI-F type antibiotics and di-n-butyl phthalate produced by Paenibacillus polymyxa. Journal of Microbiological Methods, 2011, 85(3): 175–182
https://doi.org/10.1016/j.mimet.2011.02.013 pmid: 21376758
38 Sun J, Song Y L, Zhang J, Huang Z, Huo H X, Zheng J, Zhang Q, Zhao Y F, Li J, Tu P F. Characterization and quantitative analysis of phenylpropanoid amides in eggplant (Solanum melongena L.) by high performance liquid chromatography coupled with diode array detection and hybrid ion trap time-of-flight mass spectrometry. Journal of Agricultural and Food Chemistry, 2015, 63(13): 3426–3436
https://doi.org/10.1021/acs.jafc.5b00023 pmid: 25796999
39 Zheng J J, Lin Q, He P X, He X S. Morphological identification and ITS phylogenetic analysis of Hypholoma tuberosum, a new record of Hypholoma in china. Journal of Fungal Research, 2011, 9(1): 5–8 (in Chinese)
40 Jiang M L, Zhao R, Hu X J, Wan X, Zhang Y B. Antifungal spectrum and bio-control effect of Bacillus subtilis Tu-100 on pathogenic fungi.   Chinese Journal of Oil Crop Sciences, 2009, 31(3): 355–358 (in Chinese)
41 Zhang D P, Lu C G, Zhang T T, Spadaro D, Liu D W, Liu W C. Candida pruni sp. nov. is a new yeast species with antagonistic potential against brown rot of peaches. Archives of Microbiology, 2014, 196(7): 525–530
https://doi.org/10.1007/s00203-014-0999-6 pmid: 24908073
42 Lu C G, Zhang D P, Liu T, Dong H P, Wang J L, Liu W C. Detection of the genes encoding lipopeptide antibiotics and biocontrol activity of Bacillus amyloliquefaciens MH71. Plant Protection, 2015, 41(3): 12–18 (in Chinese)
43 Yue Y, Zhang M, Zhang J, Tian X, Duan L, Li Z. Overexpression of the AtLOS5 gene increased abscisic acid level and drought tolerance in transgenic cotton. Journal of Experimental Botany, 2012, 63(10): 3741–3748
https://doi.org/10.1093/jxb/ers069 pmid: 22412184
44 Lee S H, Cho Y E, Park S H, Balaraju K, Park J W, Lee S W, Park K. An antibiotic fusaricidin: a cyclic depsipeptide from Paenibacillus polymyxa E681 induces systemic resistance against Phytophthora blight of red-pepper. Phytoparasitica, 2013, 41(1): 49–58
https://doi.org/10.1007/s12600-012-0263-z
45 Darling A C, Mau B, Blattner F R, Perna N T. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Research, 2004, 14(7): 1394–1403
https://doi.org/10.1101/gr.2289704 pmid: 15231754
46 Choi S K, Park S Y, Kim R, Lee C H, Kim J F, Park S H. Identification and functional analysis of the fusaricidin biosynthetic gene of Paenibacillus polymyxa E681. Biochemical and Biophysical Research Communications, 2008, 365(1): 89–95
https://doi.org/10.1016/j.bbrc.2007.10.147 pmid: 17980146
[1] FASE-17166-OF-LWC_suppl_1 Download
[1] Kandasamy SARAVANAKUMAR, Zhixiang LU, Hai XIA, Meng WANG, Jianan SUN, Shaoqing WANG, Qiang-qiang WANG, Yaqian LI, Jie CHEN. Triggering the biocontrol of Botrytis cinerea by Trichoderma harzianum through inhibition of pathogenicity and virulence related proteins[J]. Front. Agr. Sci. Eng. , 2018, 5(2): 271-279.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed