|
|
GhKT2: a novel K+ transporter gene in cotton (Gossypium hirsutum) |
Yiru WANG, Juan XU, Mingcai ZHANG, Xiaoli TIAN( ), Zhaohu LI |
Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China |
|
|
Abstract Potassium is an essential nutrient for plant growth and productivity of crops. K+ transporters are important for K+ uptake and transport in plants. However, information on the function of K+ transporters and K+ channels in cotton is limited. The KT/KUP/HAK protein family is essential for a variety of physiological processes in plants, including nutrient acquisition and regulation of development. This study, identified a K+ transporter gene, GhKT2, expressed in the roots of cotton (Gossypium hirsutum) cv. Liaomian17. The deduced transcript of GhKT2 is highly homologous to Cluster II of KUP/HAK/KT K+ transporters and is predicted to contain 11 transmembrane domains. GhKT2 has been localized to the plasma membrane, and its transcripts were detected in roots, stems, leaves and shoot apices of cotton seedlings. Consistently, b-glucuronidase (GUS) expression driven by the GhKT2 promoter could be detected in roots, mesophyll cells, and leaf veins in transgenic Arabidopsis. In addition, the expression of GhKT2 was induced by low K+ stress in cotton roots and pGhKT2::GUS-transgenic Arabidopsis seedlings. The GhKT2-overexpression Arabidopsis lines plants were larger and showed greater K+ accumulation than the wild type (WT) regardless of K+ concentration supplied. The net K+ influx rate, measured by the noninvasive micro-test technique, in root meristem zone of GhKT2-transgenic Arabidopsis lines was significantly greater than that of WT. Taken together, this evidence indicates that GhKT2 may participate in K+ acquisition from low or high external K+, as well as K+ transport and distribution in plants.
|
Keywords
cotton
GhKT2
potassium
transporter
uptake
|
Corresponding Author(s):
Xiaoli TIAN
|
Just Accepted Date: 30 October 2017
Online First Date: 22 November 2017
Issue Date: 28 May 2018
|
|
1 |
Clarkson D T, Hanson J B. The mineral nutrition of higher plants. Annual Review of Plant Physiology, 1980, 31(4): 239–298
https://doi.org/10.1146/annurev.pp.31.060180.001323
|
2 |
Blatt M R, Thiel G. Hormonal control of ion channel gating. Annual Review of Plant Biology, 1993, 44(1): 543–567
https://doi.org/10.1146/annurev.pp.44.060193.002551
|
3 |
Blevins D G. Role of potassium in protein metabolism in plants. Potassium in Agriculture, 1985, 413–424
|
4 |
Watanabe T, Broadley M R, Jansen S, White P J, Takada J, Satake K, Takamatsu T, Tuah S J, Osaki M. Evolutionary control of leaf element composition in plants. New Phytologist, 2007, 174(3): 516–523
https://doi.org/10.1111/j.1469-8137.2007.02078.x
pmid: 17447908
|
5 |
Cassman K G, Bryant D C, Higashi S L, Roberts B A, Kerby T A. Soil potassium balance and cumulative cotton response to annual potassium additions on a vermiculitic soil. Soil Science Society of America Journal, 1989, 53(3): 805–812
https://doi.org/10.2136/sssaj1989.03615995005300030030x
|
6 |
Oosterhuis D M. A post-mortem of the disappointing yields in the 1993 Arkansas cotton crop[C]//Proc. of the 1994 Cotton Research Meeting and Summaries of Cotton Research in Progress. Special Report- Arkansas Agricultural Experiment Station, 1994, 22–26
|
7 |
Tian X L, Wang G W, Yang F Q, Yang P Z, Duan L S, Li Z H. Differences in tolerance to low-potassium supply among different types of cultivars in cotton (Gossypium hirsutum). Acta Agronomica Sinica, 2008, 34(10): 1770–1780
https://doi.org/10.3724/SP.J.1006.2008.01770
|
8 |
Yang F Q, Wang G W, Zhang Z Z, Eneji A E, Duan L S, Li Z H, Tian X L. Genotypic variations in potassium uptake and utilization in cotton. Journal of Plant Nutrition, 2010, 34(1): 83–97
https://doi.org/10.1080/01904167.2011.531361
|
9 |
Wang Y, Wu W H. Plant sensing and signaling in response to K+-deficiency. Molecular Plant, 2010, 3(2): 280–287
https://doi.org/10.1093/mp/ssq006
pmid: 20339156
|
10 |
Grabov A. Plant KT/KUP/HAK potassium transporters: single family – multiple functions. Annals of Botany, 2007, 99(6): 1035–1041
https://doi.org/10.1093/aob/mcm066
pmid: 17495982
|
11 |
Lebaudy A, Véry A A, Sentenac H. K+ channel activity in plants: genes, regulations and functions. FEBS Letters, 2007, 581(12): 2357–2366
https://doi.org/10.1016/j.febslet.2007.03.058
pmid: 17418142
|
12 |
Véry A A, Nieves-Cordones M, Daly M, Khan I, Fizames C, Sentenac H. Molecular biology of K+ transport across the plant cell membrane: what do we learn from comparison between plant species? Journal of Plant Physiology, 2014, 171(9): 748–769
https://doi.org/10.1016/j.jplph.2014.01.011
pmid: 24666983
|
13 |
Bañuelos M A, Garciadeblas B, Cubero B, Rodríguez-Navarro A. Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiology, 2002, 130(2): 784–795
https://doi.org/10.1104/pp.007781
pmid: 12376644
|
14 |
Gierth M, Mäser P, Schroeder J I. The potassium transporter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots. Plant Physiology, 2005, 137(3): 1105–1114
https://doi.org/10.1104/pp.104.057216
pmid: 15734909
|
15 |
Nieves-Cordones M, Martínez-Cordero M A, Martínez V, Rubio F. An NH4+-sensitive component dominates high-affinity K+ uptake in tomato plants. Plant Science, 2007, 172(2): 273–280
https://doi.org/10.1016/j.plantsci.2006.09.003
|
16 |
Fulgenzi F R, Peralta M L, Mangano S, Danna C H, Vallejo A J, Puigdomenech P, Santa-María G E. The ionic environment controls the contribution of the barley HvHAK1 transporter to potassium acquisition. Plant Physiology, 2008, 147(1): 252–262
https://doi.org/10.1104/pp.107.114546
pmid: 18359846
|
17 |
Alemán F, Nieves-Cordones M, Martínez V, Rubio F. Differential regulation of the HAK5 genes encoding the high-affinity K+ transporters of Thellungiella halophila and Arabidopsis thaliana. Environmental and Experimental Botany, 2009, 65(2–3): 263–269
https://doi.org/10.1016/j.envexpbot.2008.09.011
|
18 |
Yang T, Zhang S, Hu Y, Wu F, Hu Q, Chen G, Cai J, Wu T, Moran N, Yu L, Xu G. The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels. Plant Physiology, 2014, 166(2): 945–959
https://doi.org/10.1104/pp.114.246520
pmid: 25157029
|
19 |
Garciadeblas B, Benito B, Rodríguez-Navarro A. Molecular cloning and functional expression in bacteria of the potassium transporters CnHAK1 and CnHAK2 of the seagrass Cymodocea nodosa. Plant Molecular Biology, 2002, 50(4–5): 623–633
https://doi.org/10.1023/A:1019951023362
pmid: 12374296
|
20 |
Fu H H, Luan S. AtKuP1: a dual-affinity K+ transporter from Arabidopsis. Plant Cell, 1998, 10(1): 63–73
pmid: 9477572
|
21 |
Senn M E, Rubio F, Bañuelos M A, Rodríguez-Navarro A. Comparative functional features of plant potassium HvHAK1 and HvHAK2 transporters. Journal of Biological Chemistry, 2001, 276(48): 44563–44569
https://doi.org/10.1074/jbc.M108129200
pmid: 11562376
|
22 |
Maathuis F J M. The role of monovalent cation transporters in plant responses to salinity. Journal of Experimental Botany, 2006, 57(5): 1137–1147
https://doi.org/10.1093/jxb/erj001
pmid: 16263900
|
23 |
Rigas S, Debrosses G, Haralampidis K, Vicente-Agullo F, Feldmann K A, Grabov A, Dolan L, Hatzopoulos P. TRH1 encodes a potassium transporter required for tip growth in Arabidopsis root hairs. Plant Cell, 2001, 13(1): 139–151
https://doi.org/10.1105/tpc.13.1.139
pmid: 11158535
|
24 |
Vicente-Agullo F, Rigas S, Desbrosses G, Dolan L, Hatzopoulos P, Grabov A. Potassium carrier TRH1 is required for auxin transport in Arabidopsis roots. Plant Journal, 2004, 40(4): 523–535
https://doi.org/10.1111/j.1365-313X.2004.02230.x
pmid: 15500468
|
25 |
Elumalai R P, Nagpal P, Reed J W. A mutation in the ArabidopsisKT2/KUP2 potassium transporter gene affects shoot cell expansion. Plant Cell, 2002, 14(1): 119–131
https://doi.org/10.1105/tpc.010322
pmid: 11826303
|
26 |
Xu J, Tian X, Egrinya Eneji A, Li Z. Functional characterization of GhAKT1, a novel Shaker-like K+ channel gene involved in K+ uptake from cotton (Gossypium hirsutum). Gene, 2014, 545(1): 61–71
https://doi.org/10.1016/j.gene.2014.05.006
pmid: 24802116
|
27 |
Wang Y, Li B, Du M, Eneji A E, Wang B, Duan L, Li Z, Tian X. Mechanism of phytohormone involvement in feedback regulation of cotton leaf senescence induced by potassium deficiency. Journal of Experimental Botany, 2012, 63(16): 5887–5901
https://doi.org/10.1093/jxb/ers238
pmid: 22962680
|
28 |
Xu J, Li H D, Chen L Q, Wang Y, Liu L L, He L, Wu W H. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell, 2006, 125(7): 1347–1360
https://doi.org/10.1016/j.cell.2006.06.011
pmid: 16814720
|
29 |
Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 1997, 25(24): 4876–4882
https://doi.org/10.1093/nar/25.24.4876
pmid: 9396791
|
30 |
Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 2007, 24(8): 1596–1599
https://doi.org/10.1093/molbev/msm092
pmid: 17488738
|
31 |
Schultz J, Milpetz F, Bork P, Ponting C P. SMART, a simple modular architecture research tool: identification of signaling domains. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(11): 5857–5864
https://doi.org/10.1073/pnas.95.11.5857
pmid: 9600884
|
32 |
Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 2002, 30(1): 325– 327
https://doi.org/10.1093/nar/30.1.325
pmid: 11752327
|
33 |
Li X, Gong Z Z, Koiwa H, Niu X M, Espartero J Q, Zhu X P, Veronese P, Ruggiero B, Bressan R A, Weller S C, Hasegawa P M. Bar-expressing peppermint (Mentha × Piperita L. var. Black Mitcham) plants are highly resistant to the glufosinate herbicide Liberty. Molecular Breeding, 2001, 8(2): 109–118
https://doi.org/10.1023/A:1013316816955
|
34 |
Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal, 1998, 16(6): 735–743
https://doi.org/10.1046/j.1365-313x.1998.00343.x
pmid: 10069079
|
35 |
Lagarde D, Basset M, Lepetit M, Conejero G, Gaymard F, Astruc S, Grignon C. Tissue-specific expression of ArabidopsisAKT1 gene is consistent with a role in K+ nutrition. Plant Journal, 1996, 9(2): 195–203
https://doi.org/10.1046/j.1365-313X.1996.09020195.x
pmid: 8820606
|
36 |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 2001, 25(4): 402–408
https://doi.org/10.1006/meth.2001.1262
pmid: 11846609
|
37 |
Chen J, Xiao Q, Wu F, Dong X, He J, Pei Z, Zheng H, Näsholm T. Nitric oxide enhances salt secretion and Na+ sequestration in a mangrove plant, Avicennia marina, through increasing the expression of H+-ATPase and Na+/H+ antiporter under high salinity. Tree Physiology, 2010, 30(12): 1570–1585
https://doi.org/10.1093/treephys/tpq086
pmid: 21030403
|
38 |
Hampton C R, Bowen H C, Broadley M R, Hammond J P, Mead A, Payne K A, Pritchard J, White P J. Cesium toxicity in Arabidopsis. Plant Physiology, 2004, 136(3): 3824–3837
https://doi.org/10.1104/pp.104.046672
pmid: 15489280
|
39 |
White P J, Broadley M R. Tansley Review No. 113 Mechanisms of caesium uptake by plants. New Phytologist, 2000, 147(2): 241–256
https://doi.org/10.1046/j.1469-8137.2000.00704.x
|
40 |
Ahn S J, Shin R, Schachtman D P. Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+ uptake. Plant Physiology, 2004, 134(3): 1135–1145
https://doi.org/10.1104/pp.103.034660
pmid: 14988478
|
41 |
Rodríguez-Navarro A. Potassium transport in fungi and plants. Biochimica et Biophysica Acta (BBA)- Reviews on Biomembranes, 2000, 1469(1): 1–30
|
42 |
Santa-María G E, Rubio F, Dubcovsky J, Rodríguez-Navarro A. The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell, 1997, 9(12): 2281–2289
https://doi.org/10.1105/tpc.9.12.2281
pmid: 9437867
|
43 |
Jabnoune M, Espeout S, Mieulet D, Fizames C, Verdeil J L, Conéjéro G, Rodríguez-Navarro A, Sentenac H, Guiderdoni E, Abdelly C, Véry A A. Diversity in expression patterns and functional properties in the rice HKT transporter family. Plant Physiology, 2009, 150(4): 1955–1971
https://doi.org/10.1104/pp.109.138008
pmid: 19482918
|
44 |
Han M, Wu W, Wu W H, Wang Y. Potassium transporter KUP7 is involved in K+ acquisition and translocation in Arabidopsis root under K+-limited conditions. Molecular Plant, 2016, 9(3): 437–446
https://doi.org/10.1016/j.molp.2016.01.012
pmid: 26851373
|
45 |
Chérel I, Lefoulon C, Boeglin M, Sentenac H. Molecular mechanisms involved in plant adaptation to low K+ availability. Journal of Experimental Botany, 2014, 65(3): 833–848
https://doi.org/10.1093/jxb/ert402
pmid: 24293613
|
46 |
Chen G, Hu Q, Luo L, Yang T, Zhang S, Hu Y, Yu L, Xu G. Rice potassium transporter OsHAK1 is essential for maintaining potassium-mediated growth and functions in salt tolerance over low and high potassium concentration ranges. Plant, Cell & Environment, 2015, 38(12): 2747–2765
https://doi.org/10.1111/pce.12585
pmid: 26046301
|
47 |
Checchetto V, Segalla A, Allorent G, La Rocca N, Leanza L, Giacometti G M, Uozumi N, Finazzi G, Bergantino E, Szabò I. Thylakoid potassium channel is required for efficient photosynthesis in cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(27): 11043–11048
https://doi.org/10.1073/pnas.1205960109
pmid: 22711813
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|