Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2018, Vol. 5 Issue (2) : 271-279    https://doi.org/10.15302/J-FASE-2018214
RESEARCH ARTICLE
Triggering the biocontrol of Botrytis cinerea by Trichoderma harzianum through inhibition of pathogenicity and virulence related proteins
Kandasamy SARAVANAKUMAR, Zhixiang LU, Hai XIA, Meng WANG, Jianan SUN, Shaoqing WANG, Qiang-qiang WANG, Yaqian LI, Jie CHEN()
School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism/Key Laboratory of Urban Agriculture (South) of the Ministry of Agriculture, Shanghai Jiao Tong University, Shanghai 200240, China
 Download: PDF(1202 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This study reports a strain of Trichoderma harzianum CCTCC-SBW0162 with potential to enhance biocontrol activity against gray mold pathogen, Botrytis cinerea, and with a pivotal role in tomato (Solanum esculentum) plant growth enhancement. A total of 254 Trichoderma isolates were screened by in vitro antagonistic assay. Of these, 10 were selected for greenhouse experiments based on their greater inhibition of B. cinerea. The in vitro antagonistic assay and greenhouse experiments indicated that T. harzianum CCTCC-SBW0162 gave the highest inhibition rate (90.6%) and disease reduction (80.7%). Also, to study the possible mechanism associated with antifungal activity of CCTCC-SBW0162 against B. cinerea, molecular docking was used to assess the interactions between CCTCC-SBW0162-derived metabolites, and pathogencity and virulence related proteins of B. cinerea. The molecular docking results indicated that the combination of harzianopyridone, harzianolide and anthraquinone C derived from CCTCC-SBW0162 could synergistically improve antifungal activity against B. cinerea through the inhibition/modification of pathogenicity and virulence related proteins. However, this computerized modeling work emphasized the need for further study in the laboratory to confirm the effect T. harzianum-derived metabolites against the proteins of B. cinerea and their interactions.

Keywords anthraquinone      Botrytis cinerea      harzianolide      harzianopyridone      molecular docking      Trichoderma harzianum     
Corresponding Author(s): Jie CHEN   
Just Accepted Date: 09 March 2018   Online First Date: 03 April 2018    Issue Date: 28 May 2018
 Cite this article:   
Kandasamy SARAVANAKUMAR,Zhixiang LU,Hai XIA, et al. Triggering the biocontrol of Botrytis cinerea by Trichoderma harzianum through inhibition of pathogenicity and virulence related proteins[J]. Front. Agr. Sci. Eng. , 2018, 5(2): 271-279.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2018214
https://academic.hep.com.cn/fase/EN/Y2018/V5/I2/271
Fig.1  In vitro antagonistic activity of Trichoderma against B. cinerea (BC) in dual culture: BC-CK, T. harzianum CCTCC-RW0006, T. atroviride CCTCC-RW0008, T. asperellum CCTCC-RW0011, T. atroviride CCTCC-SBW0008, T. atroviride CCTCC-SBW0068, T. atroviride CCTCC-SBW0073, T. atroviride CCTCC-SBW0074, T. aureoviride CCTCC-SBW0122, T. atroviride CCTCC-SBW0138, and T. harzianum CCTCC-SBW0162.
Treatment Average shoot length/cm Average root length/cm Average shoot biomass/g Average root biomass/g Total biomass/g Disease reduction/%
CK1 30.2±1.2 (0.62) 5.0±1.2 (0.56) 1.0±0.02 (4) 0.4±0.08 (1) 1.4±0.3 (2.5) 56. 7
CK2 18.6±2.5 3.2±0.8 0.2±0.01 0.2±0.09 0.4±0.1 31.7
T1 32.0±2.1 (0.72) 3.6±0.1 (0.125) 0.9±0.03 (3.5) 0.3±0.05 (0.5) 1.1±0.6 (0.75) 50.0
T2 29.7±1.5 (0.59) 4.2±0.6 (0.31) 0.2±0.02 (0) 0.2±0.06 (0) 0.4±0.8 (0) 40.0
T3 37.8±3.2 (1.03) 22.1±0.2 (5.90) 2.6±0.01 (12) 0.5±0.06 (1.5) 3.1±0.4 (6.75) 40.0
T4 41.4±2.6 (1.22) 11.5±0.4 (2.59) 3.8±0.03 (18) 1.6±0.04 (7) 5.4±0.5 (12.5) 80.7
T5 24.4±1.2 (0.31) 8.6±0.6 (1.68) 1.8±0.06 (8) 0.6±0.06 (2) 2.4±0.6 (5) 33.3
T6 32.4±0.6 (0.74) 6.5±1.2 (1.03) 3.4±0.06 (16) 0.2±0.04 (0) 3.6±0.2 (8) 56.7
T7 29.5±1.8 (0.58) 12.2±1.4 (3) 2.7±0.04 (2.5) 0.3±0.06 (0.5) 2.9±0.1 (1.5) 46.7
T8 20.0±1.6 (0.07) 3.5±0.6 (0.09) 1.2±0.06 (5) 0.5±0.01 (1.5) 1.7±0.2 (6.25) 33.3
T9 37.7±2.4 (1.02) 4.5±1.8 (0.40) 2.4±0.04 (11) 0.4±0.02 (1) 2.8±0.6 (6) 60.0
T10 32.6±1.6 (0.75) 7.0±1.6 (1.18) 1.9±0.09 (8.5) 1.1±0.03 (4.5) 3.0±0.1 (6.5) 56.7
Tab.1  Antagonistic effect of Trichoderma against B. cinerea on growth factors of tomato seedlings.
Fig.2  3D structure of target protein of B. cinerea. Bcpmr1 is identical to PMR1 (NP_011348) (a) and SS1G_09885 (EDN94018) (b), and BcMctA is identical to MFS (c)
Fig.3  Structure of metabolites (ligand) of Trichoderma harzianum. (a) T22azaphilone; (b) harzianopyridone; (c) harzianolide; (d) 1-hydroxy-3-methyl-anthraquinone; (e) 1,8-dihydroxy-3-methyl-anthraquinone.
S. No. PubChem CID T. harzianum derived Compound Name Mol. Formula Mol. Wt/(g·mol-1) Docking Score/(kJ·mol-1)
Bcpmr BcMctA
PMR1 SS1G MFS
1 76326344 T22azaphilone C18H18O6 330.336 -38.56 -42.57 -42.87
2 54697782 Harzianopyridone C14H19NO5 281.308 -40.36 -35.34 -38.39
3 15719532 Harzianolide C13H18O3 222.284 -40.27 -43.87 -45.17
4 164982 1-hydroxy-3-methyl-anthraquinone C15H10O3 238.242 -38.22 -41.65 -48.13
5 641293 anthraquinone C C20H17ClO4 356.802 -43.91 -49.47 -57.71
Tab.2  Analysis of interactions between Trichoderma-derived compounds and pathogenicity related protein bcpmr1 of B. cinerea
Fig.4  Docking complex showing the interaction between Trichoderma metabolites anthraquinone C with Bcpmr (PMR1) of B. cinerea
Fig.5  Docking complex showing the interaction between Trichoderma metabolite, anthraquinone C, with Bcpmr (SS1G_09885) of B. cinerea
Fig.6  Docking complex showing the interaction between Trichoderma metabolite, anthraquinone C, with BcMctA (MFS) of B. cinerea
1 Dean R, Van Kan J A, Pretorius Z A, Hammond-Kosack K E, Di Pietro A, Spanu P D, Rudd J J, Dickman M, Kahmann R, Ellis J, Foster G D. The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 2012, 13(4): 414–430
https://doi.org/10.1111/j.1364-3703.2011.00783.x pmid: 22471698
2 Montealegre J R, Herrera R, Velasquez J C, Silva P, Besoain X, Perez L M. Biocontrol of root and crown rot in tomatoes under greenhouse conditions using Trichoderma harzianum and Paenibacillus lentimorbus. Additional effect of solarization. Electronic Biotechnology, 2005, 8(3): 249–257
https://doi.org/10.2225/vol8-issue3-fulltext-7
3 Srinon W, Chuncheen K, Jirattiwarutkul K, Soytong K, Kanokmedhakul S. Efficacies of antagonistic fungi against Fusarium wilt disease of cucumber and tomato and the assay of its enzyme activity. Agricultural Technology, 2006, 2(2): 191–201
4 Talla S G, Raju A S R, Karri S, Kumar Y S. Production and antagonistic effect of Trichoderma spp. on pathogenic microorganisms (Botrytis cinerea, Fusarium oxysporium Macrohomina phasealina and Rhizoctonia solani). African Journal of Biotechnology, 2015, 14(8): 668–675 doi:10.5897/AJB2014.13904
5 Parry D W. Diseases of potato. In: Plant pathology in agriculture.Cambridge, UK: Cambridge University Press, 1990
6 Weller D M, Raaijmakers J M, Gardener B B M, Thomashow L S. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology, 2002, 40(1): 309–348
https://doi.org/10.1146/annurev.phyto.40.030402.110010 pmid: 12147763
7 Huang H C, Erickson R S, Chang C, Moyer J R, Larney F J, Huang J W. Control of white mold of bean caused by Sclerotinia sclerotiorum using organic soil amendments and biocontrol agents. Plant Pathology Bulletin, 2005, 14(3): 183–190
8 Harman G E, Latorre B, Agosin E, Martin R S, Riegel D G, Nielsen P A, Tronsmo A, Pearson R C. Biological and integrated control of Botrytis bunch rot of grape using Trichoderma spp. Biological Control, 1996, 7(3): 259–266
https://doi.org/10.1006/bcon.1996.0092
9 Zimand G, Elad Y, Chet I. Effect of Trichoderma harzianum on Botrytis cinerea pathogenicity. Phytopathology, 1996, 86(11): 1255–1260
https://doi.org/10.1094/Phyto-86-1255
10 Fravel D R, Rhodes D J, Larkin R P. Biological control of diseases: production and commercialization of biocontrol products. In: Clercq P D. Integrated Pest and Disease Management in Greenhouse Crops.Wageningen: Springer Netherlands, 1999, 365–376
11 Joshi B B, Bhatt R P, Bahukhandi D. Antagonistic and plant growth activity of Trichoderma isolates of Western Himalayas. Journal of Environmental Biology, 2010, 31(6): 921–928
pmid: 21506476
12 Benítez T, Rincón A M, Limón M C, Codón A C. Biocontrol mechanisms of Trichoderma strains. International Microbiology, 2004, 7(4): 249–260
pmid: 15666245
13 Soytong K, Srinon W, Rattanacherdchai K, Kanokmedhakul S, Kanokmedhakul K. Application of antagonistic fungi to control anthracnose disease of grape. Journal of Agricultural Biotechnology, 2005, 1: 33–41
14 Morsy E M. Role of growth promoting substances producing microorganisms on tomato plant and control of some root rot fungi. Dissertation for the Doctoral Degree. Cairo: Ain shams University, 2005
15 Zaghloul R A, Hanafy Ehsan A, Neweigy N A, Khalifa Neamat A. Application of biofertilization and biological control for tomato production. In: 12th Conference of Microbiology 2005, Cairo. Egypt: Factory of Agriculture, Benha University, 2007, 198–212
16 Saravanakumar K, Yu C, Dou K, Wang M, Li Y, Chen J. Biodiversity of Trichoderma Community in the Tidal Flats and Wetland of Southeastern China. PLoS One, 2016, 11(12): e0168020
https://doi.org/10.1371/journal.pone.0168020 pmid: 28002436
17 Hermosa R, Botella L, Keck E, Jiménez J A, Montero-Barrientos M, Arbona V, Gómez-Cadenas A, Monte E, Nicolás C. The overexpression in Arabidopsis thaliana of a Trichoderma harzianum gene that modulates glucosidase activity, and enhances tolerance to salt and osmotic stresses. Journal of Plant Physiology, 2011, 168(11): 1295–1302
https://doi.org/10.1016/j.jplph.2011.01.027 pmid: 21466906
18 Williamson B, Tudzynski B, Tudzynski P, van Kan J A. Botrytis cinerea: the cause of grey mould disease. Molecular Plant Pathology, 2007, 8(5): 561–580
https://doi.org/10.1111/j.1364-3703.2007.00417.x pmid: 20507522
19 Cantu D, Vicente A R, Greve L C, Dewey F M, Bennett A B, Labavitch J M, Powell A L T. The intersection between cell wall disassembly, ripening, and fruit susceptibility to Botrytis cinerea. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(3): 859–864
https://doi.org/10.1073/pnas.0709813105 pmid: 18199833
20 González C, Brito N, Sharon A. Infection process. Fungal virulence factors. In: S. Fillinger, Y. Elad, eds. Botrytis—the Fungus, the Pathogen and Its Management in Agricultural Systems. Heidelberg: Springer International Publishing,2015, 229–246
21 González M, Brito N, Frías M, González C. Botrytis cinerea protein O-mannosyltransferases play critical roles in morphogenesis, growth, and virulence. PLoS One, 2013, 8(6): e65924
https://doi.org/10.1371/journal.pone.0065924 pmid: 23762450
22 De Groot P W. A genomic inventory of cell wall biosynthesis in the ubiquitous plant pathogen Botrytis cinerea. In: Mora-Montes, eds. The Fungal Cell Wall. Hauppauge: Nova Biomedical, 2013
23 González M, Brito N, González C. High abundance of Serine/Threonine-rich regions predicted to be hyper-O-glycosylated in the secretory proteins coded by eight fungal genomes. BMC Microbiology, 2012, 12(1): 213
https://doi.org/10.1186/1471-2180-12-213 pmid: 22994653
24 Michielse C B, Becker M, Heller J, Moraga J, Collado I G, Tudzynski P. The Botrytis cinerea Reg1 protein, a putative transcriptional regulator, is required for pathogenicity, conidiogenesis, and the production of secondary metabolites. Molecular Plant-Microbe Interactions, 2011, 24(9): 1074–1085
https://doi.org/10.1094/MPMI-01-11-0007 pmid: 21635139
25 Aguayo C, Riquelme J, Valenzuela P D T, Hahn M, Moreno E S. Bchex virulence gene of Botrytis cinerea: characterization and functional analysis. Journal of General Plant Pathology, 2011, 77(4): 230–238
https://doi.org/10.1007/s10327-011-0311-4
26 Giesbert S, Schumacher J, Kupas V, Espino J, Segmüller N, Haeuser-Hahn I, Schreier P H, Tudzynski P. Identification of pathogenesis-associated genes by T-DNA-mediated insertional mutagenesis in Botrytis cinerea: a type 2A phosphoprotein phosphatase and an SPT3 transcription factor have significant impact on virulence. Molecular Plant-Microbe Interactions, 2012, 25(4): 481–495
https://doi.org/10.1094/MPMI-07-11-0199 pmid: 22112214
27 Harren K, Schumacher J, Tudzynski B. The Ca2+/calcineurin-dependent signaling pathway in the gray mold Botrytis cinerea: the role of calcipressin in modulating calcineurin activity. PLoS One, 2012, 7(7): e41761
https://doi.org/10.1371/journal.pone.0041761 pmid: 22844520
28 Yang Q, Chen Y, Ma Z. Involvement of BcVeA and BcVelB in regulating conidiation, pigmentation and virulence in Botrytis cinerea. Fungal Genetics and Biology, 2013, 50(1): 63–71
https://doi.org/10.1016/j.fgb.2012.10.003 pmid: 23147398
29 Cui Z, Gao N, Wang Q, Ren Y, Wang K, Zhu T. BcMctA, a putative monocarboxylate transporter, is required for pathogenicity in Botrytis cinerea. Current Genetics, 2015, 61(4): 545–553
https://doi.org/10.1007/s00294-015-0474-1 pmid: 25634672
30 Plaza V, Lagües Y, Carvajal M, Pérez-García L A, Mora-Montes H M, Canessa P, Larrondo L F, Castillo L. bcpmr1 encodes a P-type Ca2+/Mn2+-ATPase mediating cell-wall integrity and virulence in the phytopathogen Botrytis cinerea. Fungal Genetics and Biology, 2015, 76: 36–46
https://doi.org/10.1016/j.fgb.2015.01.012 pmid: 25677379
31 Saravanakumar K, Yu C, Dou K, Wang M, Li Y, Chen J. Synergistic effect of Trichoderma-derived antifungal metabolites and cell wall degrading enzymes on enhanced biocontrol of Fusarium oxysporum f. sp. Cucumerinum. Biological Control, 2016, 94: 37–46
https://doi.org/10.1016/j.biocontrol.2015.12.001
32 Vargas Gil S, Pastor S, March G J. Quantitative isolation of biocontrol agents Trichoderma spp., Gliocladium spp. and actinomycetes from soil with culture media. Microbiological Research, 2009, 164(2): 196–205
https://doi.org/10.1016/j.micres.2006.11.022 pmid: 17459686
33 Dennis C, Webster J. Antagonistic properties of species groups of Trichoderma II. Production of non-volatile antibiotics. Transactions of the British Mycological Society, 1971, 57(1): 41–48 doi:10.1016/S0007-1536(71)80078-5
34 Huang X, Zhang N, Yong X, Yang X, Shen Q. Biocontrol of Rhizoctonia solani damping-off disease in cucumber with Bacillus pumilus SQR-N43. Microbiological Research, 2012, 167(3): 135–143
https://doi.org/10.1016/j.micres.2011.06.002 pmid: 21775112
35 Vinale F, Sivasithamparam K, Ghisalberti E L, Marra R, Barbetti M J, Li H, Woo S L, Lorito M. A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiological and Molecular Plant Pathology, 2008, 72(1): 80–86
https://doi.org/10.1016/j.pmpp.2008.05.005
36 Nelson M E, Powelson M L. Biological control of gray mold of snap beans by Trichoderma hamatum. Plant Disease, 1988, 72(8): 727–729
https://doi.org/10.1094/PD-72-0727
37 Elad Y. Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action. Crop Protection, 2000, 19(8): 709–714
https://doi.org/10.1016/S0261-2194(00)00094-6
38 Vinale F, Marra R, Scala F, Ghisalberti E L, Lorito M, Sivasithamparam K. Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Letters in Applied Microbiology, 2006, 43(2): 143–148
https://doi.org/10.1111/j.1472-765X.2006.01939.x pmid: 16869896
39 Inbar J, Abramsky M, Cohen D, Chet I. Plant growth enhancement and disease control by Trichoderma harzianum in vegetable seedlings grown under commercial conditions. European Journal of Plant Pathology, 1994, 100(5): 337–346
https://doi.org/10.1007/BF01876444
40 Saravanakumar K, Li Y, Yu C, Wang Q Q, Wang M, Sun J, Gao J X, Chen J. Effect of Trichoderma harzianum on maize rhizosphere microbiome and biocontrol of Fusarium Stalk rot. Scientific Reports, 2017, 7(1): 1771
https://doi.org/10.1038/s41598-017-01680-w pmid: 28496167
41 Ferreira L G, Dos Santos R N, Oliva G, Andricopulo A D. Molecular docking and structure-based drug design strategies. Molecules, 2015, 20(7): 13384–13421
https://doi.org/10.3390/molecules200713384 pmid: 26205061
42 Rudnitskaya A, Török B, Török M. Molecular docking of enzyme inhibitors: a computational tool for structure-based drug design. Biochemistry and Molecular Biology Education, 2010, 38(4): 261–265
https://doi.org/10.1002/bmb.20392 pmid: 21567838
43 Doman T N, McGovern S L, Witherbee B J, Kasten T P, Kurumbail R, Stallings W C, Connolly D T, Shoichet B K. Molecular docking and high-throughput screening for novel inhibitors of protein tyrosine phosphatase-1B. Journal of Medicinal Chemistry, 2002, 45(11): 2213–2221
https://doi.org/10.1021/jm010548w pmid: 12014959
44 Chaudhary N, Sandhu P, Ahmed M, Akhter Y. Structural basis of transport function in major facilitator superfamily protein from Trichoderma harzianum. International Journal of Biological Macromolecules, 2017, 95: 1091–1100
https://doi.org/10.1016/j.ijbiomac.2016.10.099 pmid: 27816530
[1] FASE-18214-OF-KS_suppl_1 Download
[1] Weicheng LIU, Xiaoli WU, Xuelian BAI, Hong ZHANG, Dan DONG, Taotao ZHANG, Huiling WU. Fusaricidins in Paenibacillus polymyxa A21 and their antagonistic activity against Botrytis cinerea on tomato[J]. Front. Agr. Sci. Eng. , 2018, 5(2): 262-270.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed