Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2017, Vol. 4 Issue (4) : 473-481    https://doi.org/10.15302/J-FASE-2017168
RESEARCH ARTICLE
Will biomass be used for bioenergy or transportation biofuels? What drivers will influence biomass allocation
Jinguang HU, William James CADHAM, Susan van DYK, Jack N. SADDLER()
Department of Wood Science, Faculty of Forestry, The University of British Columbia, Vancouver V6T 1Z4, Canada
 Download: PDF(776 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Potential competition for biomass for current and future bioenergy/biofuel uses in Brazil, Denmark, Sweden and the USA were compared. In each of these countries, bioenergy and biofuels are already important in their energy mix. However, there is limited competition for biomass between bioenergy (heat/power/residential/industrial) and transportation biofuel applications. This situation is likely to continue until advanced biofuel technology becomes much more commercially established. In each of these countries, biomass is predominantly used to produce bioenergy, even in those regions where biofuels are significant component of their transportation sector (Brazil, Sweden and USA). The vast majority of biofuel production continues to be based on sugar, starch and oil rich feedstocks, while bioenergyis produced almost exclusively from forest biomass with agricultural biomass having a small, but increasing, secondary role. Current and proposed commercial scale biomass-to-ethanol facilities almost exclusively use agriculture derived residues (corn stover/wheat straw/sugarcane bagasse). Competition for biomass feedstocks for bioenergy/biofuel applications, is most likely to occur for agricultural biomass with coproduct lignin and other residues used to concomitantly produce heat and electricity on site at biofuel production facilities.

Keywords bioenergy      biofuel      biomass      renewable energy policy     
Corresponding Author(s): Jack N. SADDLER   
Just Accepted Date: 08 November 2017   Issue Date: 10 December 2017
 Cite this article:   
Jinguang HU,William James CADHAM,Susan van DYK, et al. Will biomass be used for bioenergy or transportation biofuels? What drivers will influence biomass allocation[J]. Front. Agr. Sci. Eng. , 2017, 4(4): 473-481.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2017168
https://academic.hep.com.cn/fase/EN/Y2017/V4/I4/473
Fig.1  Domestic renewable energy supply (a) and the consumption of biofuels [450 petajoule (PJ)] and bioenergy (2292 PJ) (b) in 2011 by source in Brazil (original figure, data source MME, 2012[9])
Fig.2  Danish 2011 biomass consumption by feedstock, wood (62%) is further categorized into chips, firewood, pellets and waste (original figure, data source DEA, 2012[12])
Fig.3  Renewable energy development by source in Sweden from 1990 to 2011 (original figure, data source Swedish Energy Agency, 2012[19]). Hydropower and wind were not reported separately until 1996.
Fig.4  Energy mix (a), and the proportional contribution of renewable technologies (b) in the 2011 renewable energy mix of the USA (original figure, data source US EIA, 2012[15])
Fig.5  Consumption of biomass as a proportion of total energy demand for the country profiles (original figure, data source[9,12,15,16])
Fig.6  Comparison of bioenergy and biofuel consumption for all case countries (original figure, data source [9,12,15,16])
1 International Energy Agency (IEA). World Energy Outlook,OECD/IEA, 2013
2 Ohlrogge J, Allen  D, Berguson B,  Dellapenna D,  Shachar-Hill Y,  Stymne S. Driving on biomass. Science, 2009, 324(5930): 1019–1020
https://doi.org/10.1126/science.1171740 pmid: 19460990
3 Lund H. Renewable energy strategies for sustainable development. Energy, 2007, 32(6): 912–919
https://doi.org/10.1016/j.energy.2006.10.017
4 Gan J, Smith  C T. Drivers for renewable energy: a comparison among OECD countries. Biomass and Bioenergy, 2011, 35(11): 4497–4503
https://doi.org/10.1016/j.biombioe.2011.03.022
5 Hultman N E, Malone  E L, Runci  P, Carlock G,  Anderson K L. Factors in low-carbon energy transformations: comparing nuclear and bioenergy in Brazil, Sweden, and the United States. Energy Policy, 2012, 40: 131–146
https://doi.org/10.1016/j.enpol.2011.08.064
6 Aguilar F X, Song  N, Shifley S. Review of consumption trends and public policies promoting woody biomass as an energy feedstock in the US. Biomass and Bioenergy, 2011, 35(8): 3708–3718
https://doi.org/10.1016/j.biombioe.2011.05.029
7 The Economist.Brazilian energy-Rain Checked, 2014
8 U.S. Department of Agriculture (USDA). Brazil Biofuels Annual- Annual Report, 2013
9 Ministry of Mines and Energy (MME). Brazilian Energy Balance.Rio de Janeiro, 2012
10 GranBio. About GranBio, 2014
11 Nikolaisen L. IEA Bioenergy Task 40 Country report 2011 for Denmark. Danish Technological Institute Renewable Energy & Transport, 2012
12 Danish Energy Agency (DEA). Energy Statistics 2011, 2012
13 Hvelplund F. Energy, Policy, and the Environment. Järvelä M, Juhola S, Eds., 2011
14 Meyer N I, Koefoed  AL. Danish energy reform: policy implications for renewables. Energy Policy, 2003, 31(7): 597–607
https://doi.org/10.1016/S0301-4215(02)00145-3
15 International Energy Agency (IEA). Nordic Energy Technology Perspectives, 2013
16 Swedish Bioenergy Association (SVEBIO). Bioenergy Facts, 2013
17 Swedish Energy Agency (SEA). Transportsektorns energianvändning 2013, 2014
18 Holmgren K. Policies Promoting Biofuels in Sweden-An f3 synthesis report. Chalmers University of Technology, 2012
19 Swedish Energy Agency (SEA). Energy in Sweden 2012, 2013
20 Karatzos S, McMillan  J D, Saddler  J N. The Potential and Challenges of Drop-in Biofuels. IEA Bioenergy, 2014
21 U.S. Energy Information Administration (EIA). Annual Energy Review 2011, 2012
22 Tyner W E. The U.S. ethanol and biofuels boom: its origins, current status, and future prospects. Bioscience, 2008, 58(7): 646–653
https://doi.org/10.1641/B580718
23 U.S. Energy Information Administration (EIA). Renewable Energy Production and Consumption by Primary Energy Source, 2012
24 Perlack R D, Eaton  L M, Turhollow  A F Jr, Langholtz  M H, Brandt  C C, Downing  M E, Lightle  D. U.S. billion-ton update: biomass supply for a bioenergy and bioproducts industry, 2011
25 International Energy Agency (IEA). World Energy Outlook, 2014
26 United Nations (UN). The state of the biofuels market, 2014
[1] Fengyan WU, Zhenying WU, Aiguo YANG, Shanshan JIANG, Zeng-Yu WANG, Chunxiang FU. Functional characterization of caffeic acid O-methyltransferase in internode lignification of switchgrass (Panicum virgatum)[J]. Front. Agr. Sci. Eng. , 2018, 5(1): 98-107.
[2] Xiaomin PI, Tongxun ZHANG, Benhua SUN, Quanhong CUI, Yun GUO, Mingxia GAO, Hao FENG, David W. HOPKINS. Effects of mulching for water conservation on soil carbon, nitrogen and biological properties[J]. Front. Agr. Sci. Eng. , 2017, 4(2): 146-154.
[3] Hui RAN,Shaozhong KANG,Fusheng LI,Ling TONG,Taisheng DU. Effects of irrigation and nitrogen management on hybrid maize seed production in north-west China[J]. Front. Agr. Sci. Eng. , 2016, 3(1): 55-64.
[4] Jianchun JIANG,Junming XU,Zhanqian SONG. Review of the direct thermochemical conversion of lignocellulosic biomass for liquid fuels[J]. Front. Agr. Sci. Eng. , 2015, 2(1): 13-27.
[5] Dmitry S. STREBKOV. Biofuels and food security[J]. Front. Agr. Sci. Eng. , 2015, 2(1): 1-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed