Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2021, Vol. 8 Issue (2) : 215-230    https://doi.org/10.15302/J-FASE-2021382
RESEARCH ARTICLE
METABOLIC AND TRANSCRIPTOME ANALYSIS REVEALS METABOLITE VARIATION AND FLAVONOID REGULATORY NETWORKS IN FRESH SHOOTS OF TEA (CAMELLIA SINENSIS) OVER THREE SEASONS
Chen-Kai JIANG1,2, De-Jiang NI3, Ming-Zhe YAO1, Jian-Qiang MA1(), Liang CHEN1()
1. Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
2. State Key Laboratory for Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
3. College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China.
 Download: PDF(2171 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• Metabolites of fresh tea shoots at harvest were profiled.

• Season-dependent metabolites were identified.

• Key genes responsible for flavonoid metabolism are proposed.

• Regulated relationships among the main compounds were investigated.

Metabolites, especially secondary metabolites, are very important in the adaption of tea plants and the quality of tea products. Here, we focus on the seasonal variation in metabolites of fresh tea shoots and their regulatory mechanism at the transcriptional level. The metabolic profiles of fresh tea shoots of 10 tea accessions collected in spring, summer, and autumn were analyzed using ultra-performance liquid chromatography coupled with quadrupole-obitrap mass spectrometry. We focused on the metabolites and key genes in the phenylpropanoid/flavonoid pathway integrated with transcriptome analysis. Multivariate statistical analysis indicates that metabolites were distinctly different with seasonal alternation. Flavonoids, amino acids, organic acids and alkaloids were the predominant metabolites. Levels of most key genes and downstream compounds in the flavonoid pathway were lowest in spring but the catechin quality index was highest in spring. The regulatory pathway was explored by constructing a metabolite correlation network and a weighted gene co-expression network.

Keywords harvest season      metabolites      tea shoots      transcriptomics      untargeted metabolomics     
Corresponding Author(s): Jian-Qiang MA,Liang CHEN   
Just Accepted Date: 20 January 2021   Online First Date: 02 March 2021    Issue Date: 13 July 2021
 Cite this article:   
Chen-Kai JIANG,De-Jiang NI,Ming-Zhe YAO, et al. METABOLIC AND TRANSCRIPTOME ANALYSIS REVEALS METABOLITE VARIATION AND FLAVONOID REGULATORY NETWORKS IN FRESH SHOOTS OF TEA (CAMELLIA SINENSIS) OVER THREE SEASONS[J]. Front. Agr. Sci. Eng. , 2021, 8(2): 215-230.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2021382
https://academic.hep.com.cn/fase/EN/Y2021/V8/I2/215
No. Name Formula Accurate mass RT MS2 fragments
Alcohols and polyols
1 Xylitol* C5H12O5 152.06841 0.88 69, 57, 99, 73, 73
Alkaloids
2 Betaine* C5H11NO2 117.07897 0.92 118, 59, 58, 119, 60
3 Caffeine* C8H10N4O2 194.08034 6.28 195, 138, 196, 110, 83
4 Theophylline* C7H8N4O2 180.06476 4.84 179, 164, 122, 94, 180
5 Theobromine C7H8N4O2 180.06462 4.17 114, 181, 57, 57, 132
Amino acids and their derivatives
6 Glutathione* C10H17N3O6S 307.08375 0.98 76, 179, 84, 162, 308
7 4-Oxoproline C5H7NO3 129.04261 1.25 128, 88, 85, 129, 129
8 DL-Lysine* C6H14N2O2 146.10559 0.75 84, 130, 85, 56, 147
9 DL-tyrosine* C9H11NO3 181.07391 0.98 136, 123, 165, 91, 119
10 L-(-)-Serine* C3H7NO3 105.04257 0.86 74, 72, 104, 105, 75
11 L-Arginine* C6H14N4O2 174.11166 0.84 70, 175, 60, 116, 130
12 L-Aspartic acid* C4H7NO4 133.03747 0.86 74, 88, 116, 70, 134
13 L-Glutamic acid* C5H9NO4 147.05312 0.87 84, 102, 130, 85
14 L-Homoserine* C4H9NO3 119.05827 0.87 74, 56, 120, 102, 75
15 L-Isoleucine* C6H13NO2 131.09465 1.21 86, 69, 87, 132
16 L-Proline* C5H9NO2 115.06334 0.91 70, 116, 71, 117
17 L-Theanine* C7H14N2O3 174.10039 0.97 84, 158, 129, 130, 175
18 β-Alanine* C3H7NO2 89.04773 0.85 90, 57, 50, 54, 55
19 D-Glutamine C5H10N2O3 146.06916 0.87 89, 191, 431, 195, 165
20 Glycyl-L-leucine C8H16N2O3 188.11608 1.24 86, 84, 172, 60, 142
21 L-Glutathione oxidized C20H32N6O12S2 612.15178 1.23 231, 613, 355, 484, 177
22 L-Histidine C6H9N3O2 155.06954 0.80 92, 108, 65, 110, 68
23 Dihomomethionine C7H15NO2S 177.08229 1.26 133, 178, 57, 84, 132
24 S-Adenosyl-L-homocysteine (SAH) C14H20N6O5S 384.12194 1.44 167, 85, 219, 69, 115
25 2-Aminoadipic acid C6H11NO4 161.06878 1.24 58, 88, 160, 73, 59
26 L-Phenylalanine* C9H11NO2 165.07901 1.55 120, 103, 121, 131
27 L-Tryptophan* C11H12N2O2 204.08976 2.47 116, 203, 74, 142, 72
Benzoic acid derivatives
28 Theogallin* C14H16O10 344.07434 2.26 191, 85, 93, 192, 127
29 2,4-Dihydroxybenzoic acid C7H6O4 154.02658 4.74 109, 153, 135, 65, 111
30 3-Hydroxybenzoic acid C7H6O3 138.03166 6.56 93, 137
31 4-Hydroxybenzaldehyde C7H6O2 122.03663 8.22 123, 68, 79, 57, 59
32 4-Hydroxybenzoic acid C7H6O3 138.0316 6.85 93, 137
Carbohydrates
33 D( + )-Glucuronic Acid* C6H10O7 194.04254 0.90 59, 73, 71, 85, 113
34 D-Fructose* C6H12O6 180.02972 0.87 59, 71, 89, 85, 113
35 D-Gluconic Acid* C6H12O7 196.05823 0.87 75, 195, 59, 129, 99
36 D-Trehalose* C12H22O11 342.11651 0.89 59, 71, 89, 341, 101
Coumarins
37 Esculin* C15H16O9 340.07951 4.73 177, 133, 178, 105, 339
38 7-Hydroxycoumarine C9H6O3 162.03157 5.36 163, 147, 135
39 Coumarin C9H6O2 146.03676 4.61 119, 147, 91, 124, 122
Flavonoids and their derivatives
40 (–)-Epigallocatechin gallate (EGCG)* C22H18O11 458.08507 6.75 125, 169
41 ( + )Catechin (C)* C15H14O6 290.07914 4.96 109, 123, 289, 125, 97
42 ( + )Epicatechin (EC)* C15H14O6 290.07912 5.85 123, 109, 289, 125, 97
43 ( + )-Gallocatechin(GC)* C15H14O7 306.07401 3.24 125, 137, 139, 109, 305
44 Epicatechin gallate (ECG)* C22H18 O10 442.09018 8.22 125, 169, 289, 109, 123
45 Epigallocatechin (EGC)* C15H14O7 306.07397 4.42 125, 137, 139, 109, 305
46 Epigallocatechin 3-O-(3-O-methyl) gallate C23H20O11 472.10075 8.56 125, 124, 168, 161, 57
47 Epigallocatechin-(4β→8)-epicatechin-3-O-gallate ester C37H30O17 746.14908 8.35 127, 123, 139, 287, 179
48 Epigallocatechin-3′-glucuronide C21H22O13 482.10644 3.29 151, 125, 153, 193, 175
49 Gallocatechin-(4α→8)-epigallocatechin C30H26O14 610.13233 7.99 127, 139, 287, 305, 179
50 Ideain C21H20O11 448.10053 8.40 287, 288, 449, 450, 137
51 Phloretin* C15H14O5 274.08428 9.50 81, 123, 167, 119, 273
52 Prunin* C21H22O10 434.12156 8.67 119, 271, 151, 107, 65
53 Cynaroside* C21H20O11 448.10069 8.67 284, 285, 447, 151, 286
54 Tricetin* C15H10O7 302.04269 9.04 149, 301, 151, 107, 302
55 Theasinensin B C37H30O18 762.14357 5.58 125, 177, 423, 137, 255
56 Kaempferin* C21H20O10 432.10577 8.99 255, 227, 285, 284, 431
57 Kaempferol* C15H10O6 286.04777 9.35 133, 285, 151, 107, 286
58 (–)-Fustin C15H12O6 288.06312 5.70 125, 177, 423, 137, 255
59 Avicularin* C20H18O11 434.08505 8.63 271, 300, 255, 301, 243
60 Baimaside* C27H30O17 626.14876 7.27 271, 300, 255, 625, 243
61 Isovitexin* C21H20O10 432.10564 8.37 283, 311, 431, 117, 341
62 Naringenin* C15H12O5 272.06862 9.54 119, 151, 271, 107, 65
63 Delphinidin-3-O-rutinoside C27H30O16 610.15362 8.15 125, 169
64 Eriodictyol* C15H12O6 288.06353 9.23 135, 151, 65, 107, 136
65 Myricetin C15H10O8 318.03707 7.49 151, 137, 317, 109, 107
66 Naringenin chalcone C15H12O5 272.06822 8.22 119, 151, 271, 65, 107
67 Quercetin C15H10O7 302.04241 7.78 203, 285, 303, 241, 229
68 Quercetin-3β-D-glucoside C21H20O12 464.0957 8.37 271, 300, 255, 301, 463
69 Schaftoside C26H28O14 564.14784 5.67 547, 379, 565, 295, 325
70 Procyanidin B4* C30H26O12 578.14269 5.68 125, 109, 407, 123, 289
71 Procyanidin B3* C30H26O12 578.1426 4.74 125, 407, 123, 109, 289
Nucleotides and their derivates
72 7-Methylxanthine* C6H6N4O2 166.04908 2.61 85, 167, 124, 103, 57
73 Adenine* C5H5N5 135.05454 1.24 134, 107, 92, 135, 108
74 Guanine* C5H5N5O 151.04941 1.61 133, 150, 108, 66, 126
75 Thymine* C5H6N2O2 126.04298 1.56 125
76 Xanthine* C5H4N4O2 152.03343 1.62 73, 114, 153, 91, 132
77 Guanosine monophosphate C10H14N5O8P 363.05817 1.27 79, 73, 117, 97, 133
78 Uridine monophosphate C9H13N2O9P 324.03592 0.99 79, 97, 115, 133, 71
79 3′-Adenosine monophosphate C10H14N5O7P 347.06296 1.22 79, 97, 134
80 Adenosine diphosphate C10H15N5O10P2 427.02992 0.96 79, 159, 134
Organic acids
81 p-Coumaric acid C9H8O3 164.04735 5.44 119, 163, 120, 93, 164
82 2-Hydroxy cinnamic acid* C9H8O3 164.04717 6.25 119, 120, 117, 163, 93
83 Abscisic acid* C15H20O4 264.13619 9.25 204, 219, 203, 151, 122
84 Gallic acid* C7H6O5 170.02144 1.92 125, 169, 69, 97, 126
85 Malic Acid* C4H6O5 134.02149 0.99 115, 71, 133, 73, 89
86 Citric acid* C6H8O7 192.02704 1.21 111, 87, 85, 191
87 Succinic acid* C4H6O4 118.02661 1.31 73, 117, 99, 117, 74
88 α-Ketoglutaric acid C5H6O5 146.02147 1.07 101, 102, 128, 57, 73
89 Digallic acid C14H10O9 322.0327 5.86 289, 91, 335, 113, 175
90 Malonic acid C3H4O4 104.01093 1.08 59, 103, 74, 60, 72
91 3-Hydroxy-3-methylglutaric acid C6H10O5 162.05282 1.41 101, 99, 57, 58
92 Ellagic acid C14H6O8 302.0063 5.19 303, 304, 257
93 Ethylmalonic acid C5H8O4 132.04221 1.84 87, 62, 131, 133
94 Fumaric acid C4H4O4 116.01091 1.44 71, 73, 69, 117, 115
95 Shikimic acid C7H10O5 174.05253 6.26 93, 73, 83, 137, 111
96 L-Pyroglutamic acid C5H7NO3 129.04261 0.87 84, 130
Quinates and their derivatives
97 Chlorogenic acid* C16H18O9 354.0952 5.36 191, 85, 192, 93, 127
98 Neochlorogenic acid* C16H18O9 354.09524 3.62 135, 191, 179, 85, 134
99 Quinic acid C7H12O6 192.06338 6.61 103, 191, 59, 88, 85
Pantothenic acid*
100 Pantothenic acid* C9H17NO5 219.11068 2.05 88, 71, 146, 218, 99
Tab.1  Identification of metabolites of fresh tea shoots
Fig.1  Multivariate statistical analysis of metabolites in tea samples from three harvest seasons. (a) PCA score plot; (b) PLS-DA score plot; and (c) 10-fold cross-validation bar of PLS-DA model with 100 permutation tests.
Fig.2  Heat map of the concentrations of the top 25 metabolites over the three seasons.
Fig.3  Metabolic pathway changes in flavonoids over three harvest seasons. Peak areas of metabolites in spring, summer and autumn are shown in green, pink and blue bars, respectively; low, medium and high expression levels of genes are shown in blue, yellow and red blocks, respectively; bars with the same lowercase letters are not significantly different by LSD test; PAL, phenylalanine ammonia-lyase; C4H, cinnamate 4-hydroxylase; 4CL, 4-coumarate–CoA ligase; CHI, chalcone isomerase; CHS, chalcone synthase; F3′5′H, flavonoid 3′,5′-hydroxylase; F3H, flavanone 3-hydroxylase; F3′H, flavonoid 3′-monooxygenase; FLS, flavonol synthase; DFR, dihydroflavonol-4-reductase; ANS, anthocyanidin synthase; ANR, anthocyanidin reductase; and LAR, leucoanthocyanidin reductase.
Fig.4  Comparison of catechin concentrations in three harvest seasons. (a) Catechin quality indices; (b) mean value of catechin quality index. Bars with the same lowercase letters are not significantly different by LSD test.
Fig.5  The metabolic correlated network and weighted gene co-expression network. (a) Metabolic correlated network among metabolites with PCC > 0.6 (Nodes were colored based on term weight value. Positive and negative correlation are indicated with pink and blue connectors, respectively); (b) weighted gene co-expression network in flavonoid metabolism with weighted correlation coefficient > 0.5. (Edge width reflects weighted correlation coefficient. Node size reflects the degree value. Nodes were colored based on the group of hub-gene).
1 N Sanlier, B B Gokcen, M Altuğ. Tea consumption and disease correlations. Trends in Food Science & Technology, 2018, 78: 95–106
https://doi.org/10.1016/j.tifs.2018.05.026
2 H G Ji, Y R Lee, M S Lee, K H Hwang, E H Kim, J S Park, Y S Hong. Metabolic phenotyping of various tea (Camellia sinensis L.) cultivars and understanding of their intrinsic metabolism. Food Chemistry, 2017, 233: 321–330
https://doi.org/10.1016/j.foodchem.2017.04.079 pmid: 28530581
3 R Fang, S P Redfern, D Kirkup, E A Porter, G C Kite, L A Terry, M J Berry, M S J Simmonds. Variation of theanine, phenolic, and methylxanthine compounds in 21 cultivars of Camellia sinensis harvested in different seasons. Food Chemistry, 2017, 220: 517–526
https://doi.org/10.1016/j.foodchem.2016.09.047 pmid: 27855934
4 H Li, Z W Liu, Z J Wu, Y X Wang, R M Teng, J Zhuang. Differentially expressed protein and gene analysis revealed the effects of temperature on changes in ascorbic acid metabolism in harvested tea leaves. Horticulture Research, 2018, 5(1): 65
https://doi.org/10.1038/s41438-018-0070-x pmid: 30302261
5 S Jayasekera, L Kaur, A L Molan, M L Garg, P J Moughan. Effects of season and plantation on phenolic content of unfermented and fermented Sri Lankan tea. Food Chemistry, 2014, 152: 546–551
https://doi.org/10.1016/j.foodchem.2013.12.005 pmid: 24444973
6 W Dai, D Qi, T Yang, H Lv, L Guo, Y Zhang, Y Zhu, Q Peng, D Xie, J Tan, Z Lin. Nontargeted analysis using ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry uncovers the effects of harvest season on the metabolites and taste quality of tea (Camellia sinensis L.). Journal of Agricultural and Food Chemistry, 2015, 63(44): 9869–9878
https://doi.org/10.1021/acs.jafc.5b03967 pmid: 26494158
7 P Zhou, O Hu, H Fu, L Ouyang, X Gong, P Meng, Z Wang, M Dai, X Guo, Y Wang. UPLC-Q-TOF/MS-based untargeted metabolomics coupled with chemometrics approach for Tieguanyin tea with seasonal and year variations. Food Chemistry, 2019, 283: 73–82
https://doi.org/10.1016/j.foodchem.2019.01.050 pmid: 30722928
8 Q Zhang, M Liu, J Ruan. Metabolomics analysis reveals the metabolic and functional roles of flavonoids in light-sensitive tea leaves. BMC Plant Biology, 2017, 17(1): 64
https://doi.org/10.1186/s12870-017-1012-8 pmid: 28320327
9 J Zhu, Q Xu, S Zhao, X Xia, X Yan, Y An, X Mi, L Guo, L Samarina, C Wei. Comprehensive co-expression analysis provides novel insights into temporal variation of flavonoids in fresh leaves of the tea plant (Camellia sinensis). Plant Science, 2020, 290: 110306
pmid: 31779914
10 J Xu, Q F Zhang, J Zheng, B F Yuan, Y Q Feng. Mass spectrometry-based fecal metabolome analysis. Trends in Analytical Chemistry, 2019, 112: 161–174
11 W Xu, Q Song, D Li, X Wan. Discrimination of the production season of Chinese green tea by chemical analysis in combination with supervised pattern recognition. Journal of Agricultural and Food Chemistry, 2012, 60(28): 7064–7070
pmid: 22720840
12 D Qi, J Li, X Qiao, M Lu, W Chen, A Miao, W Guo, C Ma. Non-targeted metabolomic analysis based on ultra-high-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry reveals the effects of grafting on non-volatile metabolites in fresh tea leaves (Camellia sinensis L.). Journal of Agricultural and Food Chemistry, 2019, 67(23): 6672–6682
pmid: 31117493
13 X Guo, C T Ho, W Schwab, C Song, X Wan. Aroma compositions of large-leaf yellow tea and potential effect of theanine on volatile formation in tea. Food Chemistry, 2019, 280: 73–82
https://doi.org/10.1016/j.foodchem.2018.12.066 pmid: 30642509
14 M Kito, H Kokura, J Izaki, K Sasaoka. Theanine, a precursor of the phloroglucinol nucleus of catechins in tea plants. Phytochemistry, 1968, 7(4): 599–603
https://doi.org/10.1016/S0031-9422(00)88234-5
15 D N Barua. Seasonal dormancy in tea (Camellia sinensis L.). Nature, 1969, 224(5218): 514
https://doi.org/10.1038/224514a0
16 C Yue, H Cao, X Hao, J Zeng, W Qian, Y Guo, N Ye, Y Yang, X Wang. Differential expression of gibberellin- and abscisic acid-related genes implies their roles in the bud activity-dormancy transition of tea plants. Plant Cell Reports, 2018, 37(3): 425–441
https://doi.org/10.1007/s00299-017-2238-5 pmid: 29214380
17 T Tohge, L P de Souza, A R Fernie. Current understanding of the pathways of flavonoid biosynthesis in model and crop plants. Journal of Experimental Botany, 2017, 68(15): 4013–4028
https://doi.org/10.1093/jxb/erx177 pmid: 28922752
18 S Kaneko, K Kumazawa, H Masuda, A Henze, T Hofmann. Molecular and sensory studies on the umami taste of Japanese green tea. Journal of Agricultural and Food Chemistry, 2006, 54(7): 2688–2694
https://doi.org/10.1021/jf0525232 pmid: 16569062
19 Q Q Cao, C Zou, Y H Zhang, Q Z Du, J F Yin, J Shi, S Xue, Y Q Xu. Improving the taste of autumn green tea with tannase. Food Chemistry, 2019, 277: 432–437
https://doi.org/10.1016/j.foodchem.2018.10.146 pmid: 30502167
20 Y S Zhen, Z M Chen, S J Cheng, M L Chen. Tea: Bioactivity and Therapeutic Potential. London, UK: CRC Press, 2002
21 S Kallithraka, J Bakker, M N Clifford. Evaluation of bitterness and astringency of (+)-catechin and (–)-epicatechin in red wine and in model solution. Journal of Sensory Studies, 1997, 12(1): 25–37
https://doi.org/10.1111/j.1745-459X.1997.tb00051.x
22 H Peleg, K Gacon, P Schlich, A C Noble. Bitterness and astringency of flavan-3-ol monomers, dimers and trimers. Journal of the Science of Food and Agriculture, 1999, 79(8): 1123–1128
https://doi.org/10.1002/(SICI)1097-0010(199906)79:8<1123::AID-JSFA336>3.0.CO;2-D
23 C Liu, X Wang, V Shulaev, R A Dixon. A role for leucoanthocyanidin reductase in the extension of proanthocyanidins. Nature Plants, 2016, 2(12): 16182
https://doi.org/10.1038/nplants.2016.182 pmid: 27869786
24 R Stracke, H Ishihara, G Huep, A Barsch, F Mehrtens, K Niehaus, B Weisshaar. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant Journal, 2007, 50(4): 660–677
https://doi.org/10.1111/j.1365-313X.2007.03078.x pmid: 17419845
25 S Chen, F Wu, Y Li, Y Qian, X Pan, F Li, Y Wang, Z Wu, C Fu, H Lin, A Yang. NtMYB4 and NtCHS1 are critical factors in the regulation of flavonoid biosynthesis and are involved in salinity responsiveness. Frontiers in Plant Science, 2019, 10: 178
https://doi.org/10.3389/fpls.2019.00178 pmid: 30846995
26 J I Kim, X Zhang, P E Pascuzzi, C J Liu, C Chapple. Glucosinolate and phenylpropanoid biosynthesis are linked by proteasome-dependent degradation of PAL. New Phytologist, 2020, 225(1): 154–168
https://doi.org/10.1111/nph.16108 pmid: 31408530
27 C Pastore, S Dal Santo, S Zenoni, N Movahed, G Allegro, G Valentini, I Filippetti, G B Tornielli. Whole plant temperature manipulation affects flavonoid metabolism and the transcriptome of grapevine berries. Frontiers in Plant Science, 2017, 8: 929
https://doi.org/10.3389/fpls.2017.00929 pmid: 28634482
28 Y Lu, Y Liu, X Niu, Q Yang, X Hu, H Y Zhang, J Xia. Systems genetic validation of the SNP-metabolite association in rice via metabolite-pathway-based phenome-wide association scans. Frontiers in Plant Science, 2015, 6: 1027
https://doi.org/10.3389/fpls.2015.01027 pmid: 26640468
29 Y C Ruan, Q K Cheng. The relation between the components of tea catechins and the quality of green tea. Acta Horticulturae Sinica, 1964, 3: 287–300 (in Chinese)
30 Y R Liang, J L Lu, L Y Zhang. Comparative study of cream in infusions of black tea and green tea (Camellia sinensis (L.) O. Kuntze). International Journal of Food Science & Technology, 2002, 37(6): 627–634
https://doi.org/10.1046/j.1365-2621.2002.00589.x
31 G A A R Perera, A M T Amarakoon, D C K Illeperuma, P K P Muthukumarana. Effects of raw material on the chemical composition, organoleptic properties, antioxidant activity, physical properties and the yield of instant black tea. Lebensmittel-Wissenschaft+Technologie, 2015, 63(1): 745–750
https://doi.org/10.1016/j.lwt.2015.03.060
32 B S Moore, C Hertweck, J N Hopke, M Izumikawa, J A Kalaitzis, G Nilsen, T O’Hare, J Piel, P R Shipley, L Xiang, M B Austin, J P Noel. Plant-like biosynthetic pathways in bacteria: from benzoic acid to chalcone. Journal of Natural Products, 2002, 65(12): 1956–1962
https://doi.org/10.1021/np020230m pmid: 12502351
33 C Zheng, J Q Ma, J D Chen, C L Ma, W Chen, M Z Yao, L Chen. Gene co-expression networks reveal key drivers of flavonoid variation in eleven tea cultivars (Camellia sinensis). Journal of Agricultural and Food Chemistry, 2019, 67(35): 9967–9978
https://doi.org/10.1021/acs.jafc.9b04422 pmid: 31403784
34 M Nemesio-Gorriz, P B Blair, K Dalman, A Hammerbacher, J Arnerup, J Stenlid, S M Mukhtar, M Elfstrand. Identification of norway spruce MYB-bHLH-WDR transcription factor complex members linked to regulation of the flavonoid pathway. Frontiers in Plant Science, 2017, 8: 305
https://doi.org/10.3389/fpls.2017.00305 pmid: 28337212
[1] FASE-21382-OF-JCK_suppl_1 Download
[2] FASE-21382-OF-JCK_suppl_2 Download
[1] Zhiqiang XIA,Xin CHEN,Cheng LU,Meiling ZOU,Shujuan WANG,Yang ZHANG,Kun PAN,Xincheng ZHOU,Haiyan WANG,Wenquan WANG. Comparative transcriptomics revealed enhanced light responses, energy transport and storage in domestication of cassava (Manihot esculenta)[J]. Front. Agr. Sci. Eng. , 2016, 3(4): 295-307.
[2] Fengxia YIN,Hui LIU,Shorgan BOU,Guangpeng LI. Oocyte-associated transcription factors in reprogramming after somatic cell nuclear transfer: a review[J]. Front. Agr. Sci. Eng. , 2014, 1(2): 104-113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed